Programa de actividad curricular

Espacio Curricular A "BASES MOLECULARES Y CELULARES DEL ORGANISMO ANIMAL"

Unidad 2 BASES MOLECULARES Y CELULARES

1.- Competencia a lograr: Dominio del conocimiento básico de los fenómenos biológicos relacionados con los diversos campos de la formación profesional

Los descriptores transversales del espacio curricular son:

- 1) Reconoce la naturaleza científica de las disciplinas de este espacio, identificando sus objetos de estudio, sus métodos y las particularidades de sus lenguajes
- 2) Comprende los procesos celulares a través de conocer e integrar las bases científicas de las distintas disciplinas de este espacio
- 3) Reconoce la existencia de modelos y los utiliza como herramientas para la comprensión de los fenómenos descritos en las distintas disciplinas
- 4) Reconoce fuentes de información válidas, selecciona la información de acuerdo al tema de interés y la organiza para comunicarla adecuadamente

Los descriptores específicos para la Unidad 2 son:

- 1) Reconoce la existencia de redes de reacciones interconectadas que dan cuenta de la síntesis y degradación de las moléculas que se encuentran en un organismo vivo, y su regulación
- 2) Comprende y explica los procesos mediante los cuales los seres vivos, en particular las células animales, transforman la energía
- 3) Reconoce la importancia estructural y funcional de las diversas biomoléculas
- 4) Comprende las bases de los procesos de expresión génica y su regulación
- 5) Comprende la base estructural y los mecanismos involucrados en los procesos de comunicación celular
- 6) Reconoce diferentes métodos de separación, detección y cuantificación de moléculas de interés biológico
- 7) Interpreta al nivel molecular fenómenos físicos o químicos observados en el laboratorio
- **2.- Objetivo del espacio:** Conocer y comprender el fundamento científico básico de los fenómenos biológicos que rigen la estructura y funcionalidad de la vida animal desde lo molecular hacia lo celular.

3.- Ejes de conocimientos del espacio:

Eje 3: Procesos de transformaciones metabólicas

4.- Contenidos fundamentales por eje

Eje 3: Procesos de transformaciones metabólicas

- A) Generalidades de los procesos celulares
- B) Biocatalizadores, enzimas
- C) Métodos de estudio de biomoléculas
- D) Metabolismo: procesos catabólicos
- E) Bioenergética. Transporte de electrones, cadena respiratoria, síntesis de ATP
- F) Metabolismo: procesos anabólicos
- G) Ácidos nucleicos. Replicación, transcripción, traducción y regulación de la expresión génica
- H) Mecanismos de transducción de señales. Mediadores, receptores y transducción
- I) Regulación del metabolismo

Actividades complementarias: trabajos de laboratorio. Los siguientes temas se desarrollan durante el semestre: (Debido a la pandemia por el Covid-19 no se realizarán actividades presenciales)

- Proteínas: precipitación, reacciones características y punto isoeléctrico
- Métodos de detección y cuantificación de moléculas (proteínas)
- Enzimas: dos sesiones en laboratorio usando la ureasa como modelo
- Oxidaciones biológicas: la mitocondria como modelo

5.- Profesores participantes

- Coordinador del Espacio: Eduardo Kessi C.
- Coordinador de Unidad-2: Marco A. Gallequillos C.
- Docentes : Héctor Adarmes A

Marco A. Galleguillos C.

Eduardo Kessi C. Sergio Bucarey V.

6.- Programación de actividades. Se realizarán las actividades en línea vía la plataforma Zoom en los siguientes horarios:

Martes 14:30 - 17:30 hrsViernes 14:30 - 17:30 hrs

Las actividades comprenden clases expositivas mediante la plataforma Zoom

Clases: 63 hrs

Otras : 15 hrs (hay sesiones de evaluación y de retroalimentación sobre temas preguntados en dichas evaluaciones)

Total: 75 hrs

7.- Evaluación: Se realizarán tres pruebas que a su vez incluye aquello relacionado con lo desarrollado en clases.

