

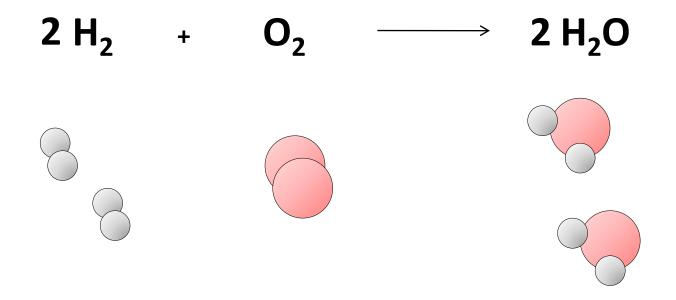
QUÍMICA (Unidad-1 2021)

ESTUDIA LA TRANSFORMACIÓN DE LA MATERIA

Marco Galleguillos C.

En química, la transformación (cambio) que experimenta la materia se puede representar mediante una simbología o notación acordada:

LA ECUACIÓN QUÍMICA


REACTANTES PRODUCTOS

$$2 H_{2 (g)} + O_{2 (g)} \longrightarrow 2 H_2 O_{(g)}$$

Ley de conservación de la materia (Antoine Lavoisier, siglo XVIII)

"La materia no se crea ni se destruye sólo se transforma"

Formation of Water

Esta ecuación se puede leer como sigue: "reaccionan dos moléculas de H2 con una molécula de O2 para formar dos moléculas de H2O"

Sin embargo en el laboratorio se debe trabajar con número muchísimo mayor de átomos

2H₂

2 H₂O

2 (moles de H_2) + 1 mol de O_2

2 (moles de H₂O)

2 (6,02 x 10 23 moléculas de H₂) + 6,02 x 10 23 moléculas de O₂

2 (6,02 x 10 ²³ moléculas de H_2O)

2 (2 g H₂)

+

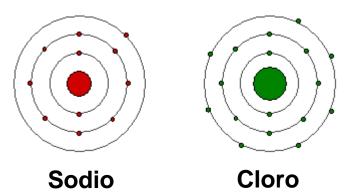
32 g de O₂

2 (18 g de H₂O)

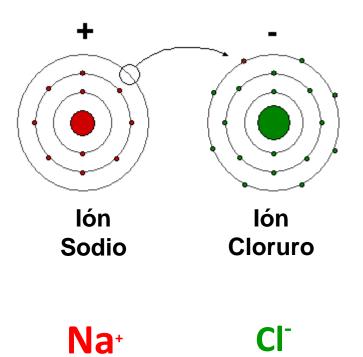
36 g

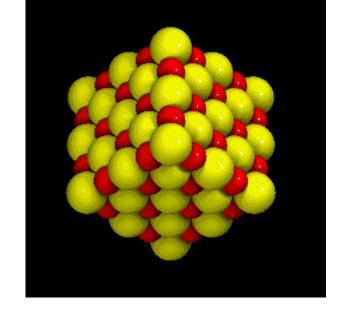
36 g

1	Tabla Periódica de los Elementos										2						
H													He				
Hydrogen 1.00794																	Helium 4.003
3	4											5	6	7	8	9	10
Li	Be											В	\mathbf{C}	N	\mathbf{O}	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.06	Chlorine 35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	-35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	Iron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63,546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79,904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126,90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium 132.90545	Barium 137,327	Lanthanum 138.9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196,96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114		()	()	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)	(269)	(272)	(277)						

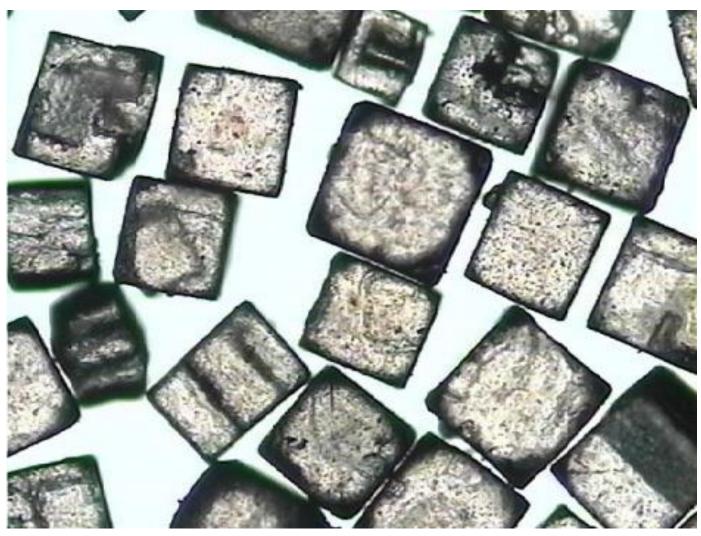

50	50	60	61	62	62	61	65	66	67	60	60	70	71
58	59	60	61	62	63	64	65	66	0/	68	69	70	/1
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

