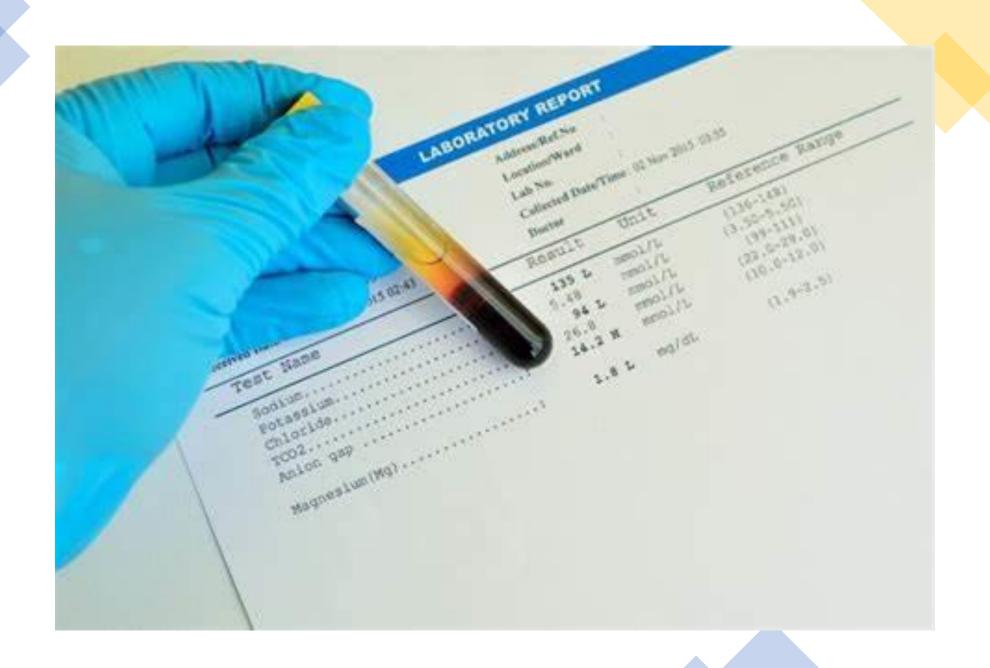

Soluto

# Propiedades de las soluciones expresiones de concentración

Marco Galleguillos Caamaño B.Q. Mg. en BQ


|                               | LEC | LIC   |
|-------------------------------|-----|-------|
| Na <sup>+</sup><br>(mEq/L)    | 145 | 12    |
| K <sup>+</sup><br>(mEq/L)     | 4   | 150   |
| Ca <sup>2+</sup><br>(mEq/L)   | 5   | 0.001 |
| CI <sup>-</sup><br>(mEq/L)    | 105 | 5     |
| HCO <sub>3</sub> -<br>(mEq/L) | 25  | 12    |
| Pi<br>(mEq/L)                 | 2   | 100   |
| pH                            | 7.4 | 7.1   |

### PERFIL ELECTROLITICO



La suma de los cationes es igual a la suma de los aniones en cada compartimiento

La osmolaridad del LEC = la osmolaridad del LIC



### Ionograma plasmático. Electrolitos (en suero)

- **Sodio (Na) (Natremia):** 136 146 meq/L (136 146 mmol/L)
- **Potasio (K) (Kaliemia):** 3,5 5,0 meq/L (3,5 5,0 mmol/L)
- Cloruros (Cl) (Cloremia): 102 109 meq/L (102 109 mmol/L)
- Calcio (Ca) (Calcemia): 8,7 10,2 mg/dL (2,2 2,6 mmol/L)
- Magnesio (Mg) (Magnesemia): 1,5 2,3 mg/dL (0,62 0,95 mmol/L)





### REGLA DE TRES

#### Formula:

Dosis solicitada por el medico X diluyente en (ml) presentación del medicamento (gr o mg)

### Ejemplo

se solicitan 200 mg de ampicilina c/12 h La presentación de la ampicilina es 500 mg en 2 ml

$$500 \text{mg}$$
  $2 \text{ML}$   $200 \text{mg} \times 2 \text{ml}$  =  $400$  = 0.8 ml  $200 \text{mg}$   $\times$   $500 \text{mg}$   $500$ 





