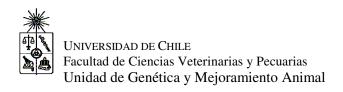
GENÉTICA BÁSICARATHADIA de Investigaciones Rio

GENÉTICA BÁSICA BENTA Unidad de Investigaciones Biotecnologicas y Genéticas productivos particos productivos produ



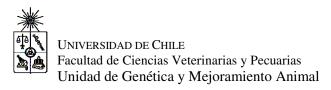
Introducción

Esta guía ha sido confeccionada y perfeccionada durante algunos años dentro del area de Genética y Mejoramiento Animal de la Facultad de Ciencias Veterinarias y Pecuarias.

Muchos hemos sido los que hemos contribuido para completar esta tarea, siendo inspirada desde sus inicios por el Profesor Nelson Barria, como una herramienta que sirva para entender la problemática Genética Animal desde un punto de vista aplicado y teorico.

Por ello este manuscrito que esta en proceso de publicación esta dedicado especialmente a él.

Victor Martinez MSc PhD Profesor-Asistente. Unidad de Genética y Mejoramiento Animal



1. GENÉTICA DE POBLACIONES

Una población puede ser definida como un grupo o conjunto de individuos similarmente adaptados a un determinado ambiente. En términos genéticos, una población es un grupo espacial y temporal de individuos que puede reproducirse dejando descendencia fértil y, por lo tanto, realizan una transmisión de material genético. Esta definición lleva implícita la idea de la transmisión del material genético a través de interconexiones entre generaciones mediante los gametos.

La Genética de Poblaciones estudia las proporciones o frecuencias de los genes y genotípos que se presentan en una población y los cambios que en ellos se observan a medida que transcurren las generaciones.

1.1. Estructura Genética de Poblaciones

1.1.1. Un locus

1.1.1.1. Frecuencias Génicas y Genotípicas

Los individuos de una población tienden a diferenciarse visualmente entre sí por su fenotipo. Esta diferenciación produce cierta variabilidad entre individuos. Parte de esta variación se debe a diferencias genéticas entre los individuos, es decir, diferencias entre los genotipos. Por ejemplo, en Bovinos Shorthorn, el color del pelaje está determinado por un locus autosomal en el cual se presentan sólo 2 alelos. La expresión génica de este locus no presenta interacción (sin dominancia) y, por lo tanto, es posible diferenciar los genotipos a través de su expresión fenotípica. Los individuos homocigotos para el alelo R presentan pelaje de color rojo, los heterocigotos presenten color roano (mezcla de pelo color rojo y blanco) y los homocigotos para el alelo r presentan color blanco. Un ejemplo se describe en el. Ejemplo Nº1.

Tabla No.1 Distribución genotípica y fenotípica del color del pelaje en un rebaño Shorthorn					
Color	Genotipo	Número	Notación	Frecuencia Relativa	
Rojo Roano Blanco	RR Rr rr	200 500 300	nRR nRn nrr	0.2 (P) 0.5 (H) 0.3 (Q)	
Totales		1000	N	1 (1)	

Las frecuencias relativas de los genotipos RR, Rr y rr se les denomina simbólicamente P, H y Q, respectivamente.

Si se define la frecuencia de ocurrencia de un evento como:

f(evento)= N° de veces que ocurre ese evento en la población N° total de eventos

la frecuencia de ocurrencia del evento rojo o frecuencia del genotipo rojo (frecuencia genotípica de RR) en la población descrita en a Tabla Nº 1.1 será

f(Rojo)=f(RR)=P=nRR/N=200/1000=0.20

Este resultado puede ser expresado como la probabilidad de encontrar, en esa población, individuos que presenten color rojo. Es decir, si se toma un individuo al azar de la población, la probabilidad que presente color rojo es igual a 0.2.

Los padres aportan con genes a la siguiente generación. Un individuo heterocigoto aportará gametos R y r a la siguiente generación, mientras que los homocigotos aportarán solo gametos R o r.

Si el número total de individuos en una población es N, entonces la población gamética, en un locus autosomal, será igual a dos veces el número total de individuos, es decir, 2N. De esta forma, la frecuencia de ocurrencia de un alelo, R (p = frecuencia génica de R) en una población está determinada por la proporción de alelos R que existe en esa población:

$$f(R) = p = nR/2N$$

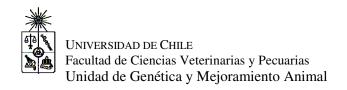
Donde, nR es igual al número de alelos R en la población y 2N es el número total de genes en la población para ese locus.

