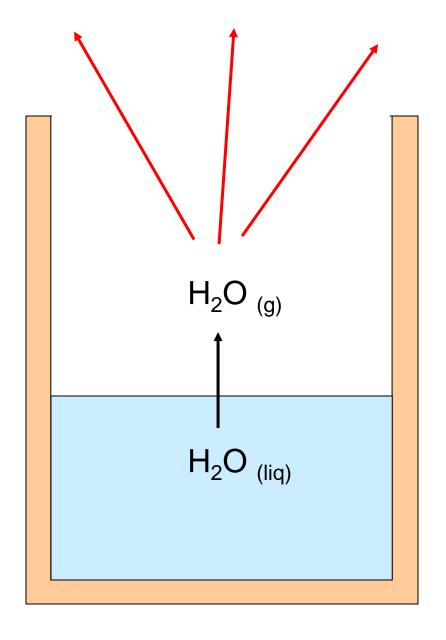


EQUILIBRIO QUÍMICO


Marco Galleguillos Caamaño B.Q. Mg. en BQ

Se establece un equilibrio cuando se igualan las velocidades directa e inversa.

En este caso se denomina:

EQUILIBRIO FÍSICO

Este sistema está abierto, por lo tanto no hay equilibrio

Condiciones básicas para un sistema en equilibrio:

- Reacción reversible
- Sistema cerrado

Reacción reversible:

$$aA + bB \longrightarrow cC + dD$$

v directa

$$v_{\text{directa}} = k_{\text{dir}} \quad [A]^{\text{a}} \quad [B]^{\text{b}}$$

$$v_{\text{inversa}} = k_{\text{inv}}$$
 [C] ^c [D] ^d

Nota: Cuando la reacción ocurre en una sola etapa, el orden de la reacción coincide con los coeficientes estequiométricos

En el equilibrio se cumple: v directa = v inversa

$$v$$
 directa = v inversa

$$k_{\text{dir}} [A]^a [B]^b = k_{\text{inv}} [C]^c [D]^d$$

Reacción reversible:

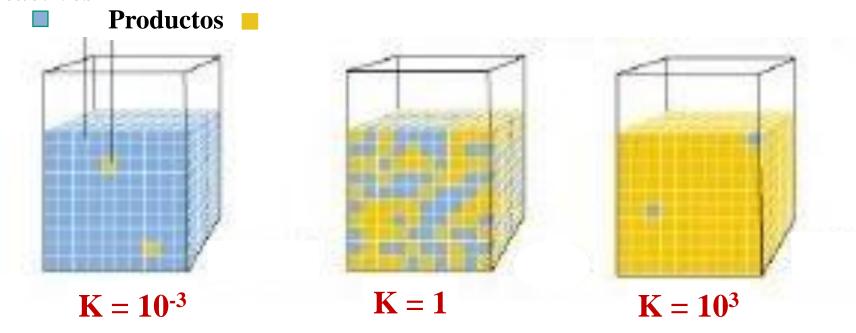
$$aA + bB \longrightarrow cC + dD$$

$$\frac{k_{\text{inv}}}{-} = \frac{[C]^{c} [D]^{d}}{a \text{ T constante}}$$

$$k_{\text{dir}} = [A]^{a} [B]^{b}$$

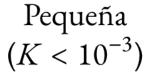
$$\mathbf{K} = \frac{[\mathbf{C}]^{c} [\mathbf{D}]^{d}}{[\mathbf{A}]^{a} [\mathbf{B}]^{b}}$$

$$\mathbf{K} = \frac{[\mathbf{C}]^{c} [\mathbf{D}]^{d}}{[\mathbf{A}]^{a} [\mathbf{B}]^{b}}$$


$$[C]^{c}[D]^{d} > [A]^{a}[B]^{b}$$

$$si K = 1$$

$$[\mathbf{C}]^{\mathbf{c}} [\mathbf{D}]^{\mathbf{d}} = [\mathbf{A}]^{\mathbf{a}} [\mathbf{B}]^{\mathbf{b}}$$


$$[C]^{c}[D]^{d} < [A]^{a}[B]^{b}$$

Reactivos

El valor de K indica si el equilibrio está desplazado hacia los productos o hacia los reaccionantes

Magnitud de K aumenta

Intermedia $(10^{-3} < K < 10^3)$

Grande $(K > 10^3)$

Reactivos Productos

Reactivos

Productos

Reactivos Productos

En su mayoría reactivos

Cantidades significativas de reactivos y productos

En su mayoría productos

Reacción de disociación de N₂O₄

 N_2O_4 (g) \longrightarrow 2 NO_2 (g)

Gas incoloro

Gas color café oscuro

Concentración molar

$$K = \frac{[NO_2]^2}{[N_2O_4]}$$

Constante de equilibrio

$$K = 4,63 \times 10^{-3}$$
 a 25 °C

La constante de equilibrio nos da información acerca de la dirección de una reacción

Reacción	K (a una temperatura T)
$N_2O_{4(g)} \leftrightarrows NO_{2(g)}$	4.63×10^{-3}
A ≒ B	45
$Z \leftrightarrows Y + W$	0.01