Matraz volumétrico

# Soluciones líquidas

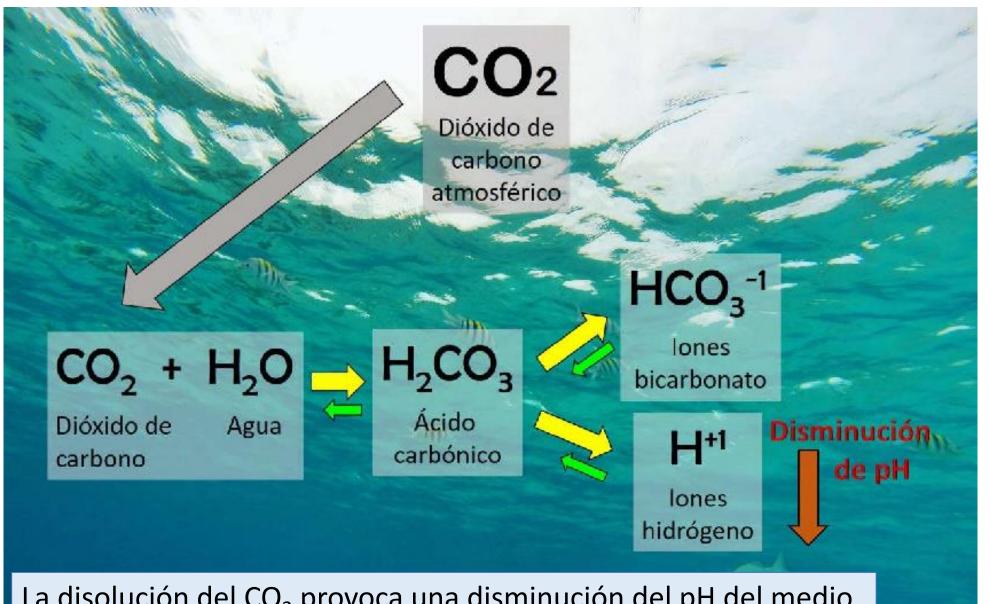
No todos los solutos pueden disolverse en un disolvente

- Depende de las características físicas y químicas del soluto y el solvente
- Características externas al sistema: presión y temperatura

## Mecanismos de disolución:

1) Mediante una reacción química

$$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$$




No metal + O<sub>2</sub> Anhídrido

| Reacción de formación                      | Fórmula del<br>anhídrido | Óxido ácido<br>(Anhídrido) |  |
|--------------------------------------------|--------------------------|----------------------------|--|
| $S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$ | SO <sub>2</sub>          | Óxido sulfuroso            |  |
| $2SO_{2(g)} + O_{2(g)} \to 2SO_{3(g)}$     | SO <sub>3</sub>          | Óxido sulfúrico            |  |

# 

| Anhídrido            | Fórmula                        | Oxiácido correspondiente | Fórmula                        |
|----------------------|--------------------------------|--------------------------|--------------------------------|
| Anhídrido carbónico  | CO <sub>2</sub>                | Ácido carbónico          | H <sub>2</sub> CO <sub>3</sub> |
| Anhídrido sulfuroso  | SO <sub>2</sub>                | Ácido sulfuroso          | H <sub>2</sub> SO <sub>3</sub> |
| Anhídrido sulfúrico  | SO <sub>3</sub>                | Ácido sulfúrico          | H <sub>2</sub> SO <sub>4</sub> |
| Anhídrido nítrico    | N <sub>2</sub> O <sub>5</sub>  | Ácido nítrico            | HNO <sub>3</sub>               |
| Anhídrido fosfórico  | P <sub>2</sub> O <sub>5</sub>  | Ácido fosfórico          | H <sub>3</sub> PO <sub>4</sub> |
| Anhídrido cloroso    | Cl <sub>2</sub> O <sub>6</sub> | Ácido cloroso            | HCIO <sub>2</sub>              |
| Anhídrido clórico    | Cl <sub>2</sub> O <sub>7</sub> | Ácido clórico            | HCIO <sub>3</sub>              |
| Anhídrido perclórico | Cl <sub>2</sub> O <sub>8</sub> | Ácido perclórico         | HCIO <sub>4</sub>              |



La disolución del CO<sub>2</sub> provoca una disminución del pH del medio

## 2) Por interacción soluto-solvente

- a) Ión dipolo: NaCl(s) + H2O(1) Na+(ac) + Cl-(ac)
- b) Dipolo dipolo: HCl(ac) + H2O(1) + H8+Cl5- 6+H2O
- c) Dipolo dipolo Inducido: |2(ac) + H2O(1) I2/ H2O