Debido a que un individuo homocigoto porta dos alelos idénticos y un individuo heterocigoto porta para ese locus alelos distintos, el número de alelos R (nR) está determinado por dos veces el número de individuos homocigotos (2nRR) más una vez el número de individuos heterocigotos (nRr).

nR=2nRR+nRr

La frecuencia relativa del alelo R se obtendrá entonces dividiendo la frecuencia absoluta del alelo R (nR) por el número total de alelos (2N):

$$f(R) = p = \frac{2nRR + nRr}{2N}$$



En términos de frecuencia genótipica, la frecuencia del alelo R será igual al

$$f(R) = \frac{2nRR + nRr}{2N} = \frac{2NRR}{2N} + \frac{nRr}{2N} = \frac{nRR}{N} + \frac{1}{2} \frac{nRr}{N} = f(RR) + \frac{1}{2} f(Rr)$$

$$p = P + \frac{1}{2} H$$

$$p = 0.2 + 0.25 = 0.45$$

La frecuencia del alelo r se denotará por q, y será igual a:

$$q = Q + 1/2 H$$

Las sumas (p+q) y (P+H+Q) necesariamente son siempre iguales a 1. Por lo tanto p=l-q.

1.1.1.2. Apareamiento aleatorio o Panmixia

El Apareamiento Aleatorio o Panmixia es un sistema de cruzamientos en el cual cada individuo de una población sexuada tiene idéntica oportunidad de aparearse con cualquier individuo del otro sexo, lo cual os independiente del genotipo que ese individuo posee. Bajo estas condiciones, la probabilidad de apareamiento entre los individuos de los distintos genotipos es igual al producto de las frecuentas genotípicas de ambos sexos en a población. Un punto esencial es que bajo estas consideraciones los criterios de cruzamiento son independientes del fenotipo y por lo tanto del genotipo en consideración.

Por ejemplo, en La misma población anteriormente citada. ¿Cual es la probabilidad de que cada individuo macho RR, se cruce al azar con hembras de la población, asumiendo igual frecuencias génicas y genotípicas en ambos sexos

Un individuo RR tendrá la posibilidad de aparearse con hembras al azar de la población en las proporciones genotípicas de las hembras en la población. En este caso particular, las frecuencias son 0,2, 0,5 y 0,3 para las hembras cuyos genotipos son RR, Rr y rr, respectivamente.

El apareamiento al azar puede ser explicado a través de la probabilidad de unión (cruzamiento) de individuos de un determinado genotipo. Así, como las probabilidades de los genotipos en los distintos sexos son probabilidades independientes, la probabilidad de unión es el producto de las frecuencias de los genotipos involucrados en el cruzamiento. Esto puede sor explicado a través de una tabla de doble entrada en la cual son expresadas rodas las posibles combinaciones de cruzamientos. Esta tabla se denomina Cuadrado de Punnett (Figura N°1.2).

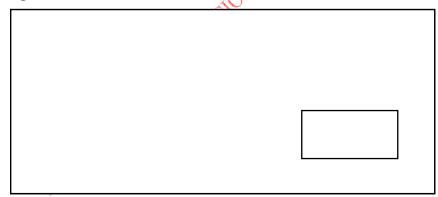
figura N°1.2 Frecuencia de apareamientos al Azar						

Si los cruzamientos son al azar en la población, los cruzamientos del tipo RRx RR tendrán una frecuencia igual a P², asumiendo que la distribución de las frecuencias genotípicas en ambos sexos es igual.

Cruzamientos al azar entre individuos implica que la unión de los gametos es al azar. Debido a que las frecuencias génicas en Los gametos femeninos y masculinos representan probabilidades independientes, nuevamente, la probabilidad de unión de Los gametos femeninos y masculinos es igual al producto de as frecuencias génicas.

En la Figura Nº1.3 se presentan las frecuencias de unión de gametos asumiendo que la distribución de las frecuencias génicas es igual en ambos sexos.

Figura Nº1.3. Frecuencias de Unión al Azar de Gametos.



Tanto las probabilidades en términos de cruzamientos de individuos como las probabilidades de unión de gametos (frecuencias en la progenie) son probabilidades mutuamente excluyentes. La probabilidad de que todos estos eventos ocurran simultáneamente es, igual a la sumatoria de Las probabilidades de los cruzamientos de los genotipos generados, respectivamente. La sumatoria de estas probabilidades debe ser igual a 1.

1.1.1.3 Equilibrio de Hardy-Weinberg

Consideremos una población panmixtica de gran tamaño. con igual distribución de frecuencias en ambos sexos.

Supuestos:

- · Organismos diploides.
- Reproducción sexuada.
- · Generaciones discretas.
- Población de gran tamaño.
- Ausencia de migración, selección mutación.

Bajo apareamiento aleatorio, las proporciones esperadas de los genotipos después de una generación serán iguales a p^2 , $2pq y q^2$.

