

Propiedades periódicas y enlace químico

En 1864 Newlands observó que cuando los elementos se organizaban según sus masas atómicas, cada octavo elemento mostraba propiedades semejantes.

Esto funcionaba sólo hasta el Ca

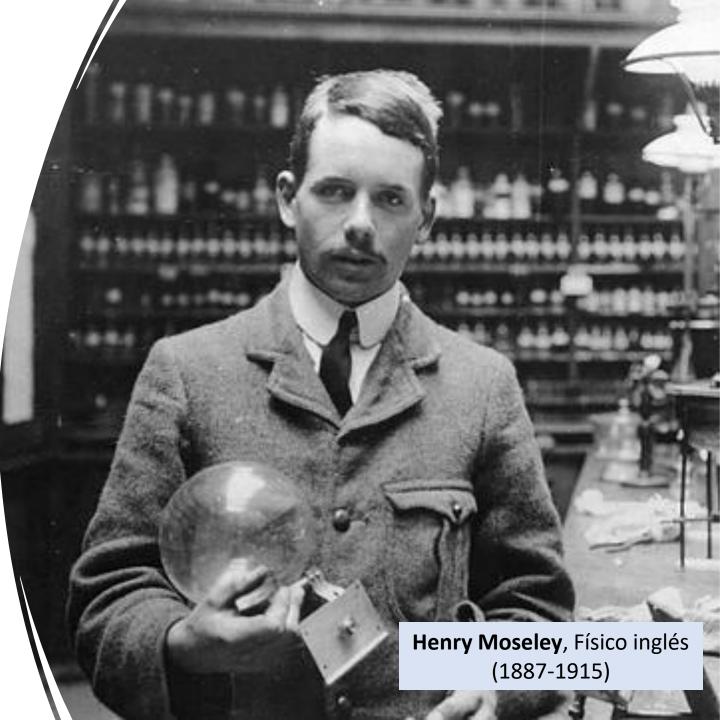
John Newlands, químico inglés (1837-1898)

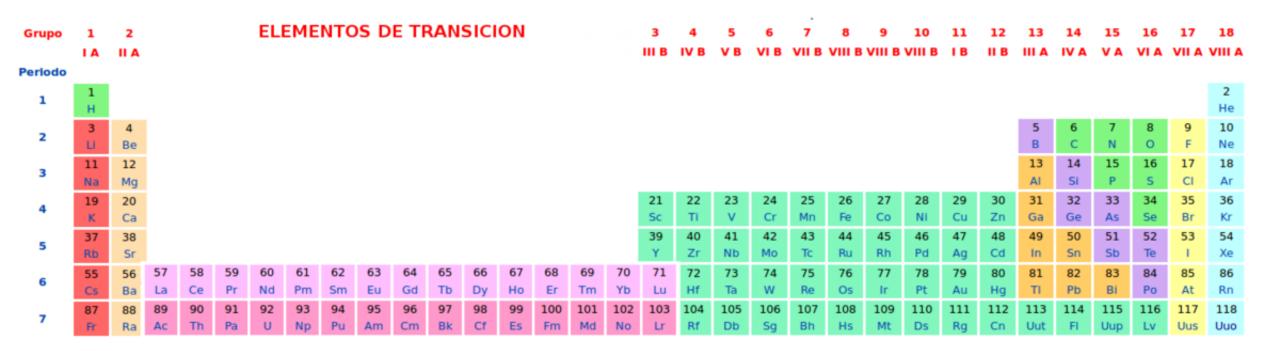
Propusieron de manera independiente, (1869) un ordenamiento de los elementos basada en la repetición periódica y regular de sus propiedades

Dmitri Mendeleev, químico ruso (1836-1907)

Lothar Meyer, químico alemán (1839-1895)

Tabla Periódica de Mendeleiev


1									
H 1.01	Ш	Ш	IV	V	VI	VII			
Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	O 16.0	F 19.0			
Na 23.0	Mg 24.3	AI 27.0	Si 28.1	P 31.0	S 32.1	CI 35.5		VIII	
K 39.1	Ca 40.1		Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co 58.9	Ni 58.7
Cu 63.5	Zn 65.4			As 74.9	Se 79.0	Br 79.9			
Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pd 106
Ag 108	Cd 112	In 115	Sn 119	Sb 122	Te 128	1 127			
Ce 133	Ba 137	La 139		Ta 181	W 184		Os 194	Ir 192	Pt 195
Au 197	Hg 201	Ti 204	Pb 207	Bi 209					
			Th 232		U 238				


La tabla de Mendeleev incluyó los elementos que se conocían hasta entonces. Incluso predijo las propiedades de un elemento que no se había descubierto aún al que llamó Eka-aluminio (Ea). Cuatro años más tarde se descubrió el galio (Ga).

	Eka-aluminio (Ea)	Galio (Ga)
Masa atómica	68 uma	69.9 uma
Punto de fusión	Bajo	29.78°C
Densidad	5.9 g/cm ³	5.94 g/cm^3
Fórmula del óxido	Ea_2O_3	Ga_2O_3

• En esa primera tabla periódica aparecieron algunas incongruencias debido a que en aquella época no se conocía el concepto de <u>número atómico</u> (Z).

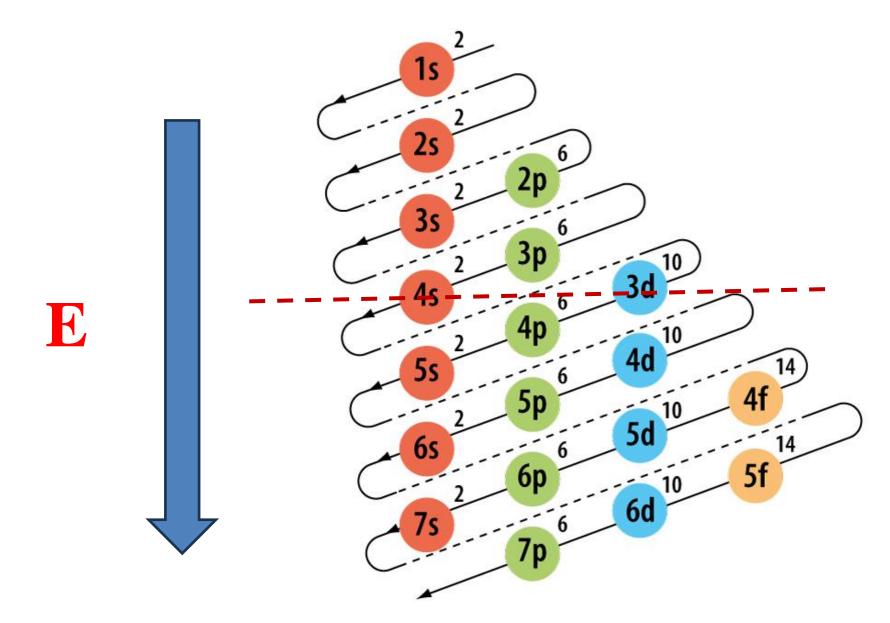
• En 1913 Moseley descubrió una correlación entre lo que él llamó <u>número atómico</u>. Realizó estudios con rayos X emitidos por los elementos bombardeados con electrones de alta energía.

No metales Halógenos Gases nobles y Transactínidos

Alcalinotérreos Lantánidos Actínidos Metales de transición

Alcalinos

Metales del bloque p Metaloides


Configuraciones electrónicas de los elementos en estado fundamental

Familias o grupos

Cada peri	odo
correspond	de al
nivel más	externo
ocupado p	or los
electrones	de los
elementos	(capa de
valencia)	_