- d) Puente de Hidrógeno: CH3 O H////O H
- e) Fuerzas se Van der Waals: entre moléculas no polares

## Soluciones líquido-líquido

1) Líquido polar en solvente polar: interacción dipolo - dipolo, líquidos miscibles. Solución homogénea. Ej. Perfumes, bebidas alcohólicas

2) Líquido no polar en solvente polar: líquidos no miscibles (2 fases). Solución heterogénea

3) Líquido no polar en solvente no polar: líquidos miscibles, interacción de van der Waals. Solución homogénea. Ej. hexano en cloroformo

# Soluciones sólido-líquidos

NaCl solubilidad 36 g/ 100 g H2O Ca3(PO4)2 solubilidad 0,002 g/ 100 g H2O

La diferencia se debe a la energía reticular en el sólido, que depende de:

- Cantidad de cargas:

  carga única del soluto: solubles (K; NH4)

  cargas múltiples: insolubles (PO4)
- Distancia entre iones vecinos:

Mg(OH)2 insoluble Ca (OH)2 Sr (OH)2 Ba (OH)2 soluble IIA



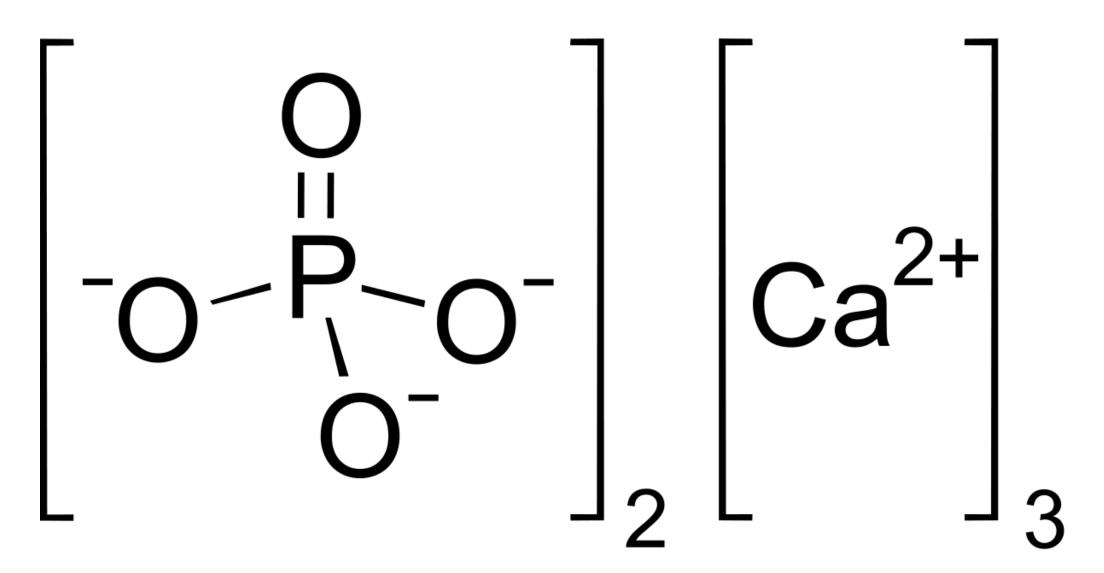
112



145

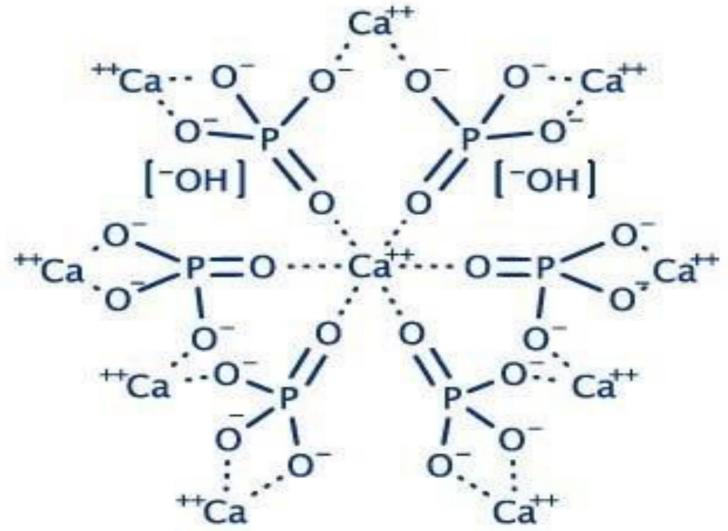


94




219




253

# Solubilidad 0,002 g/100g de H<sub>2</sub>O



# Hidroxiapatita

 $Ca_5(OH)(PO_4)_3$ 



# Solubilidad

| Alcohol  | g soluto / 100 ml H2O a 20 °C                                                              |
|----------|--------------------------------------------------------------------------------------------|
| Metanol  | сн <sub>3</sub> он Miscible                                                                |
| Etanol   | CH3-CH2OH Miscible                                                                         |
| Propanol | CH3-CH2-CH2OH Miscible                                                                     |
| Butanol  | CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> OH 7,9                  |