Con una combinación aleatoria de gametos (Figura Nº1.3), la probabilidad de que espermios R se junten al azar con ovocitos R es igual a p². IguaJmønte, la probabilidad de que gametos masculinos R se junten con gametos femeninos r es igual a pxq y viceversa. La probabilidad de que gametos femeninos y masculinos se junten al azar es igual a q².

Ahora bien, no importando as frecuencias genotipicas de la población, una generación de cruzamiento al azar permitirá que las frecuencias genotípicas de los cigotos formados sean una expresión binomial de las frecuencias génicas,

$$(p+q)^2 = p^2 + 2pq + q^2 = (1)^2 = 1$$

Donde, p representa la frecuencia de un alelo (en este caso ejemplificado en la Tabla Nº1.1) y q representa a frecuencia del otro alelo (r). La probabilidad de encontrar entre los gametos femeninos o masculinos alelos R, es igual a la frecuencia del alelo R en la población.

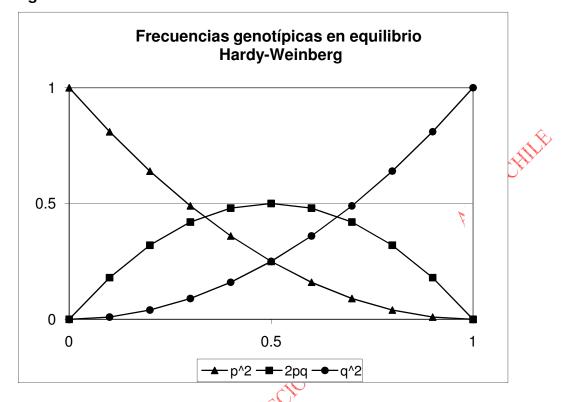
Si se mantienen tos supuestos anteriormente mencionados, a medida que pasan las generaciones, la población se mantendrá en este equilibrio entre frecuencias gánicas y genotípicas, denominado Equilibrio de Hardy-Weinberg, el cual fue descrito y publicado separadamente por G.H. Hardy (1908) y W. Weinberg (1908).

Bajo equilibrio, las frecuencias génicas y genotípicas se mantendrán constantes de generación en generación, las frecuencias genotípicas serán una expresión binomial de las frecuencias génicas, manteniéndose la composición genotípica y la variabilidad genética en la población.

Cambios de esta relación de generación en generación indicarán que otros factores influencian las frecuencias en consideración.

La Figura N°1.4 representa las frecuencias genotipicas en poblaciones en Equilibrio de Hardy-Weinberg con diferentes frecuencias génicas.

Figura N°1.4.-



Bajo condiciones de equilibrio:

- 1. El valor máximo que pueden alcanzar los heterocigotos es 0,5. y ocurre cuando la frecuencia de p=q.
- 2. Si un alelo se encuentra en baja frecuencia, la mayor proporcion de éste se encontrara en los heterocigotos.

En la Tabla Nº1.2, se resumen las condiciones necesarias para que se cumpla el equilibrio de Hardy-Weinberg.

Tabla N° 1.2.- Condiciones que deben cumplirse para que se mantengan las frecuencias génicas y genotípicas en la relación de Equilibrio de Hardy-Weinberg.

Acciones involucradas	Condiciones		
- Desde las frecuencias génicas en los padres a frecuencias génicas en los gametos	 Segregación gamética normal Igual fertilidad de los padres Igual capacidad fertilizante de los gametos. Población grande 		
- Frecuencias génicas en los gametos que forman los cigotos	5 Apareamiento aleatorio 6 Igual frecuencia en machos y hembras		
 Desde las frecuencias genotípicas en los cigotos a las frecuencias genotípicas en la progenie. Frecuencias génicas en la progenie. 	7 Igual viabilidad		

1.1.2. Dos o más loci

Después de una generación de cruzamientos aleatorios. si las frecuencias génicas son iguales en ambos sexos los alelos en cualquier locus se encontrarán en equilibrio de Hardy-Weinberg. Sin embargo, cuando dos o más loci se consideran conjuntamente, ellos pueden no encontrarse en equilibrio conjunto.

Para demostrar ésto, consideraremos dos loci cada uno con dos alelos. Denominaremos P_A a la frecuencia del alelo A_1 en el primer locus (A) y a p_B como la frecuencia del alelo B_1 en el segundo locus (B). Los gametos posibles y su frecuencia esperada, si el equilibrio conjunto existe, se muestran en la Figura $N^{\circ}1.5$.