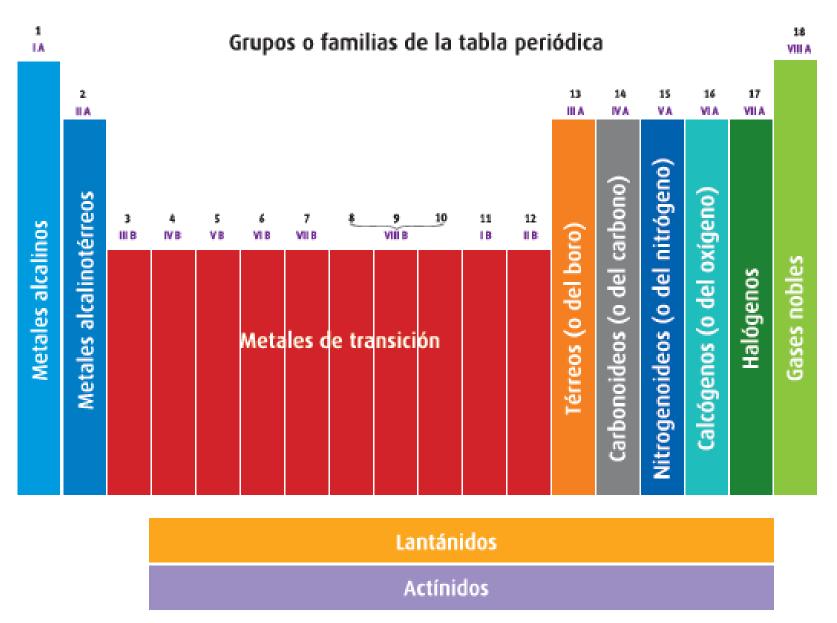
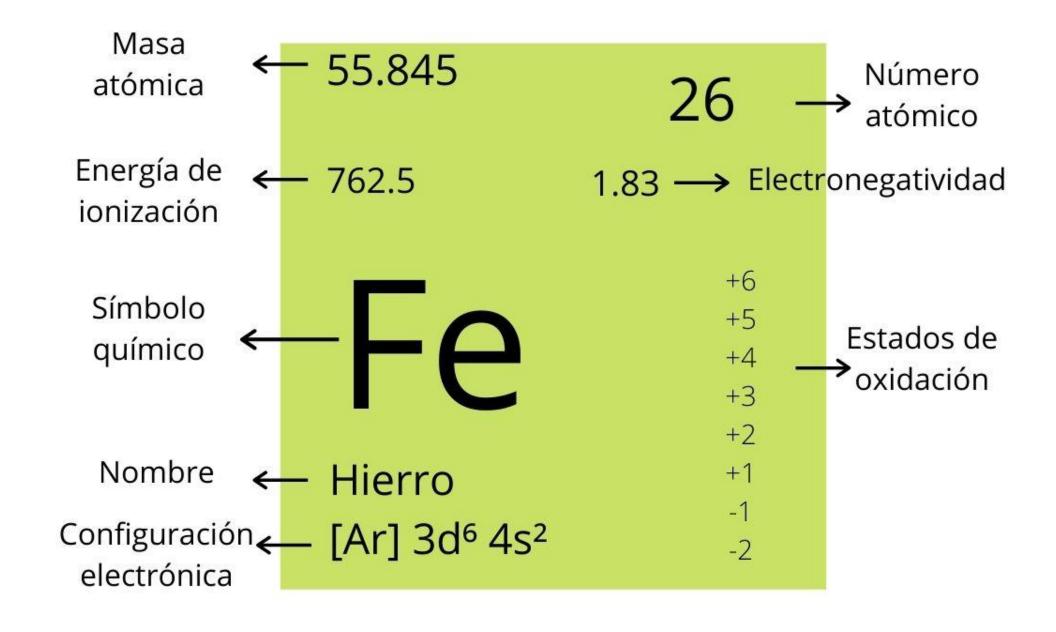
	1																	18
	1A																4	8A
1	$\begin{array}{c} 1 \\ \mathbf{H} \\ 1s^1 \end{array}$	2 2A	_										13 3A	14 4A	15 5A	16 6A	17 7A	2 He 1s ²
2	3 Li 2 <i>s</i> ¹	4 Be 2s ²											5 B 2s ² 2p ¹	6 C 2s ² 2p ²	$ \begin{array}{c} 7 \\ \mathbf{N} \\ 2s^2 2p^3 \end{array} $	$ \begin{array}{c} 8 \\ \mathbf{O} \\ 2s^2 2p^4 \end{array} $	9 F 2s ² 2p ⁵	10 Ne 2s ² 2p ⁶
3	11 Na 3s ¹	12 Mg 3s ²	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 8B	10	11 1B	12 2B	13 Al 3s ² 3p ¹	14 Si 3s ² 3p ²	15 P 3s ² 3p ³	16 S 3s ² 3p ⁴	17 Cl 3s ² 3p ⁵	18 Ar 3s ² 3p ⁶
4	19 K 4s ¹	20 Ca 4s ²	21 Sc 4s ² 3d ¹	22 Ti 4 <i>s</i> ² 3 <i>d</i> ²	23 V 4s ² 3d ³	24 Cr 4s ¹ 3d ⁵	25 Mn 4 <i>s</i> ² 3 <i>d</i> ⁵	26 Fe 4s ² 3d ⁶	27 Co 4 <i>s</i> ² 3 <i>d</i> ⁷	28 Ni 4 <i>s</i> ² 3 <i>d</i> ⁸	29 Cu 4s ¹ 3d ¹⁰	30 Zn 4 <i>s</i> ² 3 <i>d</i> ¹⁰	31 Ga 4 <i>s</i> ² 4 <i>p</i> ¹	32 Ge 4 <i>s</i> ² 4 <i>p</i> ²	33 As 4 <i>s</i> ² 4 <i>p</i> ³	34 Se 4 <i>s</i> ² 4 <i>p</i> ⁴	35 Br 4 <i>s</i> ² 4 <i>p</i> ⁵	36 Kr 4 <i>s</i> ² 4 <i>p</i> ⁶
5	37 Rb 5s ¹	38 Sr 5s ²	39 Y 5 <i>s</i> ² 4 <i>d</i> ¹	40 Zr 5s ² 4d ²	41 Nb 5s ¹ 4d ⁴	42 Mo 5s ¹ 4d ⁵	43 Tc 5 <i>s</i> ² 4 <i>d</i> ⁵	44 Ru 5s ¹ 4d ⁷	45 Rh 5s ¹ 4d ⁸	46 Pd 4 <i>d</i> ¹⁰	47 Ag 5s ¹ 4d ¹⁰	48 Cd 5s ² 4d ¹⁰	49 In 5 <i>s</i> ² 5 <i>p</i> ¹	50 Sn 5s ² 5p ²	51 Sb 5s ² 5p ³	52 Te 5s ² 5p ⁴	53 I 5 <i>s</i> ² 5 <i>p</i> ⁵	54 Xe 5s ² 5p ⁶
6	55 Cs 6s ¹	56 Ba 6s ²	57 La 6s ² 5d ¹	72 Hf 6s ² 5d ²	73 Ta 6s ² 5d ³	74 W 6s ² 5d ⁴	75 Re 6 <i>s</i> ² 5 <i>d</i> ⁵	76 Os 6s ² 5d ⁶	77 Ir 6 <i>s</i> ² 5 <i>d</i> ⁷	78 Pt 6 <i>s</i> ¹ 5 <i>d</i> ⁹	79 Au 6s ¹ 5d ¹⁰	80 Hg 6 <i>s</i> ² 5 <i>d</i> ¹⁰	81 Tl 6 <i>s</i> ² 6 <i>p</i> ¹	82 Pb 6s ² 6p ²	83 Bi 6 <i>s</i> ² 6 <i>p</i> ³	84 Po 6s ² 6p ⁴	85 At 6 <i>s</i> ² 6 <i>p</i> ⁵	86 Rn 6 <i>s</i> ² 6 <i>p</i> ⁶
7	87 Fr 7 <i>s</i> ¹	88 Ra 7 <i>s</i> ²	89 Ac 7 <i>s</i> ² 6 <i>d</i> ¹	104 Rf 7 <i>s</i> ² 6 <i>d</i> ²	105 Db 7 <i>s</i> ² 6 <i>d</i> ³	106 Sg 7 <i>s</i> ² 6 <i>d</i> ⁴	107 Bh 7 <i>s</i> ² 6 <i>d</i> ⁵	108 Hs 7 <i>s</i> ² 6 <i>d</i> ⁶	109 Mt 7 <i>s</i> ² 6 <i>d</i> ⁷	110 Ds 7 <i>s</i> ² 6 <i>d</i> ⁸	111 Rg 7 <i>s</i> ² 6 <i>d</i> ⁹	112 $7s^26d^{10}$	113 7 <i>s</i> ² 7 <i>p</i> ¹	114 7s ² 7p ²	115 $7s^27p^3$	116 7s ² 7p ⁴	(117)	118 7s ² 7p ⁶
				$\overline{}$														