| Pentanol | CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> OH 2,7                  |
| Hexanol  | CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> OH 0,6 |

# Expresiones de concentración

Concentración: Es una relación entre la cantidad de soluto y la cantidad

de solvente

**Físicas:** gramos (g) milígramos (mg) Microgramos (µg)

Unidades de masa -

Químicas: moles (m) **Equivalentes-gramo (Eq-g)** 

```
1 g = 1.000 mg
                                1 \text{ mg} = 1.000 \mu g
     1g = 1 000 000 \mu g
```

# Expresiones peso/peso (p/p)

% p/p → g de soluto en 100g de solución

HCl 37%p/p → 37 g de HCl puro en 100 g de solución



# NaOH 4%p/p

# 4g de NaOH en 100 g de solución







Molalidad (m): cantidad de moles (en g) de soluto por cada 1000 g de solvente  $(H_2O)$ 

Esta expresión de concentración se independiza de la temperatura del ambiente al no existir unidades de volumen

# Calcular molalidad de

4 % p/p de NaOH: 4 g NaOH en 100 g de solución

4% p/p implica 4 g NaOH más 96 g de H2O Según molalidad  $\times$  g NaOH en 1000 g de H2O

$$x = \frac{4.000}{96} = 41,66 g$$

PM NaOH Na = 23

$$H = 1$$
 gramos (40 g) = 1 mol

# Cálculo molalidad

Si 40 g de NaOH corresponden a 1 mol Entonces 41,66 g de NaOH corresponden a x mol

$$40 x = 41,66 \times 1 \qquad x = 41,66 \times 1 \qquad x = 1,04 \text{ moles}$$

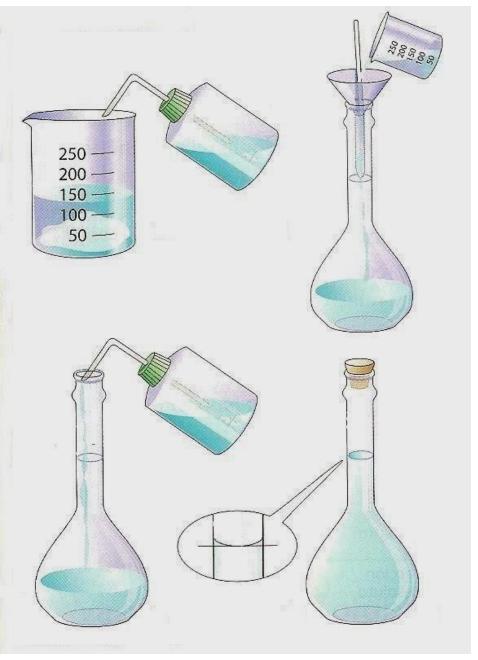
La solución es 1,04 molal (m)

Expresiones peso/volumen (p/v)

% p/v → g de soluto en 100 mL de solución

Molaridad - moles de soluto en 1000 mL de solución

Normalidad → cantidad de equivalentes-gramo de soluto en 1000 mL de solución


% p/v → g de soluto en 100 mL de solución

Preparar 300 mL de suero fisiológico (NaCl 0,9%)