Ponderaciones:

P1 teórico 30% P2 teórico 35% P3 teórico 35%

Los seminarios bibliográficos ponderan un 10% de la nota final del Espacio A "Bases moleculares y celulares del organismo animal"

UNIVERSIDAD DE CHILE Facultad de Ciencias Veterinarias y Pecuarias Espacio Curricular A Unidad-2 2021

El promedio ponderado de las notas indicadas más arriba constituirá la nota de presentación a la prueba final integrativa. La nota final de la Unidad 2 se obtendrá de la siguiente manera:

Promedio ponderado de la Unidad 2 75 % Prueba final integrativa 25%

Considere que para el cálculo del promedio ponderado la nota no se aproxima a un decimal sino hasta la nota final del curso. Por ejemplo, si su nota ponderada da un 3,36 no se aproxima a 3,4.

Aprobarán la Unidad 2 los estudiantes cuya nota final sea igual o superior a 4,0.

La nota final del Espacio Curricular se obtendrá de la siguiente manera:

Nota final Unidad 1 30% Nota final Unidad 2 30% Nota final Unidad 3 30%

Seminario de investigación bibliográfica (o panel) 10%

Aprobarán el Espacio Curricular los estudiantes cuyo promedio ponderado sea igual o superior a 4,0. Los estudiantes cuya nota final en una unidad sea inferior a 4,0 no aprobarán el Espacio Curricular hasta haber aprobado la unidad respectiva

8.- Bibliografía

Biliografía básica disponible en línea (con cuenta pasaporte) https://www.uchile.cl/bibliotecas

- Nelson, D. (2009). *Lehninger principios de bioquímica*. Disponible en http://bibliografias.uchile.cl/1065
- Nelson, D., Cox, M. y Cuchillo, C. (2015). *Lehninger principios de bioquímica* . Disponible en http://bibliografias.uchile.cl/2006
- Watson, J., Baker, T., Bell, S., Gann, A., Levine, M. y Losick, R. (2018). Biología molecular del gen. Disponible en http://bibliografias.uchile.cl/3080
- Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Keith, R. y Walter, P. (2015). *Molecular biology of the cell*. Disponible en http://bibliografias.uchile.cl/3066
- Cooper, G. (2010). La Célula . Disponible en http://bibliografias.uchile.cl/1061
- Harper, H., Murray, R. y Cedillo Juárez, J. (2001). Bioquímica de Harper.
 Disponible en http://bibliografias.uchile.cl/1523

Como textos de apoyo o consulta se recomiendan:

- Herrera, E. Elementos de bioquímica. Ed. interamericana. McGraw-Hill, México, 1993 (o de fecha posterior)
- Murray, R.K.; Mayes, P.A.; Granner, D.K.; Rodwell. V.W. Bioquímica de Harper. Ed. El manual moderno, México, 15^a Ed. 2001
- Díaz, J.C.; Hicks, J.J. Bioquímica. Ed. Iteramericana. McGraw-Hill, México, 2ª Ed. 1995
- Riquelme, A.; Galleguillos, M. Editores. Organelos y bioenergética. Universidad de Chile, Campus Sur, 2004

Sitios Web recomendados:

- Ayudas al aprendizaje de la bioquímica y la biología molecular (en español): http://www.biorom.uma.es/indices/index.html
- Blogs donde se tratan temas generales en torno a las ciencias biológicas (Marco Galleguillos C.): http://basesmoleculares.blogspot.com/
- Biochemistry. 5th edition.Berg JM, Tymoczko JL, Stryer L.New York: W H Freeman; 2002.

http://www.ncbi.nlm.nih.gov/books/NBK21154/?term=principles%20of%20 biochemistry

CALENDARIO DE ACTIVIDADES UNIDAD-2 (2021)
Horario: martes 14:30 horas a 17:30 horas; viernes 14:30 horas a 17:30 horas