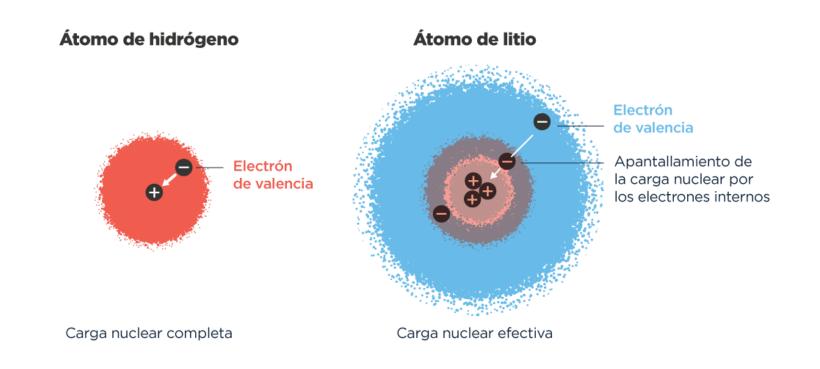
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
6s ² 4f ¹ 5d ¹	6 <i>s</i> ² 4 <i>f</i> ³	6s ² 4f ⁴	6s ² 4f ⁵	6 <i>s</i> ² 4 <i>f</i> ⁶	6 <i>s</i> ² 4 <i>f</i> ⁷	6s ² 4f ⁷ 5d ¹	6s ² 4f ⁹	6s ² 4f ¹⁰	6s ² 4f ¹¹	6 <i>s</i> ² 4 <i>f</i> ¹²	6s ² 4f ¹³	6 <i>s</i> ² 4 <i>f</i> ¹⁴	6s ² 4f ¹⁴ 5d ¹
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
7 <i>s</i> ² 6 <i>d</i> ²	7 <i>s</i> ² 5 <i>f</i> ² 6 <i>d</i> ¹	7 <i>s</i> ² 5 <i>f</i> ³ 6 <i>d</i> ¹	7 <i>s</i> ² 5 <i>f</i> ⁴ 6 <i>d</i> ¹	7 <i>s</i> ² 5 <i>f</i> ⁶	7 <i>s</i> ² 5 <i>f</i> ⁷	7 <i>s</i> ² 5 <i>f</i> ⁷ 6 <i>d</i> ¹	7 <i>s</i> ² 5 <i>f</i> ⁹	7 <i>s</i> ² 5 <i>f</i> ¹⁰	7 <i>s</i> ² 5 <i>f</i> ¹¹	7 <i>s</i> ² 5 <i>f</i> ¹²	7 <i>s</i> ² 5 <i>f</i> ¹³	7 <i>s</i> ² 5 <i>f</i> ¹⁴	7 <i>s</i> ² 5 <i>f</i> ¹⁴ 6 <i>d</i> ¹

Clasificación de los elementos

1 1A	ı			Elemen	ntos ntativos			Zinc Cadmid Mercur									18 8A
1 H	2 2A			Gases 1	nobles			Lantáni	idos			13 3A	14 4A	15 5A	16 6A	17 7A	2 He
3 Li	4 Be			Metale: transici				Actínid	los			5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 8B	10	11 1B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	(117)	118

_														
	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

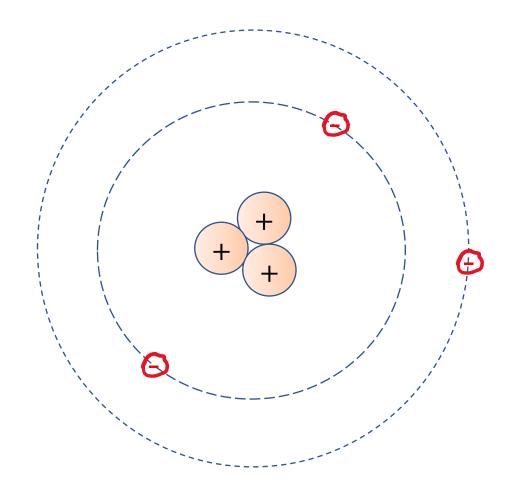




FIGURA 34. Tabla periódica con los nombres por familia y su numeración, arábiga y romana.

Propiedades periódicas:

- Carga nuclear efectiva
- Energía de ionización
- · Radio atómico y radio iónico
- Afinidad electrónica

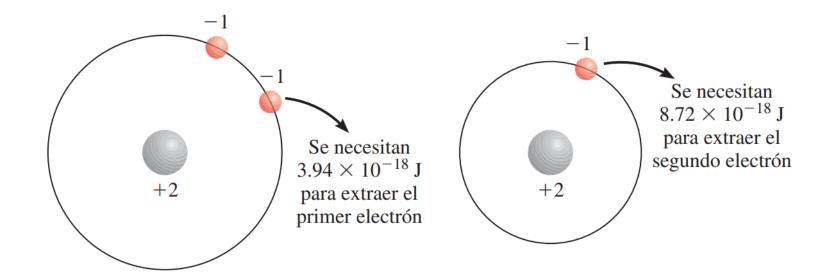
Efecto pantalla en los átomos polielectrónicos: Se produce debido a que los electrones de las capas más cercanas al núcleo dejan menos "disponibles" las cargas positivas para los electrones de capas más externas. En consecuencia, disminuye la atracción electrostática entre los protones del núcleo y el electrón de capas más externas.


Carga nuclear efectiva (Z_{efect}). es la carga nuclear detectada por un electrón cuando se toman en cuenta tanto la carga nuclear real (Z) como los efectos repulsivos (pantalla) de los demás electrones.

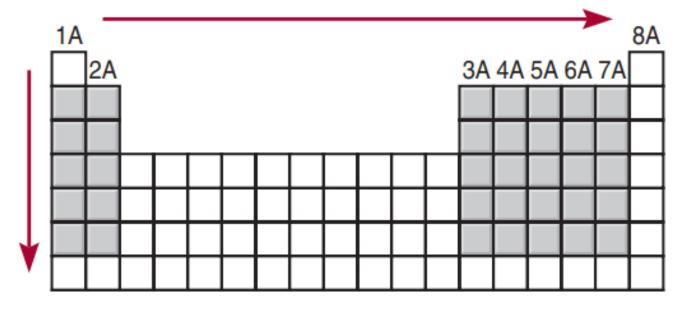
$$Z_{efect} = Z - \sigma$$

σ = constante de apantallamiento

NOTA: El σ se calcula siguiendo las reglas de Slater


Li $(Z=3) \rightarrow 1s^2 2s^1$

$$Z_{efect} = Z - \sigma$$


Esto significa que el electrón de valencia en el átomo de litio experimenta una carga neta positiva de 1,3 debido a la atracción del núcleo, pero también siente una repulsión parcial de los otros dos electrones de la capa más interna.

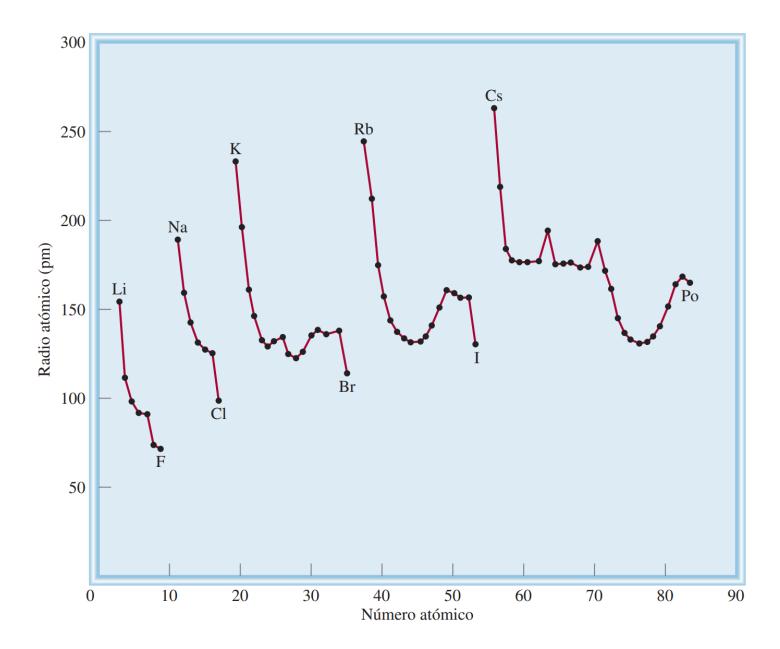
He

	Li	Ве	В	C	N	0	F	Ne
Z	3	4	5	6	7	8	9	10
$Z_{ m efect}$	1.28	1.91	2.42	3.14	3.83	4.45	5.10	5.76

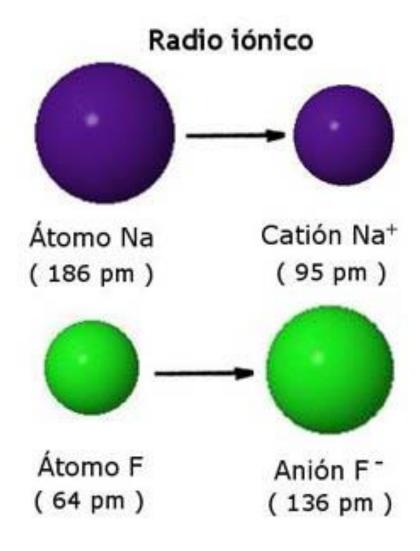
Cuando la **carga nuclear efectiva** es alta, los electrones se mantienen más fuertemente en el átomo y la energía de ionización es mayor.

Para los elementos representativos, la carga nuclear efectiva aumenta de izquierda a derecha a lo largo de un periodo y de arriba hacia abajo en un grupo.