0,9 g de NaCl ---- 100 mL de solución

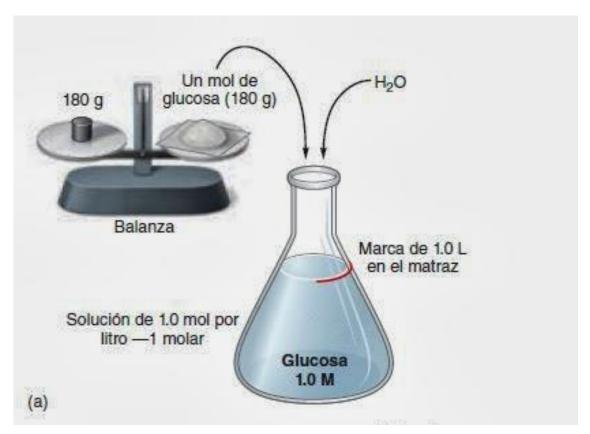
100 Y = 
$$0.9 \times 300$$
  
Y =  $270/100 = 2.7 \text{ g NaCl}$ 

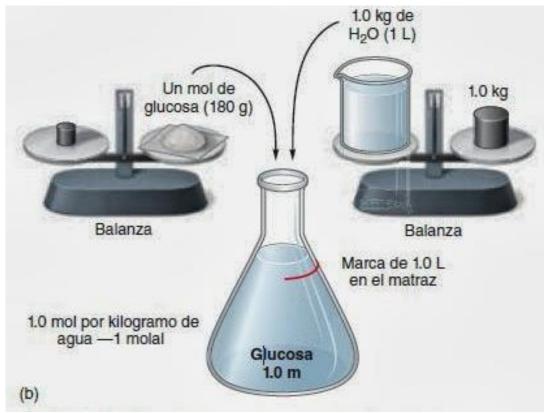




# Molaridad moles de soluto en 1000 mL de solución Preparar 1 L de una solución 1M de KNO<sub>3</sub>

1 mol de KNO<sub>3</sub> es la masa molecular de la sal en g


$$K = 39$$
;  $N = 14$ ;  $O = 16 \longrightarrow MM = 101$ 


Por lo tanto una solución 1 M de esta sal corresponde a 101 g de soluto en 1000 mL de solución

### Calcular:

- la cantidad de gramos para una solución 0,5 M.
- la cantidad de gramos para preparar 100 ml de una solución de KNO3 1 M

### Diferencia entre una solución 1M y 1m de glucosa







Nota: El matraz de la imagen no es adecuado para medir volúmenes

# Normalidad cantidad de equivalentes-gramo de soluto en 1000 mL de solución

Preparar 1 L de una solución 1N de NaOH

1 Eq-g de NaOH en 1 L

Peso Equivalente (PEq) = Masa Molecular / número de OH-

Peso Equivalente (PEq) =  $40/1 \text{ OH}^{-1}$ 

Peso Equivalente (NaOH) = 40 g

PEq de una base = Masa Molecular / número de OH-

PEq de un ácido = Masa Molecular / número de H+

PEq de una sal = Masa Molecular / número de cargas del catión

#### ACIDOS

Peq = Peso Fórmula en gramos # H\* sustituibles

#### HCI

Peq = 36.5 g/1 = 36.5g

H<sub>2</sub>SO<sub>4</sub>

Peq = 98g/2 = 49 g

Peq = Peso Fórmula en gramos

# OH sustituibles

### NaOH

Peq = 40 g / 1 = 40 g

Ca(OH)<sub>2</sub>

Peq = 74 g/2 = 37 g

#### SALES

Peq = Peso Fórmula en gramos

# total de cargas + ó -

### AICI,

Peq= 133.5g / 3 = 44.5 g

CaSO<sub>4</sub>

Peg = 136 g/ 2 = 68g

# Equivalencia

Na OH + HCl 
$$\longrightarrow$$
 NaCl + H<sub>2</sub>O  
 $\downarrow$ 
Na<sup>+</sup> OH- H+ Cl-

Reacción no equilibrada

 $Ca(OH)_2$  + HCl  $\longrightarrow$  CaCl<sub>2</sub> + H<sub>2</sub>O

 $Ca^{+2}$  2 OH- H+ Cl-

$$Ca = 40 O = 2(16) H = 2(1) PM = 66$$

¿ Qué parte de la molécula de  $Ca(OH)_2$  es capaz de reaccionar con un  $H^+$ ? PE = 66 = 33 1 eq-g = 33 g