Figura 1.5 Gametos posibles considerando 2 loci				
Locus A	Locus B	Gametos		
A ₁	B ₁ B ₂	P _A P _B P _A Q _B		
A ₂ A ₂	B ₁ B ₂	PAPB PAQB QAPB QAQB		

Como mencionamos anteriormente, bajo cruzamientos aleatorios, la población se acercará paulatinamente a las frecuencias de equilibrio conjunto. A continuación, derivaremos la tasa en la cual ocurre este proceso. Si se consideran dos loci, cada uno con dos alelos, los tipos de gameto, las frecuencias gaméticas

en equilibrio (esperadas) y las que se observan en cada generación observadas), se muestran en la Figura N° 1.7.

Figura N°1.7				
Tipo de Gameto	A_1B_1	A_1B_2	A_2B_1	A_2B_2
Frec. Esperadas	$p_A p_B$	p_Aq_B	q_Ap_B	q _A q _B
Frec. Observadas	r	s	t	u III.E
Diferencia	+ D	- D	- D	◆ D

La población se encontrará en equilibrio conjunto, si los gametos contienen combinaciones aleatorias de genes. Bajo esta situación, las frecuencias gaméticas dependerán exclusivamente de las frecuencias génicas. Si denominamos a: **r**, **s**, **t** y **u** a las frecuencias gaméticas observadas (en desequilibrio), cada una de éstas diferirá de las frecuencias de equilibrio en D. Existirán dos tipos gaméticos que presentarán un desvío positivo y dos un desvío negativo. El grado o nivel de desequilibrio se evalúa a través de D.

El desequilibrio puede ser expresado en función de los genotipos, comparando las frecuencias de los heterocigotos por acoplamiento y por repulsión. El genotipo A_1B_1/A_2B_2 puede ser denominado un heterocigoto por acoplamiento cuando los dos loci están ligados o no, y cuya frecuencia es 2ru. El heterocigoto por repulsión es A_1B_2/A_2B_1 y su frecuencia es 2*rst*.

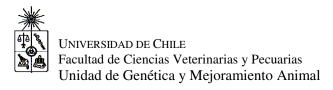
Si la población se encuentra en equilibrio, estos dos genotipos tienen igual frecuencia. La relación con D es:

D = ru-st

De esta forma, D es igual a la mitad de la diferencia entre los heterocigotos por acoplamiento y heterocigotos por repulsión.

Cuando una población en desequilibrio por ligamiento se cruza en forma aleatoria, la cantidad de desequilibrio se reduce progresivamente en cada generación. La tasa en la cual esto ocurre depende de la frecuencia de los tipos gaméticos en dos generaciones sucesivas. Esto es fácil de visualizar si los loci se encuentran en el mismo cromosoma. El desequilibrio, D, en la generación de la progenie puede ser estimado a través de la frecuencia de cualquiera de los tipos gaméticos, de tal forma que nosotros consideraremos sólo al tipo A_1B_1 .

Este tipo gamético puede aparecer en la progenie a través de dos vías. Puede ser generado a través del genotipo no recombinante A_1B_1/A_xB_x , donde el subíndice x significa que cualquiera de los dos alelos pueden estar presentes. La frecuencia en a cual A_1B_1 , se genera es r(1-c), donde r es la frecuencia de A_1B_1 en la generación parental y c es a frecuencia de recombinación. La segunda vía corresponde a la formación a través de la recombinación del genotipo A_1B_x/A_xB_1 . La frecuencia del cromosoma A_1B_x es p_A y del cromosoma A_xB_1 es p_B . De tal



forma que la frecuencia con la cual A₁B₁ puede ser generado a través de esta vía es papac.

La frecuencia total del gameto A₁B₁ en la progenie es:

$$r' = r(1 - c) + p_A p_B c$$

y el deseguilibrio en la progenie es:

a progenie es:

$$D' = r' - p_{A}p_{B}$$

$$= (1 - c) + p_{A}p_{B}c - p_{A}p_{B}$$

$$= r(1 - c) - p_{A}p_{B}(1 - c)$$

$$= D(1 - c)$$
ación:
$$D'' = D'(1 - c)$$

$$= D(1 - c)^{2}$$
és de t generaciones, el deseguilibrio será igual a:

En la siguiente generación:

De esta forma, después de t generaciones, el desequilibrio será igual a:

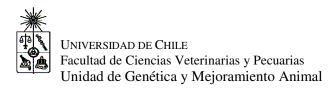
$$D_t = D_o (1 - c)^{t}$$

El deseguilibrio por ligamiento de implica un ligamiento físico de los loci. En loci no ligados la tasa de recombinación es igual a $\frac{1}{4}$ ($c = \frac{1}{2}$), determinando que la cantidad de deseguilibrio disminuya a la mitad en cada generación de cruzamientos aleatorios. Naturalmente si los loci están ligados, el deseguilibrio desaparecerá más lentamente.