Radio atómico es la mitad de la distancia entre los núcleos de dos átomos metálicos adyacentes o de una molécula diatómica

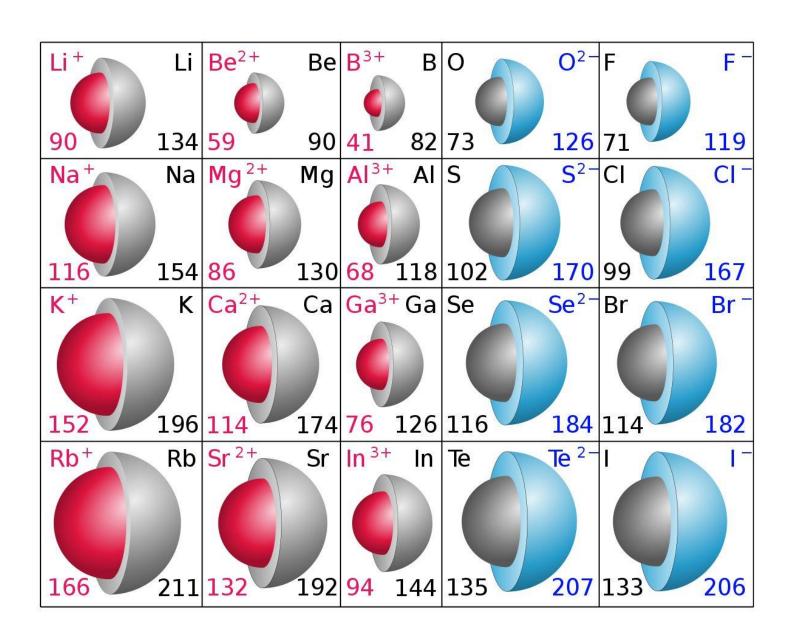


Aumento del radio atómico

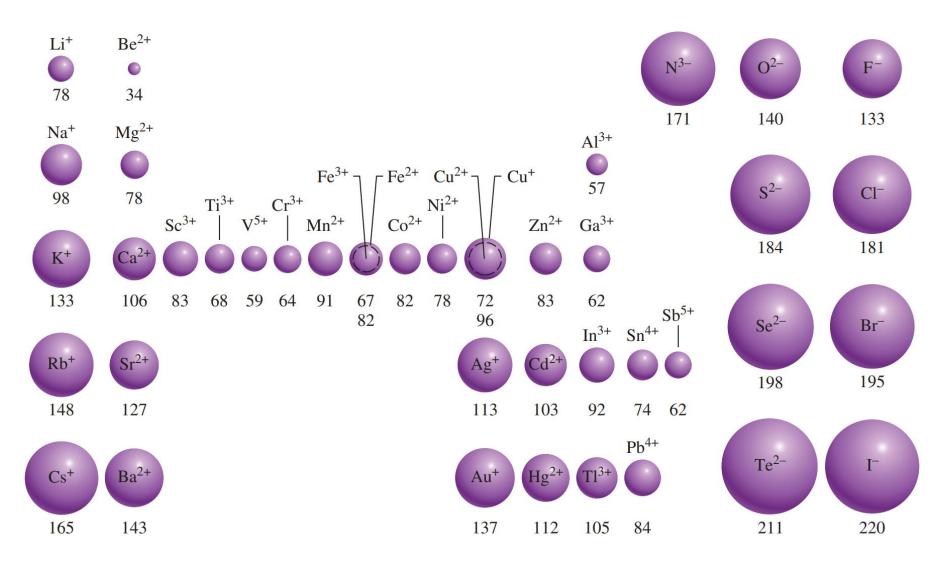

1A	2A	3A	4A	5A	6A	7A	8A
H							He
37							31
		В	C	N	О	F	Ne
Li	Ве						
152	112	85	77	75	73	72	70
Na	Mg	Al	Si	P	S	Cl	Ar
186	160	143	118	110	103	99	98
100	100	143	110	110	103	,,,	76
K	Ca	Ga	Ge	As	Se	Br	Kr
227	197	135	123	120	117	114	112
Rb	Sr	In	Sn	Sb	Те	I	Xe
248	215	166	140	141	143	133	131
Cs	Ba	Tl	Pb	Bi	Po	At	Rn
265	222	171	175	155	164	142	140

Aumento del radio atómico

La carga nuclear efectiva también influye en el tamaño atómico. Cuando la carga nuclear efectiva es alta, los electrones se atraen más hacia el núcleo y el tamaño del átomo se reduce. Por otro lado, cuando la carga nuclear efectiva es baja, los electrones están menos atraídos hacia el núcleo y el tamaño del átomo es mayor.



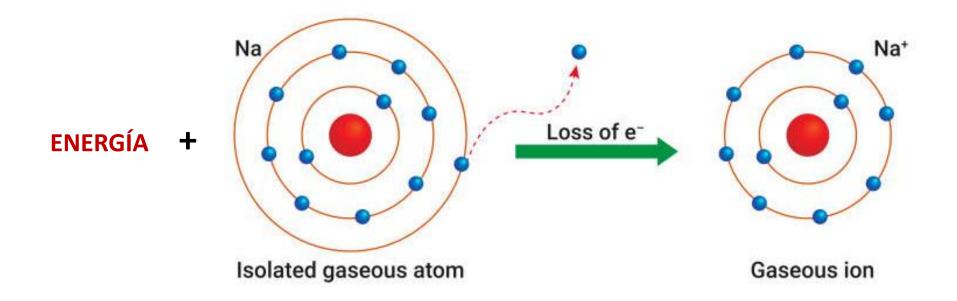
Radio Iónico es el radio de un catión o un anión

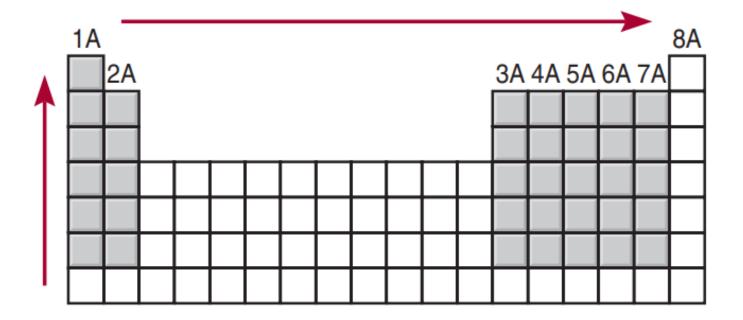

Cuando un átomo neutro se convierte en un ión cambia su tamaño ralativo

RADIO ATÓMICO

ÓNIC

Radio Iónico de algunos elementos comunes (picómetros) de acuerdo con su posición en la tabla periódica




Energía de ionización (EI) es la energía mínima (en kJ/mol) necesaria para remover un electrón en estado gaseoso, en su estado fundamental.

$$Li_{(g)} + EI \rightarrow Li_{(g)}^{1+} + 1e^{-}$$
539 kJ/mol

$$Na_{(g)} + EI \rightarrow Na_{(g)}^{1+} + 1e^{-}$$
496 kJ/mol

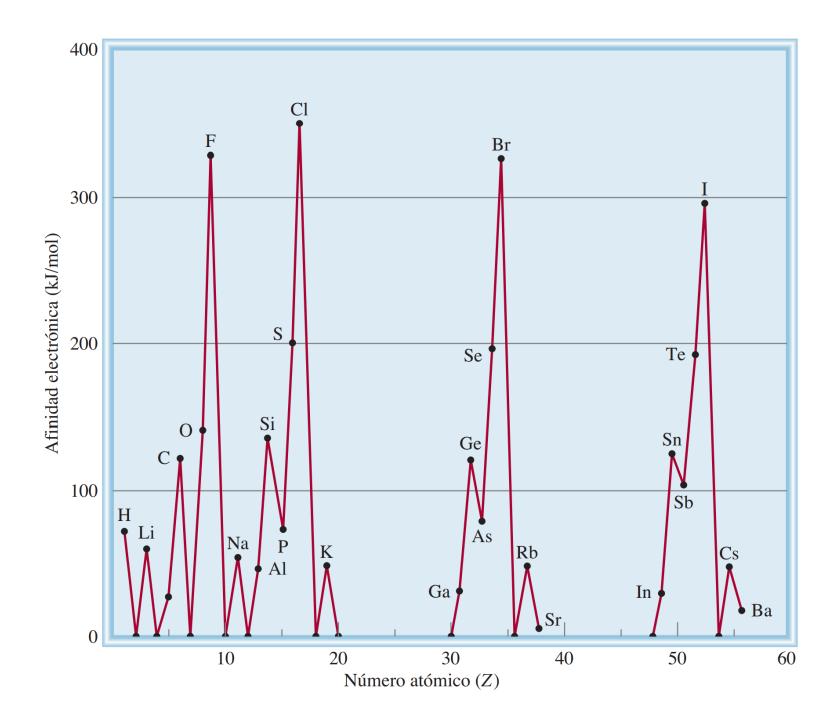
La energía de ionización (E_i)