# ppm = partes por millón

| Expression         | Abbreviation | w/w    | w/v     | v/v      |
|--------------------|--------------|--------|---------|----------|
| Parts per hundred  | pph (%)      | g/100g | g/100mL | mL/100mL |
| Parts per thousand | ppt (%。)     | g/kg   | g/L     | mL/L     |
|                    |              | mg/g   | mg/mL   | μL/mL    |
|                    |              | μg/mg  | μg/μL   | nL/μL    |
|                    |              | ng/μg  | ng/nL   | pL/nL    |
|                    |              | pg/ng  | pg/pL   |          |
| Parts per million  | ppm          | mg/kg  | mg/L    | μL/L     |
|                    |              | μg/g   | μg/mL   | nL/mL    |
|                    |              | ng/mg  | ng/μL   | pL/μL    |
|                    |              | pg/μg  | pg/nL   |          |
| Parts per billion  | ppb          | μg/kg  | μg/L    | nL/L     |
|                    |              | ng/g   | ng/mL   | pL/ml    |
|                    |              | pg/mg  | pg/μL   |          |
| Parts per trillion | pptr*        | ng/kg  | ng/L    | pL/L     |
|                    |              | pg/g   | pg/mL   |          |

<sup>\*</sup>pptr is used instead of ppt to avoid confusion.

## Preparación de soluciones:

- Por pesada
- Por dilución

Por pesada: Se pesa directamente la cantidad calculada de soluto y se disuelve en un volumen determinado de solvente

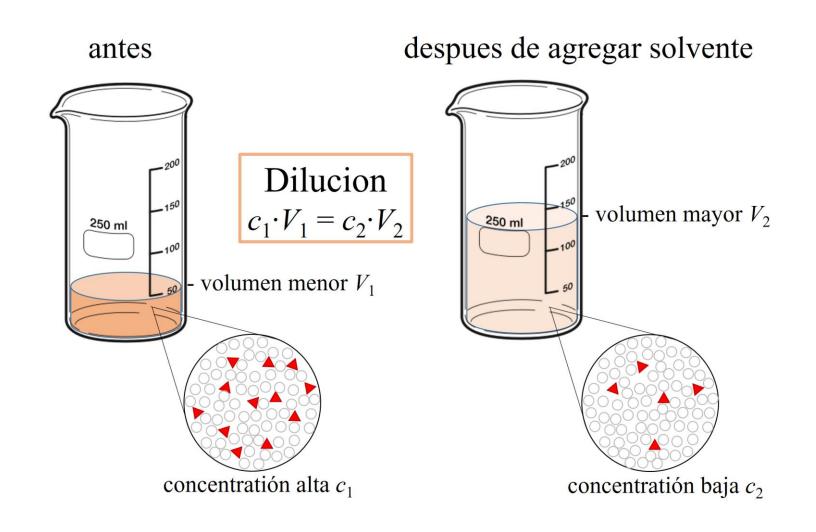
¿Qué cantidad de  $ZnSO_4$  x  $7H_2O$  se debe pesar para preparar 250 mL de solución de  $ZnSO_4$  0,25M?

MM del  $ZnSO_4 \times 7H_2O = 287,45 \text{ g}$ MM del  $ZnSO_4 = 161,45 \text{ g}$ 

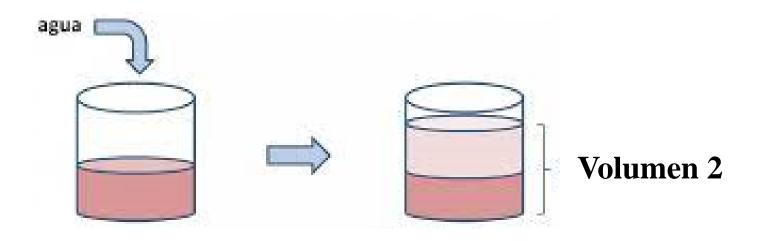
0,25 moles de ZnSO4 - 1000 mL de solución