La aproximación a equilibrio conjunto se aplica a cualquier número de loci considerados en forma conjunta, de tal forma que (1 - c) se define Como la probabilidad deque un gameto pase a través de una generación sin recombinación en cualquiera de los loci. Naturalmente mientras mayor sea el número de loci considerados, menor será la probabilidad de que no exista recombinación; considerando dos loci no ligados ésta es igual a 1/2, con tres loci esta es igual a: 1/4 y con cuatro loci esta probabilidad es igual a 1/8. De esta forma, mientras mayor sea el número de loci, la aproximación al equilibrio es mayor (Crow y Kimura, 1970).

Referencias

- 1. Crow, J.F., and M. Kimura, 1970. An introduction to populations genetics theory. Harper and Row, New York, USA.
- 2. Falconer, D.S., and M.T.C. Mackay. 1996. Introduction to quantitative genetics. 4th. Ed. Longman. Essex. England.



2. FACTORES QUE CAMBIAN LAS FRECUENCIAS GENICAS

Existen diferentes factores que cambien las frecuencias génicas y genotípicas en equilibrio. Ellos pueden agruparse en dos tipos de procesos: Sistemáticos y Dispersivos. Dentro de los primeros se consideran la migración, mutación y selección, los que se caracterizan porque son predecibles en dirección yen magnitud. El proceso dispersivo es una consecuencia del pequeño tamaño de las poblaciones y sus efectos sólo pueden ser predecibles en magnitud, pero no en su dirección, Las frecuencias génicas fluctúen de manera aleatoria, de allí que a este proceso se le conozca también con el nombre de deriva génica.

2.1. Migración

Este proceso que consiste en la entrada o salida de individuos de una población quede determinar cambios en las frecuencias génicas. La magnitud del cambio dependerá de dos factores: la proporción de individuos que llega a la población y la distancia genética entre los individuos que ingresan a la población y la población nativa.

Si denominamos m la proporción de individuos inmigrantes, 1 - m corresponderá a la proporción de individuos de la población nativa. Por lo tanto, la frecuencia génica de la población mezclada, q_1 , será:

$$q_1 = mq_m + (1 - m)q_0$$

= $m(q_m - q_0) + q_0$

Donde, q_m , y qo son las frecuencias génicas en la población de inmigrantes y nativa, respectivamente. Por lo tanto, el cambio de la frecuencia génica, Δ_q , después de una generación de inmigración será:

$$\Delta_{q} = q_{1} - q_{0}$$
$$= m(q_{m} - q_{0})$$

Como se ve, el cambio de las la proporción de inmigrantes y de Inmigrantes y la población nativa frecuencias génicas bajo migración es función de la diferencias en las frecuencias génicas entre

2.2. Mutación

Este proceso que modifica las frecuencias génicas es de importancia porque es el único que crea nueva variabilidad genética, a diferencia de los otros factores que redistribuyen la variabilidad genética existente. La importancia de este proceso dependerá de las tasas de mutación.

Existen mutaciones que se realizan en una sola dirección y su permanencia en la población dependerá principalmente de su frecuencia y del tamaño poblacional. Si la mutación es infrecuente (no-recurrente) su destino será su eliminación de la población. Por otra parte, existen mutaciones que se presentan



en forma frecuente y ello quede ocurrir en un solo sentido o en ambos.

Si a frecuencia del alejo A_1 es p_0 y la tasa de mutación de A_1 hacia A_2 se denomina como u,

$$A_1 \xrightarrow{U} A_2$$

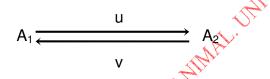
entonces la frecuencia del alelo A1 en la primera generación de mutación será

$$p_1 = p_0 - up_0$$

y el cambio en la frecuencia génica, Δ_p , será,

$$\Delta p = -qp_0$$

Si la mutación ocurriese en ambos sentidos y denominamos a q_0 como la frecuencia del alelo A_2 y v como la tasa de mutación de A_2 hacía A_1 .



entonces, el cambio de la frecuencia génica del alelo A_2 en una generación, será,

$$\Delta q$$
 up_o - vq_o

El equilibrio mutacional, es decir, cuando $\Delta q = 0$, se logra cuando

$$up_o = vq_o$$

La frecuencia génica del alelo A2 en equilibrio mutacional será

$$\frac{p}{q} = \frac{v}{v}$$

$$q = u \\ u + v$$

2.3. Selección

La Evolución, vista desde el punto de vista de la selección natural, fuerza guiadora del proceso evolutivo, se basa en algunas premisas. Una de ellas es que todas las especies tienen la capacidad de dejar un mayor número de descendientes de los que sobreviven y se reproducen, lo que puede ser fácilmente observable en la naturaleza, ya que bajo condiciones ambientales óptimas las poblaciones pueden crecer en forma exponencial. Otra premisa señala que los organismos varían en su habilidad para sobrevivir y reproducirse. También esta premisa es de fácil observación, pues algunos

organismos sobreviven y se reproducen, mientras que otros no lo hacen. Otra importante premisa es que la variabilidad que presentan los organismos para sobrevivir y reproducirse es en parte "hereditaria". Esta última premisa fue clave para que Darwin propusiera la presencia de "variabilidad hereditaria" afectando prácticamente a todas las características en poblaciones naturales y domésticas.