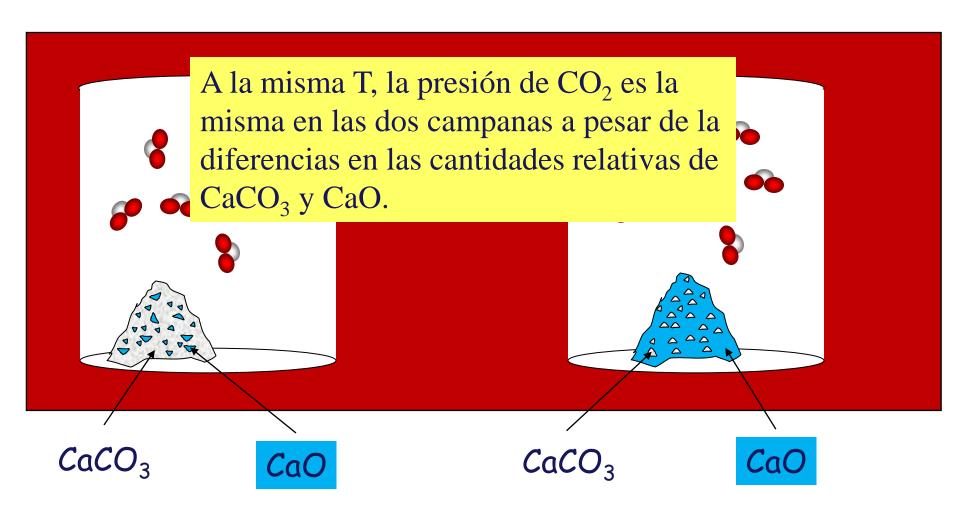
$$2 \text{ NO}_{(g)} \stackrel{\longrightarrow}{\longleftarrow} N_{2(g)} + O_{2(g)}$$

Expresión de equilibrio

$$K_{c} = \frac{[N_{2}][O_{2}]}{[NO]^{2}}$$

$$K_{p} = \frac{P_{N2} \times P_{O2}}{(P_{NO})^{2}}$$

EQUILIBRIO HOMOGÉNEO:


Todas las especies reaccionantes se encuentran en la misma fase.

EQUILIBRIO HETEROGÉNEO:

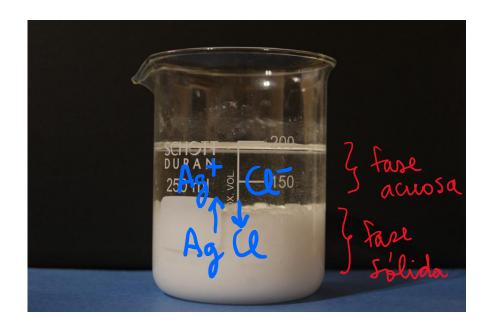
Reacción reversible en que reactivos y productos se encuentran en distintas fases.

Sistema en equilibrio heterogéneo

$$CaCO_{3(s)}$$
 \longrightarrow $CaO_{(s)}$ + $CO_{2(g)}$

$$CaCO_{3 (s)}$$
 \longrightarrow $CaO_{(s)}$ + $CO_{2 (g)}$

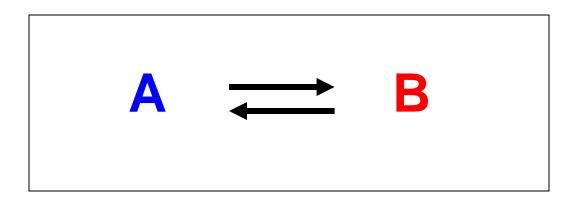
$$K_p = Pco_2$$

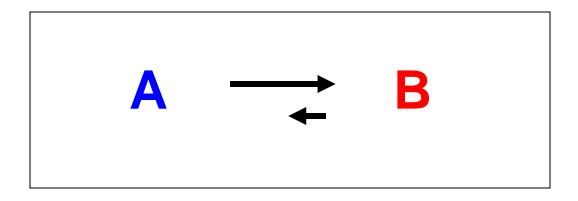

La presión de CO₂ es constante a una T dada mientras exista CaCO₃ y CaO en el sistema.

Producto de solubilidad: Kps

$$CaCO_{3 (s)}$$
 \longrightarrow $Ca^{2+}_{(ac)}$ + $CO_{3}^{-2}_{(ac)}$
 $AgCl_{(s)}$ \longrightarrow $Ag^{+}_{(ac)}$ + $Cl^{-}_{(ac)}$
 $AgI_{(s)}$ \longrightarrow $Ag^{+}_{(ac)}$ + $I^{-}_{(ac)}$

$$AgCl_{(s)}$$
 $Ag^+_{(ac)}$ + $Cl^-_{(ac)}$


$\mathbf{Kps} = [\mathbf{Ag}^+][\mathbf{Cl}^-]$


Precipitation Reactions

CARACTERÍSTICAS DE UN SISTEMA QUÍMICO EN EQUILIBRIO

• El estado de equilibrio se logra por cualquier dirección, es decir, a partir de los reactantes o de los productos