X moles de ZnSO4 --- 250 mL de solución

X = 0.0625 moles

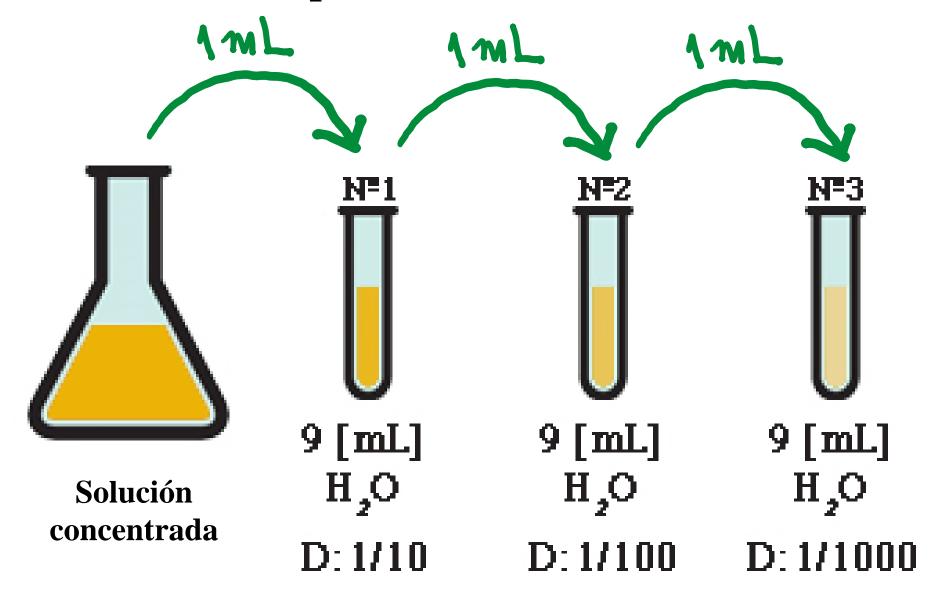

1 mol de  $ZnSO_4$   $\longrightarrow$  161,45 g 0,0625 moles de  $ZnSO_4$   $\longrightarrow$  Y g

$$Y = 10,09 g de ZnSO_4$$


161,45 g de  $ZnSO_4$   $\longrightarrow$  287,4 g  $ZnSO_4$  x 7H<sub>2</sub>O 10,09 g de  $ZnSO_4$   $\longrightarrow$  Z g  $ZnSO_4$  x 7H<sub>2</sub>O

Z=17,96 g de  $ZnSO_4 x 7H_2O$ 

# Por dilución: A partir de una solución concentrada se adiciona una cantidad de solvente calculada para lograr la solución final diluida