Horario: martes 14:30 horas a 17:30 horas; viernes 14:30 horas a 17:30 horas Fecha Actividad Profesor				
Lecila	AGOSTO	1 1010301		
Ma 03	Presentación del curso. Introducción: ¿Qué estudia la bioquímica? Moléculas presentes en los seres vivos. Metabolismo intermediario (definición). Aminoácidos, estructura y propiedades químicas.			
Vi 06	Estructura de proteínas (estructura primaria, secundaria, terciaria y cuaternaria), factores que afectan su conformación.			
Ma 10	Algunos métodos para purificación de proteínas. Centrifugación diferencial, Cromatografía líquida.			
Vi 13	Espectrofotometría. Cuantificación de proteínas (taller virtual)			
Ma 17	Estructura de ácidos nucleicos. DNA, mRNA, tRNA, rRNA.			
Vi 20	Enzimas. Cinética enzimática. Modelo de Michaelis-Menten. Enzimas alostéricas. Regulación de enzimas (modificación covalente, alosterismo, zimógenos).			
Ma 24	Actividad enzimática (taller virtual)			
Vi 27	Metabolismo energético: catabolismo de hidratos de carbono. Glicólisis. Gluconeogénesis. Ciclo de las pentosas.			
Ma 31	Beta-oxidación. Cetogénesis	SB		
	SEPTIEMBRE			
Vi 03	Ciclo de Krebs. Cadena transportadora de electrones. Fosforilación oxidativa. Balance energético.	MG		
Ma 07	No hay actividades del curso			
Vi 10	No hay actividades del curso			
13 al 19	Semana de Vacaciones			
Ma 21	Primera Prueba (30%). Hasta clase del martes 31 de agosto			
Vi 24	Biosíntesis de ácidos grasos. Biosíntesis de colesterol.	SB		
Mar 28	Depósitos energéticos: regulación de la biosíntesis de triglicéridos y de glicógeno.	НА		
Vi 01	OCTUBRE Metabolismo de compuestos pitrogopados Dispíntosis y degradación	MG		
VIUT	Metabolismo de compuestos nitrogenados. Biosíntesis y degradación de aminoácidos. Reacciones de transaminación. Ciclo de la urea. Ciclo de la glucosa-alanina.			
Ma 05	Revisión de temas de la primera prueba. Resolución de dudas sobre aquellos temas que mostraron mayor dificultad. (actividad de carácter voluntaria)			
Vi 08	Metabolismo de bases nitrogenadas. Aminoácidos como precursores de biosíntesis de moléculas de importancia biológica. Metabolismo del grupo Hemo.			
Ma 12	Metabolismo de ácidos nucleicos. Proceso de replicación del DNA en procariontes.			

Vi 15	Segunda Prueba (35%). Desde clase del martes 03 de septiembre hasta la clase del viernes 08 de octubre				
Ma 19	Transcripción en procariontes. Estructura y función de mRNA. Función del promotor.	EK			
Vi 22	Biosíntesis de Proteínas (procariontes). Regulación de la expresión génica: modelo del Operón Lactosa.)	EK			
Vi 26	Clonamiento y expresión de proteínas recombinantes para fines terapéuticos	SB			
Vi 29	Sistemas de transducción de señales. Segundos mensajeros (AMPc, GMPc, IP3, Ca+2). Proteína G (Gs,Gi,Gt,Golf,Ggust)	MG			
	NOVIEMBRE	1			
Ma 02	Revisión de temas de la Segunda prueba. Resolución de dudas sobre aquellos temas que mostraron mayor dificultad. (actividad de carácter voluntaria)	MG-HA			
Vi 05	Estrés oxidativo y radicales libres	MG			
Ma 09	Tercera Prueba (35%) (Desde la clase de la clase del 12 de octubre hasta la clase del viernes 29 de octubre.				
Vi 12	Óxido nítrico como segundo mensajero	MG			
Ma 16	Revisión de temas de la tercera prueba. Resolución de dudas sobre aquellos temas que mostraron mayor dificultad. (actividad de carácter voluntaria)				
Vi 19	No hay actividades				
Mi 24	Prueba Integrativa				
	DICIEMBRE				
Vi 03	Prueba Recuperativa				

Docente			
MG: Marco Galleguillos			
(coordinador de unidad)			
HA: Héctor Adarmes			
EK: Eduardo Kessi			
SB: Sergio Bucarey			

	Horas directas para el alumno
Total de horas teóricas	63 horas
Total de horas de resolución de dudas	6 horas
(retroalimentación)	
Evaluaciones (3 evaluaciones parciales de	8 horas aproximadamente (10 si debe rendir
clases teóricas y laboratorios y Prueba	Prueba recuperativa)
Integrativa)	
TOTAL	78 horas (80 horas)