Esta variabilidad genética permite establecer que ciertos genotipos estén más adaptados que otros a determinados ambientes. Esta mayor adaptación se expresa en una mayor habilidad para sobrevivir y reproducirse en esos ambientes. La conclusión es la ocurrencia de la *Selección natural*, proceso por el cual los genotipos con mayor adaptación (fitness) dejan en promedio un mayor número de descendientes que otros, que presentan menor adaptación. De esta manera, la selección natural permite que alelos que favorecen una mayor adaptación aumenten su frecuencia de generación en generación, cambiando gradualmente las frecuencias génicas en la población, permitiendo una mayor adaptación de la población a ese ambiente.

2.31. Valor Adaptativo y Coeficiente de Selección

En poblaciones bisexuales es difícil encontrar genotipos que sean idénticos. Gran parte de asta variación genética se expresa fenotícamente, la que se expone a la selección natural. La selección es una expresión de las diferencias de adaptación entre individuos. El valor adaptativo o fitness es la capacidad de sobrevivencia y de rendimiento reproductivo de los genotipos. Individuos con el mayor fitness dejan un número más alto de descendientes de generación en generación, determinando la perpetuación de ciertos genes o grupos de genes. De lo anterior, se concluye que el valor adaptativo debe expresarse en valores relativos entre los diferentes genotipos.

Si en el locus A segregan los alelos A_1 y A_2 , se podrán formar los genotipos A_1A_1 , A_1A_2 y A_2A_2 , los que presentan valores de adaptación W_0 , W_1 y W_2 respectivamente. Para expresar estos valores en términos relativos, se toma el genotipo más adaptado como 1 y los otros se expresan con relación a él.

Genotipo	A_1A_1	A_1A_2	A_2A_2
Valor Adaptativo (Fitness)	W_0	W_1	W_2
Fitness relativo	$W_0/W_0=1$	$W_1/W_0=1-S_1$	$W_2/W_0=1-S_2$

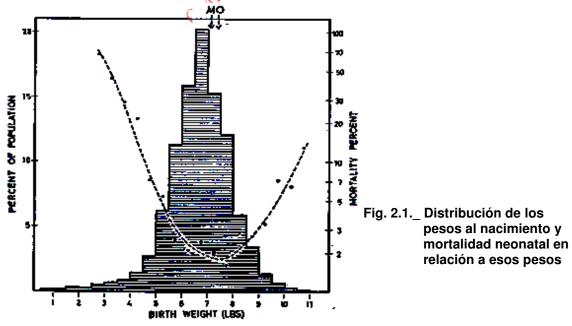
El coeficiente de selección (S) representa la intensidad de selección contra las formas menos exitosas de adaptación. Los valores S₁, y S₂ representan la reducción proporcional en procreación de ambos genotipos, con relación al genotipo más adaptado. Los de valores de S varían de 0 a 1. Si S=0 para un genotipo, ese genotipo es el que deja el mayor número de descendientes. En cambio, un coeficiente S=1, señala que ese genotipo no deja descendencia fértil.

2.3.2. Tipos de Selección

2.3.2.1. Selección Estabilizante

Una población para permanecer e través del tiempo debe estar adaptándose constantemente a localidad geográfica en que vive. La selección siempre está actuando sobre la población, preservando aquellos genotipos que mejor se adaptan a las condiciones ambientales de la localidad. Si una población se mantiene en un ambiente constante por varias generaciones, puede darse la oportunidad de que logre un alto grado de adaptación. Si ello sucede la variabilidad genética permanecerá estable y las frecuencias génicas de muchos loci se encontrarán muy cerca del equilibrio. Ello no es indicio que la selección haya dejado de actuar, sino que lo está haciendo sobre aquellos genotipos que están fuera de la "norma", eliminándolos de generación en generación y preservando aquellos genotipos bien adaptados. Ello puede conducir a una disminución en la varianza del carácter en la población, sin que necesariamente cambie el promedio. Esta forma de acción, en la que un solo optimo es favorecido permitiendo la sobrevivencia de individuos que están en el promedio o cerca de él, se conoce con el nombre de selección estabilizante.