 Al inicio de una reacción química, la "v directa" es mayor a la "v inversa". En el equilibrio ambas velocidades se igualan (v directa = v inversa)

$$A \xrightarrow{k_1} B$$

$$k_{-1}$$

- El equilibrio químico es un proceso dinámico
- Desde el punto de vista termodinámico se cumple que ΔH,
 ΔG y ΔS son nulos. La entropía absoluta es máxima por lo tanto es un estado de máximo desorden molecular.
- Existe un equilibrio para cada reacción química reversible, en un sistema cerrado, representado por el valor de K a una temperatura dada.
- Los catalizadores NO modifican el estado de equilibrio.

Principio de Le Chatelier:

 "Si se aplica un esfuerzo externo a un sistema en equilibrio químico, el sistema se ajustará a fin de contrarrestar dicho esfuerzo".

Henri Le Chatelier 1850-1936 Studied mining engineering. Interested in glass and ceramics.

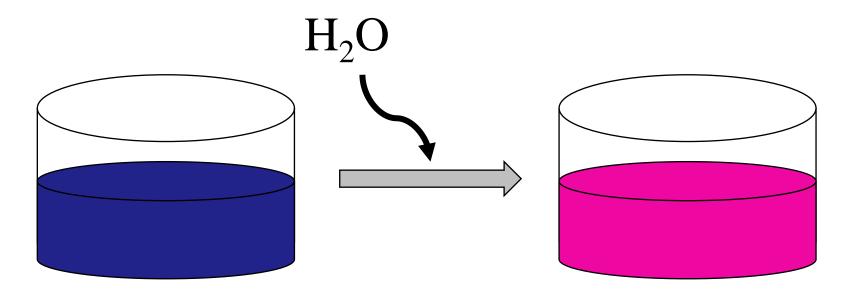
EFECTO DE LOS CAMBIOS DE CONCENTRACIÓN

$$N_2O_{4 (g)}$$
 \longrightarrow $2 NO_{2 (g)}$

$$AgCl_{(s)} \longrightarrow Ag^+ + Cl^-$$

EFECTO DE LOS CAMBIOS DE TEMPERATURA

$$Co(H2O)_{6 (ac)}^{-2} + 4Cl_{(ac)}^{-} + CoCl_{4 (ac)}^{-2} + H_2O_{(l)}$$


ROSADO

AZUL $\Delta H > 0$

Ion hexaacuocobalto (II)

Ion tetraclorocobalto (II)

CoCl₄-2_(ac) +
$$6H_2O_{(l)}$$
 \Longrightarrow Co(H2O)₆+2_(ac) + $4Cl_{(ac)}$
ROSADO
 $\Delta H < 0$

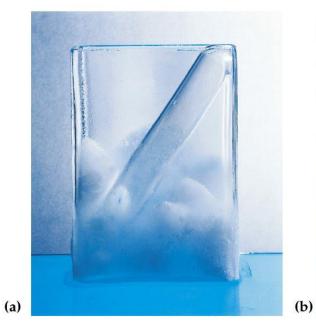
$$Co(H2O)_{6}^{+2}$$
 (ac)

Le Chatelier's Principle

Reactivos + calor —

Productos

 $\Delta H > 0$


Si se aplica calor a una reacción endotérmica el equilibrio se desplaza hacia los productos

Reactivos

Productos + calor

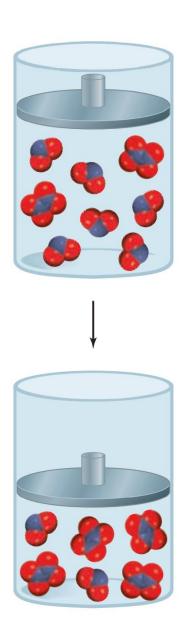
 $\Delta H < 0$

Si se aplica calor a una reacción exotérmica el equilibrio se desplaza hacia los reaccionantes A muy baja T el equilibrio se desplaza hacia los reaccionanes (N_2O_4)

(c)

A esta T el sistema se encuentra en estado de equilibrio en que co-existen reactantes y productos

A mayor T el equilibrio se desplaza hacia los productos (NO₂)


 $N_2O_4(g)$ + heat \implies 2 NO_2 Colorless Brown

Nitrogen Dioxide and Dinitrogen Tetraoxide

EFECTO DE LOS CAMBIOS DE PRESIÓN Y VOLUMEN

En un sistema gaseoso en equilibrio al reducir el volumen, la reacción se desplaza en la dirección que reduce el número de moles.

$$N_2O_4$$
 (g)
$$= 2NO_2$$
 (g)
$$Si \downarrow V$$
 2 NO₂ (g)
$$Si \downarrow V$$

Figura 14.9 El efecto de un incremento de la presión en el equilibrio de $N_2O_4(g) \Longrightarrow 2NO_2(g)$.

NO₂ -- N₂O₄ Equilibrium