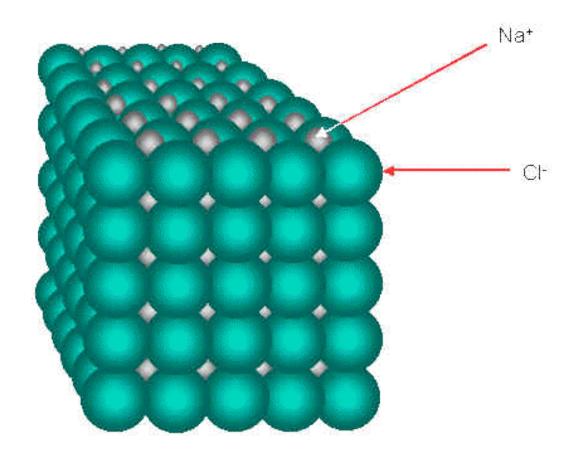
www.ParaImprimirGratis.com

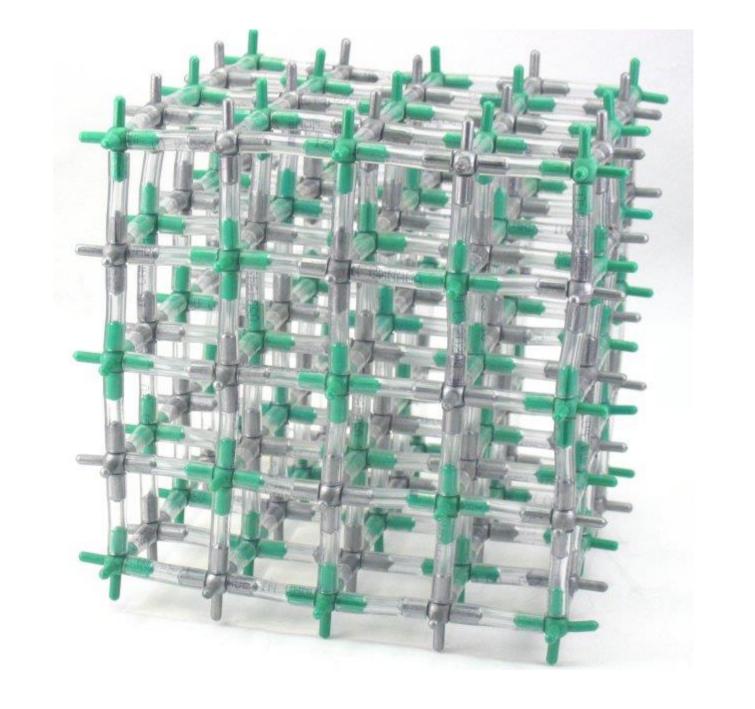

$$2Na_{(s)} + Cl_{2(g)} \longrightarrow 2NaCl_{(s)}$$

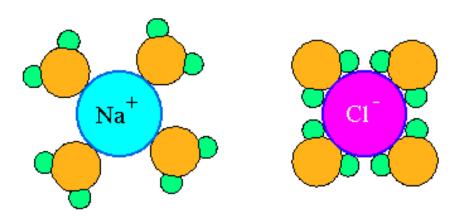

El Na reacciona rápidamente con sustancias como el Cl2 con lo cual alcanza una mayor estabilidad

Formation of Sodium Chloride

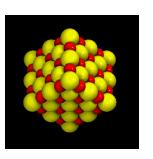



El sodio tiende a ceder un electrón con lo cual queda con el octeto completo (mayor estabilidad) pareciéndose al gas noble Ne. Por otra parte el Cl capta el electrón completando su octeto pareciéndose al gas noble Rn. En este proceso químico se adquieren las cargas que permiten la formación de un enlace iónico





En una solución de NaCl los iones son rodeados por moléculas de agua (solvatación)


Na_(s)

Sodio (elemento)

Na⁺

Ion Sodio

Na⁺_(ac)

Ion Sodio (en solución)

 $Cl_{2(g)}$

Cloro molecular (elemento)

 H_2O

Agua(compuesto)

El metal sodio reacciona con agua:

$$2Na_{(s)} + 2H_2O \longrightarrow 2NaOH_{(ac)} + H_{2(g)}$$

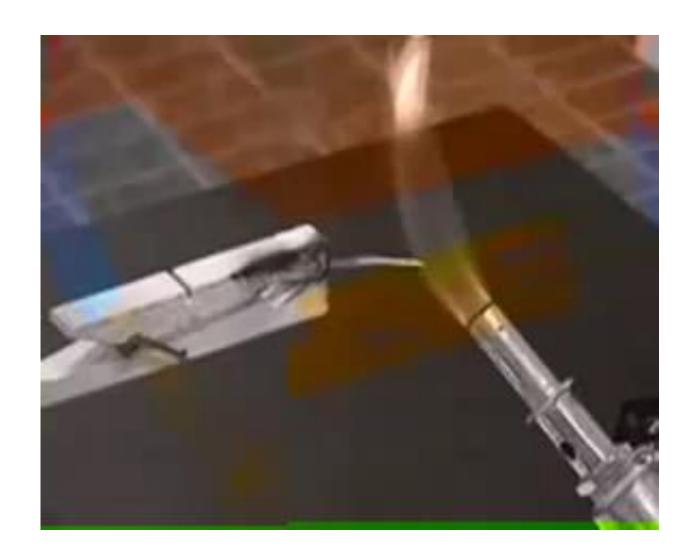
Sodium and Potassium in Water

$$2Na_{(s)} + 2H_2O \longrightarrow 2NaOH_{(ac)} + H_{2(g)}$$

Hidróxido de sodio

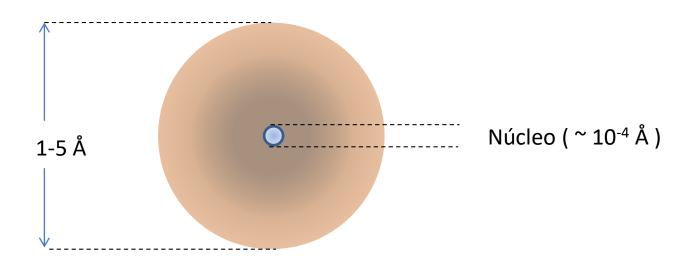
$$2K_{(s)} + 2H_2O \longrightarrow 2KOH_{(ac)} + H_{2(g)}$$

Hidróxido de potasio

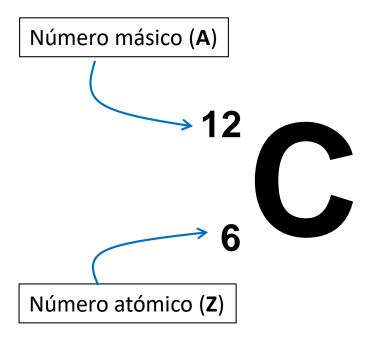

Reacción de combinación de un metal con oxígeno:

$$2 Mg_{(s)} + O_{2(g)} \longrightarrow 2 MgO_{(s)}$$

La oxidación del magnesio genera una luminosidad característica.



Masa y carga de las partículas subatómicas


Partícula Subatómica	Masa (g)	Coulombs	Carga Unitaria		
Protón	1,67262 × 10 ⁻²⁴	+1,6022 × 10 ⁻¹⁹	+1		
Neutrón	1,67493 × 10 ⁻²⁴	0	0		
Electrón	9,10939 × 10 ⁻²⁸	-1,6022 × 10 ⁻¹⁹	-1		

Protones, neutrones y electrones

En el núcleo, donde residen los protones y neutrones, se concentra la mayor parte de la masa del átomo

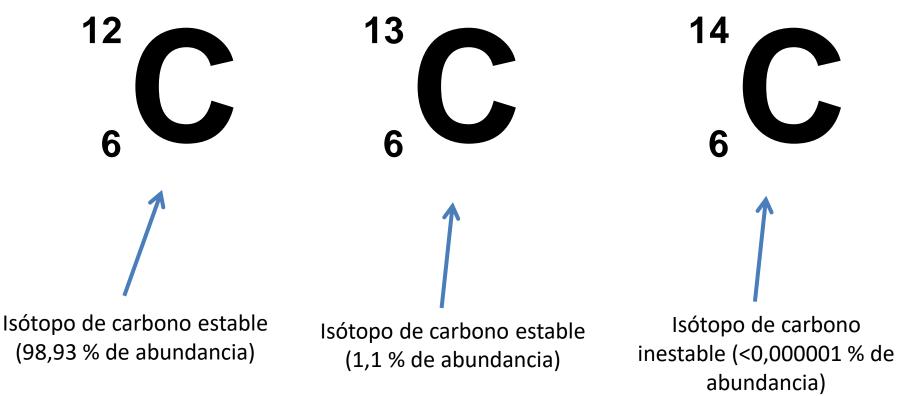
¿Cuánto pesa un átomo?

El átomo de ¹**H** pesa: 1,6735 x 10 ⁻²⁴ g

El átomo de ¹⁶**O** pesa: 2,6560 x 10 ⁻²³ g

Unidad de Masa Atómica

$$1 \text{ uma} = 1,66054 \times 10^{-24} \text{ g}$$


$$1 g = 6,02214 \times 10^{23} \text{ uma}$$

Se asigna al ¹²C una masa de **12 uma**

Por lo tanto..

¹**H** tiene una masa de **1,0078 uma**¹⁶**O** tiene una masa de **15,9949 uma**

ISÓTOPOS

Átomos que tienen el mismo número atómico (Z) y distinto número másico (A). Los elementos son mezclas de isótopos.

Recuerde que:

1 mol de cualquier sustancia equivale a la masa de esa sustancia en g

1 mol de cualquier sustancia contienen el número de Avogadro (NA) elementos, moléculas, átomos de dicha sustancia

Por ejemplo:

1 mol de H2..... equivale a 2 g de H2...... Contiene el NA de moléculas H2

Además podemos afirmar que un mol de H2 contiene 2xNA de átomos de H

1 mol de H2O Equivale a 18 g de H2O...... contiene el NA moléculas de H2O ½ mol de H2O ----- 9 g de H2O ----- contiene ½ NA de moléculas de H2O