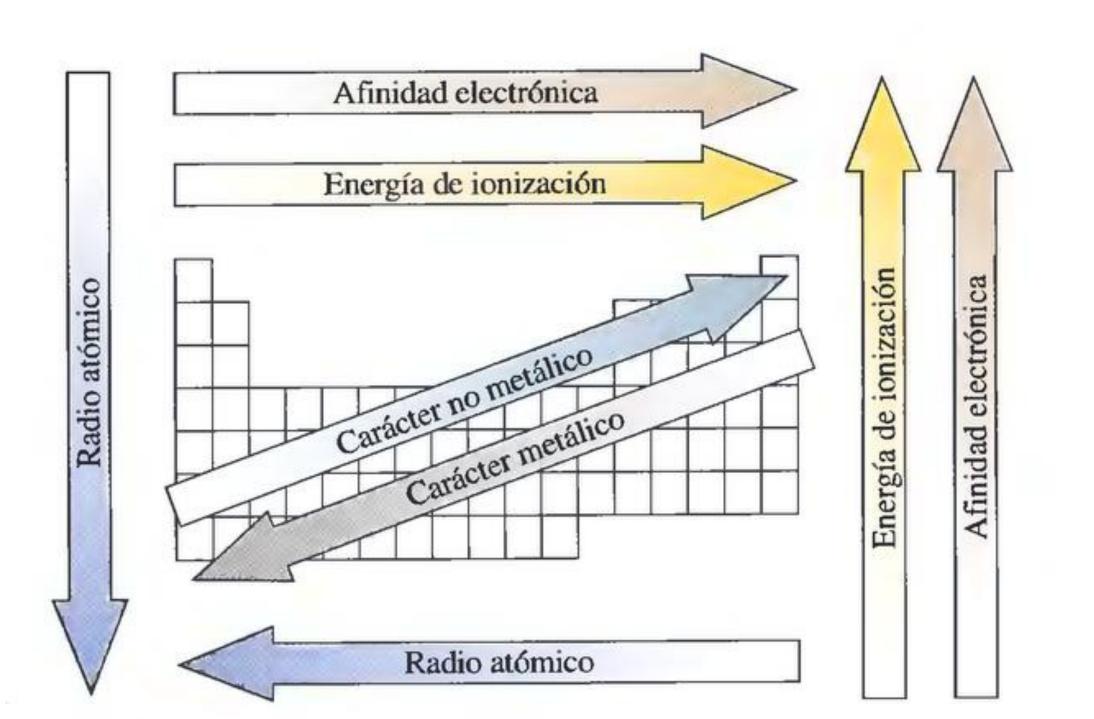
El incremento en la primera energía de ionización se observa de izquierda a derecha a lo largo de un periodo y de abajo hacia arriba en un grupo para los elementos representativos.

Afinidad electrónica es el valor negativo del cambio de energía que se desarrolla cuando un átomo, en estado gaseoso, acepta un electrón para formar un anión.

$$X(g) + e^{-} \longrightarrow X^{-}(g)$$

$$F(g) + e^{-} \longrightarrow F^{-}(g)$$
 $\Delta H = -328 \text{ kJ/mol}$


A mayor valor numérico de la electroafinidad más estable es el ion negativo


TABLA 8.3

Afinidades electrónicas (kJ/mol) de algunos elementos representativos y de los gases nobles*

1A	2A	3A	4A	5A	6A	7A	8A
Н							Не
73							< 0
Li	Be	В	C	N	O	F	Ne
60	≤ 0	27	122	0	141	328	< 0
Na	Mg	Al	Si	P	S	Cl	Ar
53	≤ 0	44	134	72	200	349	< 0
K	Ca	Ga	Ge	As	Se	Br	Kr
48	2.4	29	118	77	195	325	< 0
Rb	Sr	In	Sn	Sb	Te	I	Xe
47	4.7	29	121	101	190	295	< 0
Cs	Ba	T1	Pb	Bi	Po	At	Rn
45	14	30	110	110	?	?	< 0

^{*} Las afinidades electrónicas en los gases nobles, del Be y del Mg no se han determinado experimentalmente, pero se cree que son cercanas a cero o negativas.

Electronegatividad. Capacidad de un átomo para atraer hacia sí los electrones de un enlace químico

Aumento de la electronegatividad

1A																	8A
H 2.1	2A											3A	4A	5A	6A	7A	
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	
Na 0.9	Mg 1.2	3B	4B	5B	6B	7B		-8B-	\neg	1B	2B	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0	
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 3.0
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe 2.6
Cs 0.7	Ba 0.9	La-Lu 1.0-1.2	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2	
Fr 0.7	Ra 0.9																

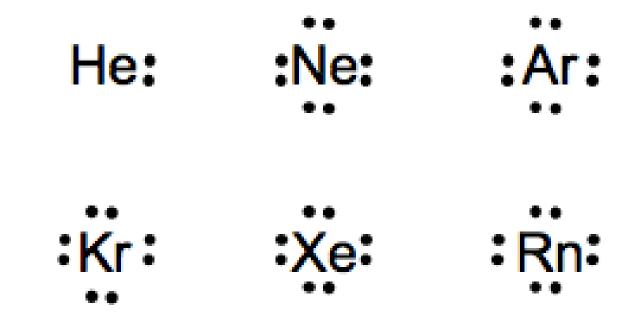
Aumento de la electronegatividad

La ordenación periódica permite clasificar los elementos en grandes grupos:

- 1) Según propiedades estructurales y eléctricas
 - Metales (75%)
 - No Metales (sector derecho de la tabla)
- 2) Según configuraciones electrónicas
 - Elementos Representativos: ns¹ a ns² np⁵
 - Gases Nobles: 1s2 (He) ns2 np6 (Inertes)
 - Elementos de Transición: últimos e- entran en orbitales d. Configuración externa (n-1)d¹⁻¹⁰ ns¹⁻²
 - Elementos de Transición Interna: últimos e- entran en orbitales f. Configuración externa

$$(n-2) f^{1-14} (n-1)d^{0-10} ns^2$$

La **energía de ionización** mide la atracción de un átomo por sus propios electrones, en tanto que la **afinidad electrónica** se relaciona con la atracción de un átomo por un electrón adicional proveniente de otra fuente.


Explica muchas de las reacciones químicas que originan los compuestos. Los elementos con bajas **EI** tienden a formar cationes. Aquellos elementos con alta **afinidad electrónica** tienden a formar aniones.

Símbolos de puntos de Lewis

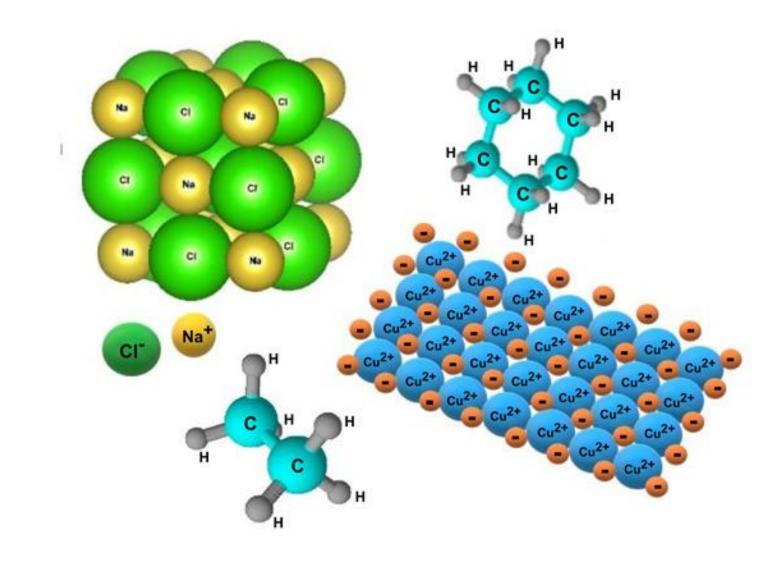
Gilbert Newton Lewis, químico estadounidense (1875-1946)

Consiste en la representación de los electrones de la capa de valencia de cada átomo como puntos en torno al símbolo químico.

$$Z=9$$

 $1s^2$

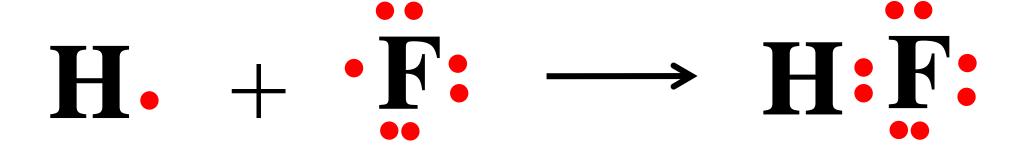
Capa de valencia


 $2s^2 \ 2p_x^{\ 2} \ 2p_y^{\ 2} \ 2p_z^{\ 1}$

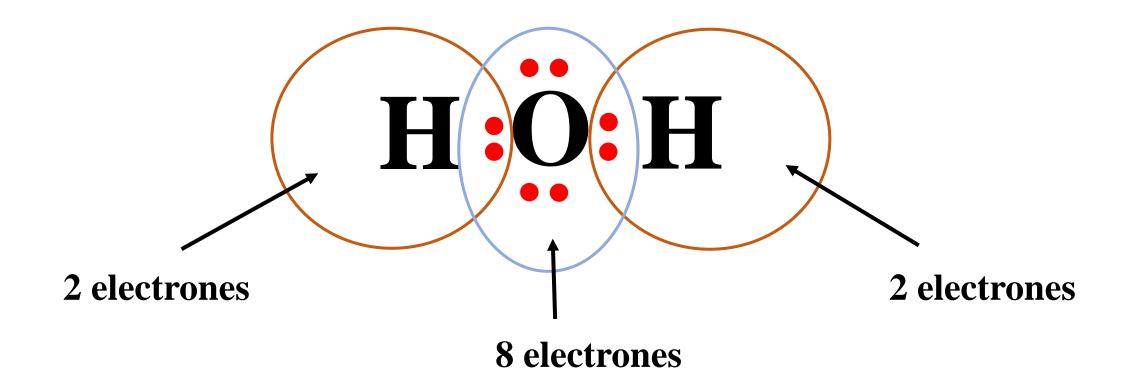
Estructura de Lewis Símbolos de puntos de Lewis para los elementos representativos y los gases nobles.