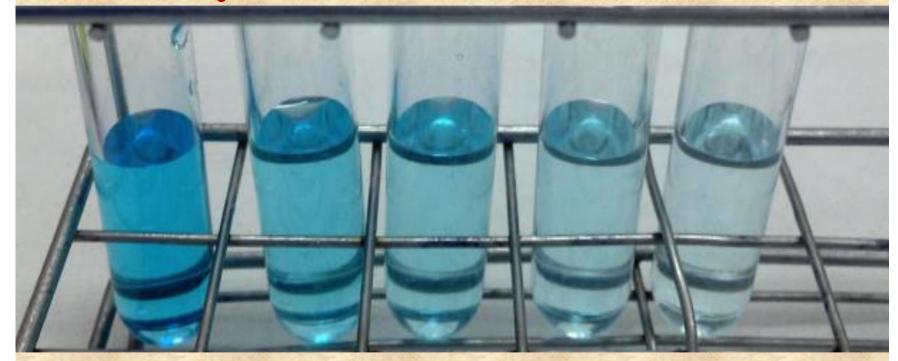



# ¿Qué volumen de solución MgSO4 al 6% se puede obtener a partir de 8 mL de solución de MgSO4 al 15%?



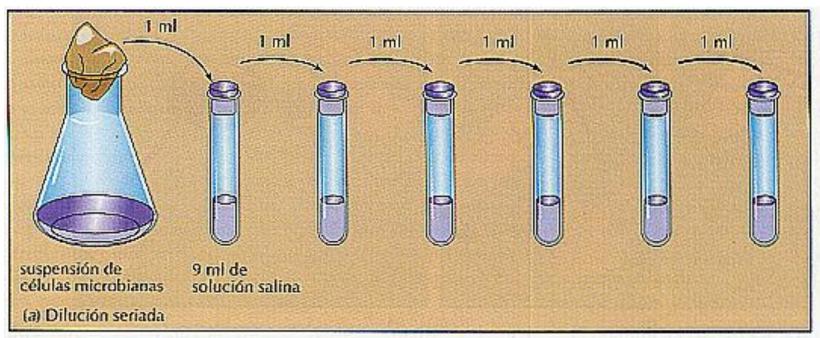
$$V_1 \times C_1 = V_2 \times C_2$$
  
8mL × 15% p/v =  $V_2 \times 6$ % p/v  
20 mL =  $V_2$ 

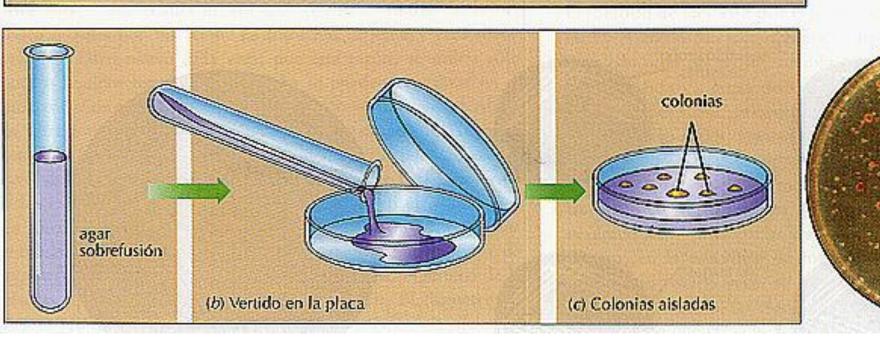
## Dilución seriada a partir de una solución concentrada

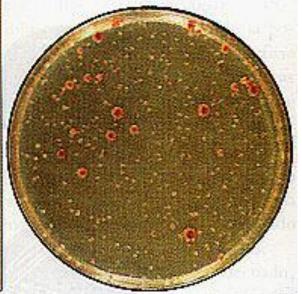


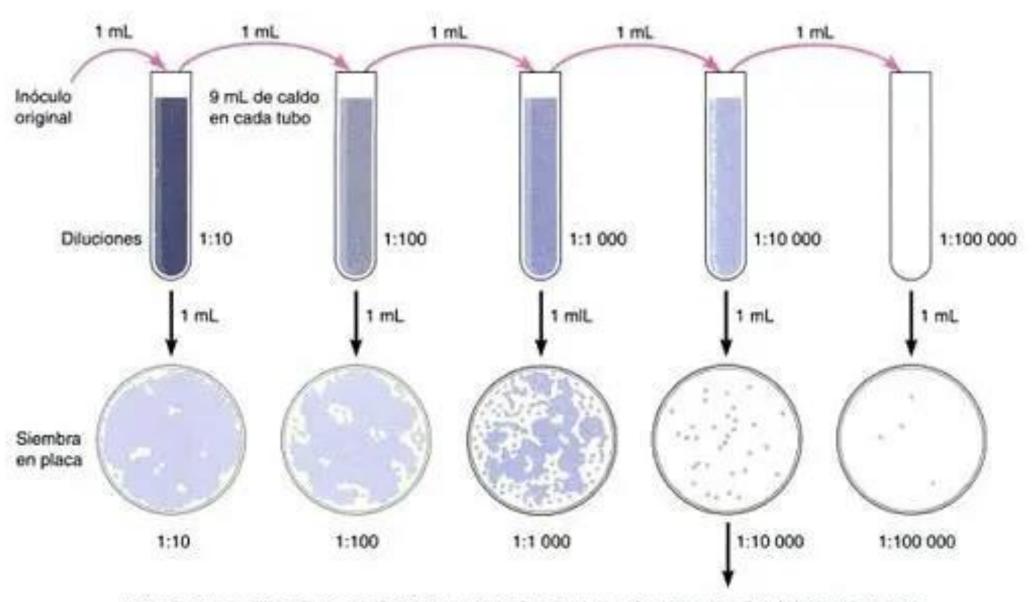



500 mg × 5 mal = 2500 mg 2500 mg = 250 mg/ml inal 10 ml


+ 5 mL H20


### Ejercicio de diluciones





Si desde un tubo que contiene 10 mL de azul de metileno (500  $\mu$ g/mL) Ud. traspasa a otro tubo 5 mL y le agrega 5 mL  $H_2O$  ¿Cuál es su concentración? Dilución 1:2

Y si a partir de la primera solución Ud. saca 1 mL y le agrega 9 mL de  $H_2O$  ¿Cuál es su concentración? Dilución 1:10









Cálculo: número de colonias en la placa x inversa de la dilución de la muestra = número de bacterias/mL.

(Por ejemplo, si se observan 32 colonias en la placa correspondiente a la dilución 1/10 000,
el recuento es 32 x 10 000 = 320 000 bacterias/mL de muestra.)