En poblaciones naturales y también en poblaciones humanas, se han observado ejemplos de selección estabilizante. Un ejemplo muy bien documentado es el presentado por Karn y Penrose en 1952 (Mather, 1973), quienes investigaron la mortalidad de recién nacidos con relación a sus pesos al nacimiento en un hospital de Londres. Un total de 13.730 recién nacidos, 7.037 niños y 6.693 niñas fueron considerados. El promedio de peso de los niños fue levemente superior, pero ambos sexos se combinaron facilitando su representación en la Figura 2.1, la que muestra la distribución de le mortalidad superpuesta sobre los pesos al nacimiento, los que fueron agrupados en rangos de media libra.



Se observa que la mortalidad de recién nacidos es mínima alrededor del promedio, mientras que ésta se eleva en ambos extremos. Según los autores, las causas de mortalidad son diferentes según el extremo que se considere, pero este es un buen ejemplo de selección estabilizante.

En poblaciones naturales hay numerosos ejemplos de este tipo de selección. Un estudio de Lack en 1947 (Dobzhansky, 1955), sobre número de huevos empollados en diversas especies de aves demuestra que hay un número óptimo de huevos según la especie y que éste ha sido ajustado por selección natural. Es indudable que el número de huevos producidos es un indicador positivo de adaptación, pero un número excesivo constituye una desventaja, porque se establece una correlación negativa entre el número de polluelos y la capacidad de los padres para alimentarlos. Lack, informó que en el estornino suizo, 5 huevos empollados era el número óptimo. Un mayor número de nuevos aumentaba la mortalidad y ésta se producía en el momento de abandonar el nido en aquellos polluelos que habían sido mal nutridos.

2.3.2.2. Selección disruptiva

Esta selección se caracteriza por presentar varios óptimos, determinando una garan variabilidad fenotípica. Este tipo de selección genera poblaciones polimórficas. Un ejemplo corresponde a las observaciones echas por Darwin en las islas Galápagos en relación a los picas de aves, conocidas como los pinzones de Darwin (Dobzhansky, 1985). En le figura 2.2 se presentan las diferentes subpoblaciones observadas por Darwin.

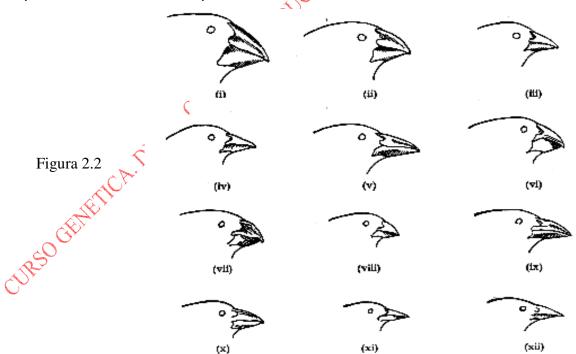


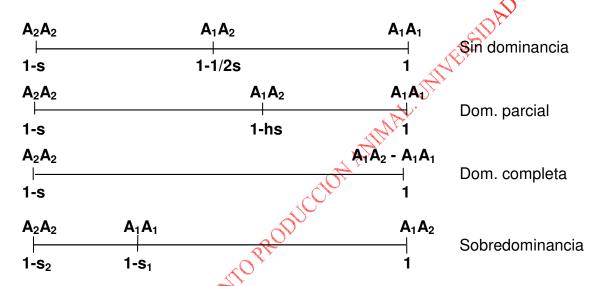
Figure 12.10. Darwin's fisches of the Galapages Islands. This is a group of birds which became adapted to diverse modes of life and developed a great variety of adaptations, particularly in the structure of the book. (From Luck, courtesy of Cambridge University Press.)

2.3.2.3. Selección Direccional

Este tipo de selección se caracteriza porque favorece a un óptimo que se encuentra en un extremo de la distribución fenotípica y que, por o tanto, corresponde a lo normal. Este tipo de selección es el más frecuente de encontrar en ganadería.

2.3.3. Tipos de Acción Génica en Relación al Fitness

El significado de los diferentes grados de dominaricia se presenta en ka siguiente figura.



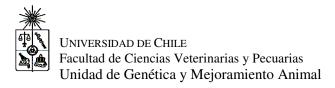
2.3.4. Cambios en la Frecuencias Génicas por Selección

La efectividad de la selección se mostrará considerando una generación de selección, en la que esta opera en contra del genotipo recesivo y bajo un modelo de dominancia completa.

En la siguiente tabla se presentan los genotipos, las frecuencias genotípicas, los coeficientes de selección y las contribuciones gaméticas.