1 1A	_																18 8A
•н	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	Не:
•Li	·Be ·											· B ·	· ċ ·	·N·	•	:F·	:Ne:
•Na	·Mg·	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	· Ål·	· Śi ·	·P·	·s·	: Cl·	:Ar:
•K	·Ca·											·Ga·	·Ge·	·As·	· Se ·	:Br·	:Kr:
•Rb	·Sr·											·In·	·s'n·	·sb·	·Ťe·	:ï·	:Xe:
• Cs	·Ba ·											· tī·	·Pb·	·Bi·	·Po·	: At ·	:Rn:
• Fr	•Ra•																

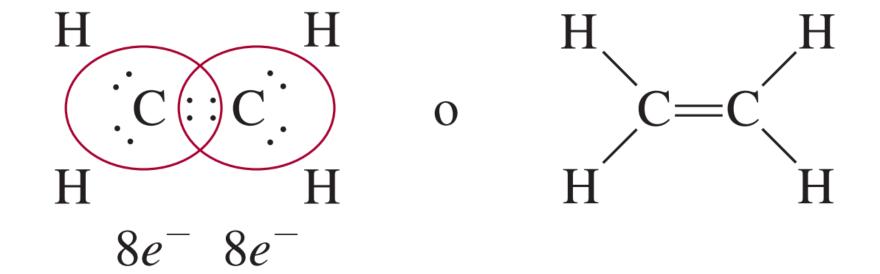
Enlace Químico


Tipos de enlace químico

El enlace covalente se forma cuando dos átomos comparten electrones.


$$H^{\bullet} + \bullet H \longrightarrow H^{\bullet}H$$

H-H



Fluoruro de hidrógeno

Dióxido de carbono Anhídrido carbónico

Eteno Etileno

 \mathbf{O}

: N = N :

$$H \stackrel{\cdot}{\underbrace{\cdot \cdot \cdot \cdot \cdot}} C \stackrel{\cdot}{\underbrace{\cdot \cdot \cdot \cdot}} C \stackrel{\cdot}{\underbrace{\cdot \cdot \cdot \cdot}} H$$
 o $H - C \equiv C - H$
 $8e^- 8e^-$

Etino Acetileno Longitud de enlace: Es la distancia entre el núcleo de dos átomos unidos por un enlace covalente en un a molécula

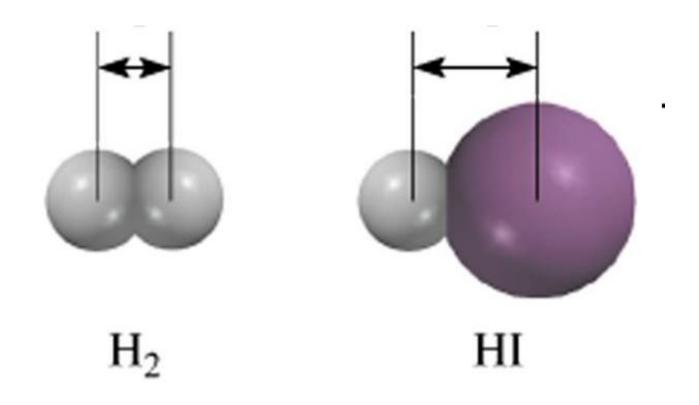
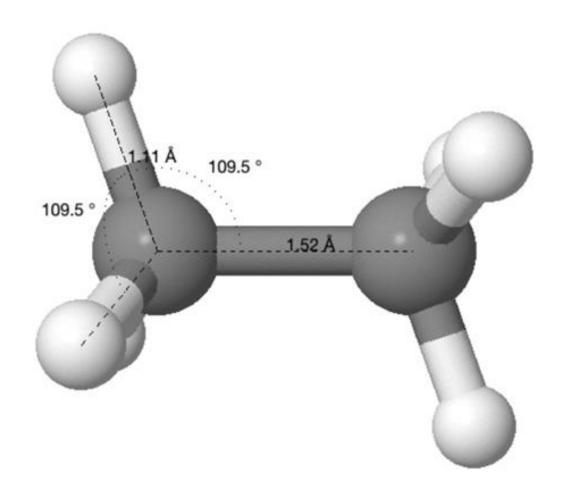
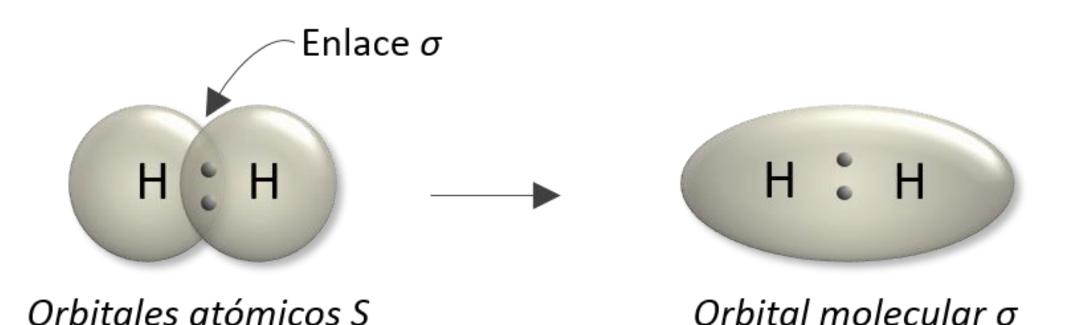
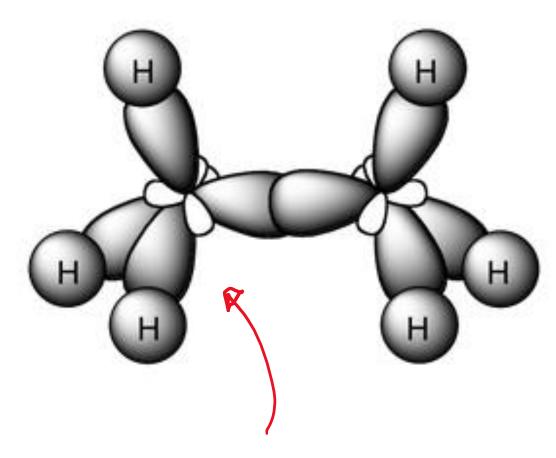
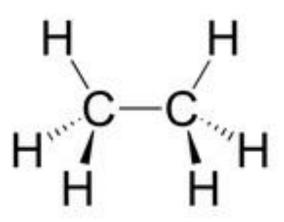



TABLA 8.5 Longitudes promedio de enlace para algunos enlaces sencillos, dobles y triples


Enlace	Longitud de enlace (Å)	Enlace	Longitud de enlace (Å)
C-C	1.54	N-N	1.47
C = C	1.34	N=N	1.24
$C \equiv C$	1.20	$N \equiv N$	1.10
C-N	1.43	N-O	1.36
C=N	1.38	N=0	1.22
$C \equiv N$	1.16		
		o-o	1.48
c-o	1.43	o=0	1.21
c=0	1.23		
C≡O	1.13		

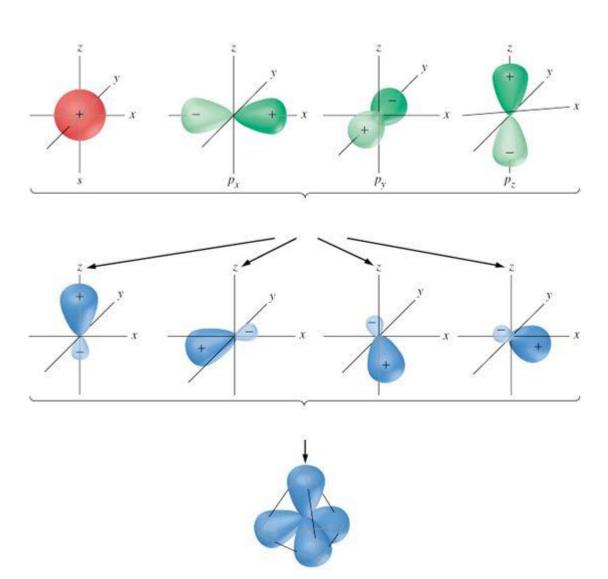
Conformación espacial de la molécula de etano



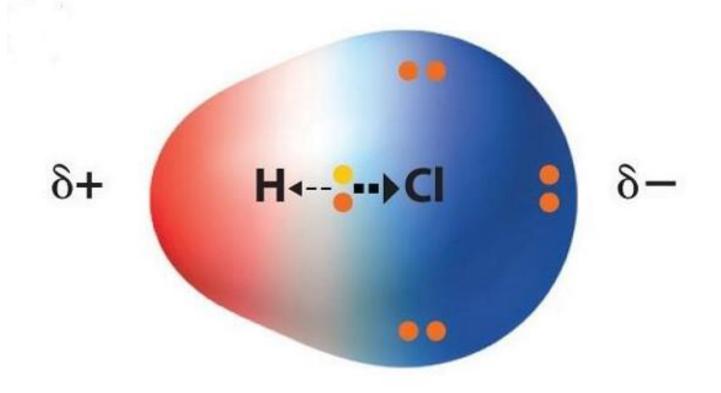

Etano

Los enlaces covalentes se pueden representar con **orbitales moleculares**. Por ejemplo, la unión de dos orbitales s

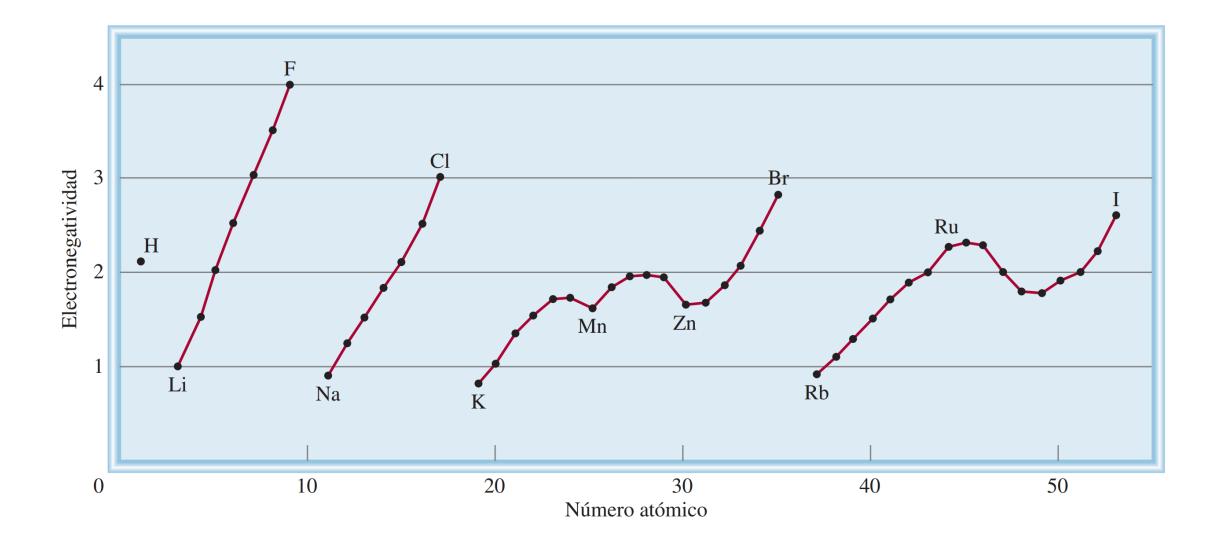
Conformación espacial de la molécula de etano



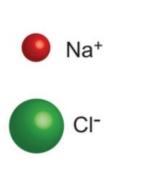
Orbitales Moleculares

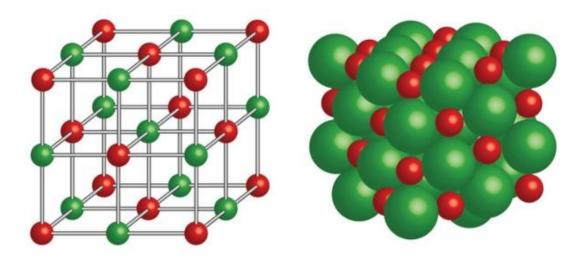

Etano

Orbitales Moleculares formados mediante el proceso de combinación (hibridación) de Orbitales atómicos.


Hibridación sp³

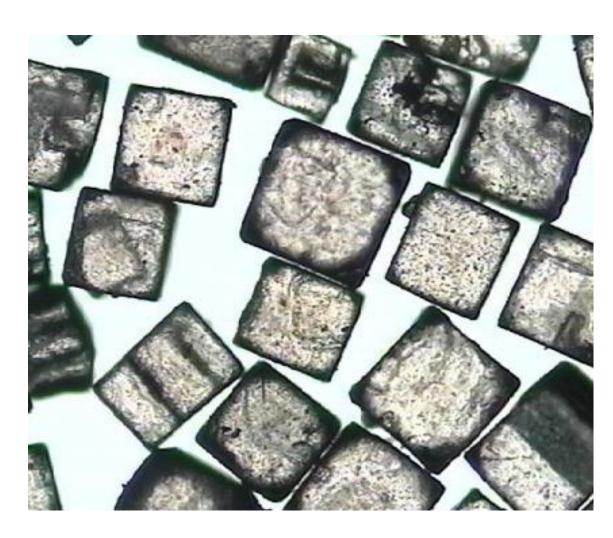
Enlace covalente polar. Los electrones pasan más tiempo alrededor de un átomo que del otro

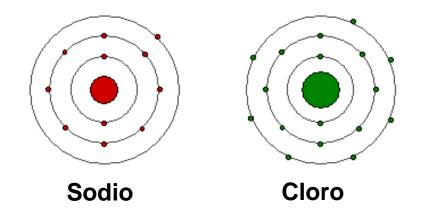


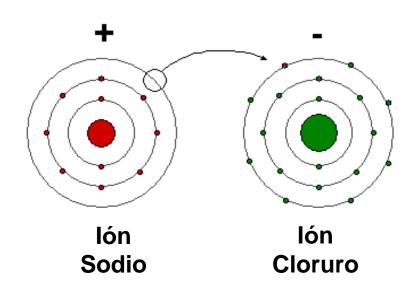

HCl Cloruro de hidrógeno

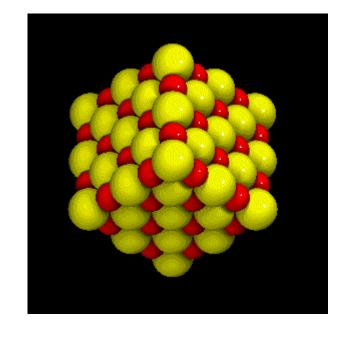
ENLACE IÓNICO

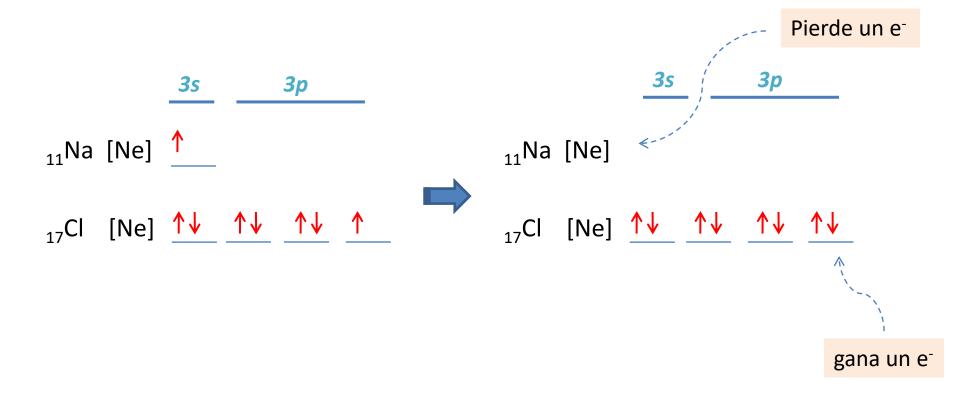
Es la atracción de iones con carga opuesta (cationes y aniones). Pueden formar un sólido denominado SÓLIDO IÓNICO.





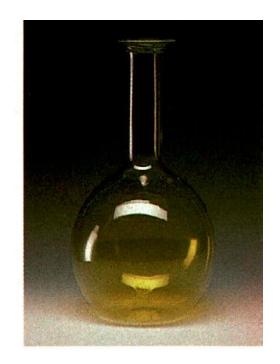

NaCl


Sólido blanco Punto de fusión 801 ºC



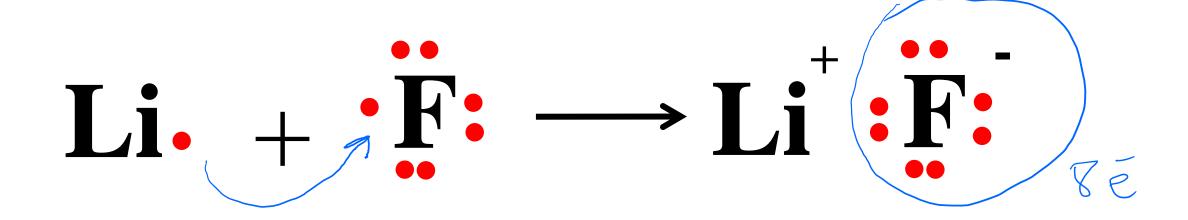
Na⁺

Cl


Formation of Sodium Chloride

$$2Na_{(s)} + Cl_{2(g)} \longrightarrow 2NaCl_{(s)}$$

$$Na \longrightarrow Na^+ + e^-$$


 $Cl + e^- \longrightarrow Cl^-$

•C|: Na[•] :C: Na⁺

De acuerdo a la **ley de Coulomb** la fuerza (F) con que dos cargas opuestas se atraen es proporcional al producto de las cargas e inversamente proporcional al cuadrado de las distancia que las separa.

$$F \propto \frac{q + q}{d^2}$$

El **enlace iónico** se forma cuando hay una atracción electrostática entre dos iones

Li F

Fluoruro de litio

La combustión del calcio en oxígeno genera óxido de calcio:

$$2Ca(s) + O_2(g) \longrightarrow 2CaO(s)$$

$$\cdot \text{Ca} \cdot + \cdot \dot{\Omega} \cdot \longrightarrow \text{Ca}^{2+} : \dot{\Omega} : ^{2-}$$

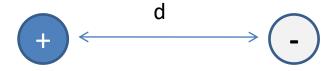
$$[\text{Ar}]4s^2 \quad 1s^2 2s^2 2p^4 \qquad [\text{Ar}] \quad [\text{Ne}]$$

Litio

$$4Li_{(s)} + O_{2(g)} \longrightarrow 2Li_2O_{(s)}$$

$$2 \times \left[Li \longrightarrow Li^{+} + e^{-} \right]$$

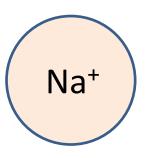
$$O + 2e^- \longrightarrow O^{-2}$$


NaCl

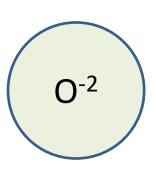
p.f. =
$$800 \, ^{\circ}$$
C

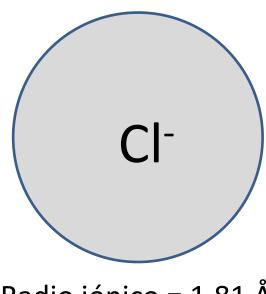
p.f. =
$$1.700 \, {}^{\circ}\text{C}$$

¿Por qué tanta diferencia en los puntos de fusión?


De acuerdo con la **ley de Coulomb** la fuerza (**F**) con que dos cargas opuestas se atraen es proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia que las separa.

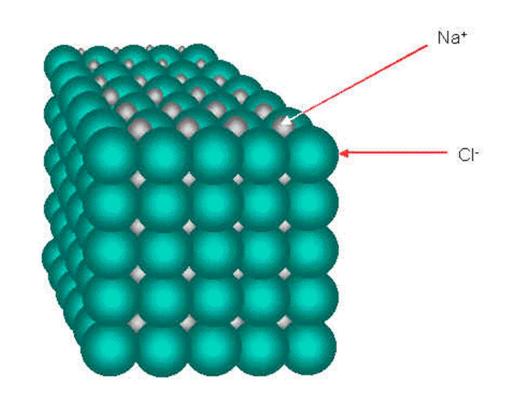
$$F \propto \frac{q^+ q^-}{d^2}$$


Radio iónico = 0,60 Å


Radio iónico = 0,95 Å

El Li⁺ tiene una mayor densidad de carga que el Na⁺

Densidad de carga = carga / tamaño

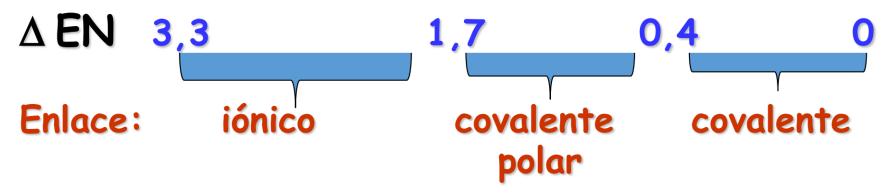

Radio iónico = 1,40 Å

Radio iónico = 1,81 Å

El O⁻² tiene una mayor densidad de carga que el Cl⁻

La **energía reticular** de un sólido iónico se define como la energía necesaria para separar completamente un mol de un compuesto iónico sólido en sus iones en estado gaseoso.

Energía reticular del NaCl es 788 kJ/mol


TABLA 9.1 Energías reticulares y puntos de fusión de algunos halogenuros y óxidos de metales alcalinos y metales alcalinotérreos

Compuesto	Energía reticular (kJ/mol)	Punto de fusión (°C)
LiF	1 017	845
LiCl	828	610
LiBr	787	550
LiI	732	450
NaCl	788	801
NaBr	736	750
NaI	686	662
KCl	699	772
KBr	689	735
KI	632	680
MgCl_2	2 527	714
Na_2O	2 570	Sub*
MgO	3 890	2 800

^{*} Na₂O se sublima a 1 275°C.

Unión entre átomos:

La clasificación de los distintos tipos de enlace depende de la diferencia de electronegatividad de los átomos que participan del enlace.

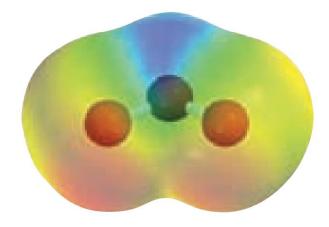
El valor de 1,7 es aprox. 50 % de carácter iónico y 50 % de carácter covalente (límite arbitrario)

Ejemplo:

¿Qué tipo de enlace se produce entre los siguientes átomos? si los valores de Electronegatividad son:

$$Ca = 1,0$$
; $F = 4,0$; $N = 3,0$; $O = 3,5$; $Si = 1,8$; $P = 2,1$

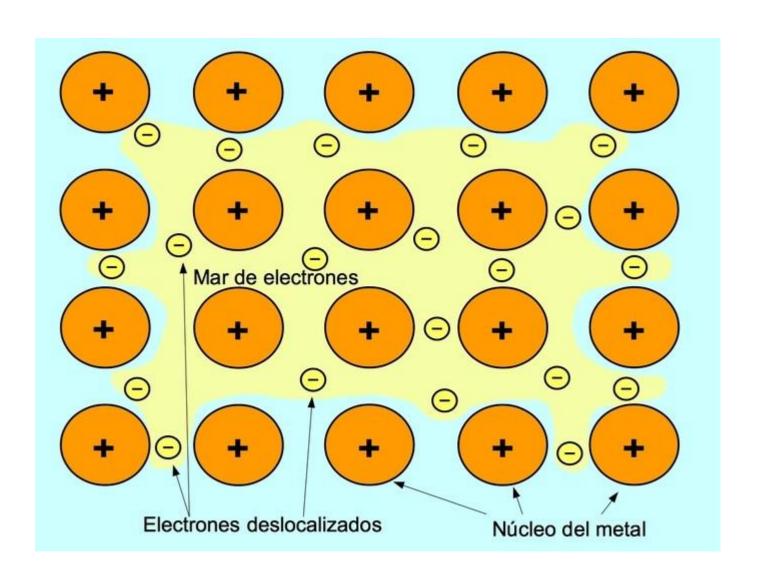
$$Ca-F$$
; $\Delta = 4.0 - 1.0 = 3.0$ enlace iónico


N-N;
$$\Delta = 3.0 - 3.0 = 0$$
 enlace covalente no polar

C-H;
$$\Delta = 2.5 - 2.1 = 0.4$$
 enlace covalente

$$C-O$$
; $\Delta = 3.5 - 2.5 = 1$ enlace covalente polar

Resonancia


$$O = O + O = O = O = O$$

Mapa del potencial electrostático del O₃. La densidad electrónica está distribuida de manera uniforme entre los dos átomos de O de los extremos.

CO₃⁻² ion carbonato

El **Enlace metálico** mantiene a los átomos de un metal unidos entre sí

COVALENTE

- > Son gases, líquidos o sólidos con bajos puntos de fusión (< 300 °C).
- > Muchos son insolubles en disolventes polares.
- La mayoría son solubles en disolventes La no polares como el hexano.
- > Los compuestos líquidos y fundidos NO conducen la electricidad.
- > Las disoluciones habitualmente son malas conductoras de bien la electricidad. la electricidad porque la mayoría no contiene partículas cargadas.

IÓNICO

- > Hay sólidos con altos puntos de fusión $(> 400 \, {}^{\circ}\text{C}).$
- Muchos solubles en disolventes polares, tales como agua.
- insolubles mayoría son disolventes no polares como el hexano.
- > Los compuestos fundidos conducen bien la electricidad.
- acuosas > Las disoluciones acuosas conducen