Gir	Genotipos			
	A_1A_1	A_1A_2	A_2A_2	Total
Frecuencia inicial	p ²	2pq	q ²	1
Coeficiente de selección	0	0	S	
Fitness	1	1	1-s	
Contribución gamética	p ²	2pq	q ²	1-sq ²

Después de la selección, la frecuencia total ya no es la unidad, sino que ha disminuido en sq^2 debido a la selección. Para encontrar la frecuencia de genes A_2 en la progenie se debe tomar la contribución gamética de los individuos A_2A_2 más



la mitad de la frecuencia de los heterozigotos y dividir por el nuevo total.

$$q_1 = \frac{q^2(1-s) + pq}{1 - sq^2}$$

Sustituyendo p=1-q, se obtiene

$$\mathbf{q}_1 = \frac{\mathbf{q} - \mathbf{s}\mathbf{q}^2}{1 - \mathbf{s}\mathbf{q}^2}$$

El cambio de la frecuencia génica, Δ_q , después de una generación de la final de la frecuencia génica, $\Delta q = q_1 - q_0$ $\Delta q = -\frac{sq^2(1-q)}{1-sq^2}$ selección es,

$$\Delta \mathbf{q} = \mathbf{q}_1 - \mathbf{q}_0$$

$$\Delta \mathbf{q} = -\frac{\mathbf{s}\mathbf{q}^2(\mathbf{1} - \mathbf{q})}{\mathbf{1} - \mathbf{s}\mathbf{q}^2}$$

Entonces, el efecto de la selección sobre las frecuencias génicas depende de la intensidad de la selección s y de las frecuencias génicas iniciales. En la siguiente tabla se resumen los cambios en las frecuencias génicas bajo diferentes modelos de acción génica con relación al fitness.

		cia Inicial y los genotip		Nueva Frecuencia Génica	Cambio de la Frecuencia Génica
	A_1A_1	A_1A_2	A_2A_2	q_1	$\Delta q = q_1 - q_0$
(1)	1	1 – ½ s	1-37	$\frac{q - \frac{1}{2} sq - \frac{1}{2} sq^2}{1 - sq}$	_ <u>½ sq(1-q)</u> 1 - sq
(2)	1	1 – hs	1 - s	$\frac{q - hspq sq^2}{1 - 2hspq - sq^2}$	
(3)	1	DETO.	1 – s	$\frac{q - sq^2}{1 - sq^2}$	$-\frac{sq^2(1-q)}{1-sq^2}$
(4)	1-5	1 – s	1	$\frac{q-sq-sq^2}{1-s(1-q^2)}$	$\frac{\text{sq}^2 (1 - \text{q})}{1 - \text{s}(1 - \text{q}^2)}$
(5)	ST - S1	1	1 – s ₂	$\frac{q - s_2 q^2}{1 - s_1 p^2 - s_2 q^2}$	$\frac{pq(s_1p - s_2q)}{1 - s_1p^2 - s_2q^2}$

Tabla tomada de Falconer y Mackay (1996).

- (1) Sin Dominancia; Selección en contra de A2.
- (2) Dominancia Parcial de A₁; Selección en contra de A₂.
- (3) Dominancia Completa de A₁: Selección en contra de A₂.
- (4) Dominancia Completa de A₁: Selección en contra de A₁.
- (5) Sobredominancia; Selección en contra de A₁A₁ y A₂A₂.

2.3.4.1. Ventaja Adaptativa de los Heterocigotos

La mayoría de los tipos de selección previamente descritos van siempre hacia una dirección, la eliminación del alelo deletéreo y la fijación del alelo favorecido. Bajo estas condiciones, ambos alelos no podrían llegar nunca a un estado de equilibrio en la población, a menos que ocurran mutaciones que contrapesen el cambio en frecuencias génicas.

Sin embargo, varias condiciones permiten el establecimiento de tal equilibrio entre los alelos, siendo uno de ellos la *sobredominancia* para adaptabilidad. En este esquema de selección, los heterocigotos presentan el mayor valor adaptativo en comparación con ambos homocigotos. Dado que los heterocigotos portan ambas versiones del gen, tienden a mantener los dos alelos en la población.

En la tabla anterior se muestra la expresión matemática del cambio en las frecuencias génicas producto de selección bajo sobredominancia,

$$\Delta q = pq(s_1p - s_2q) 1 - s_1p^2 - s_2q^2$$

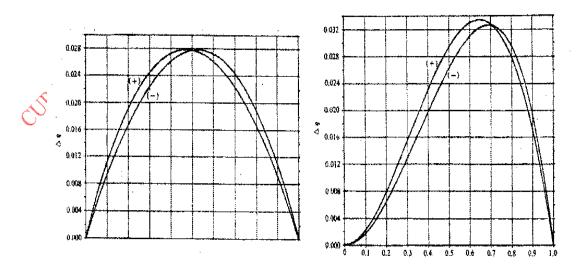
Si las frecuencias génicas en la población alcanzan un estado de equilibrio, las frecuencias génicas dejarían de cambiar, es decir, ∆q se haría igual a cero:

$$\frac{pq(s_1p - s_2q)}{1 - s_1p^2 - s_2q} = 0$$

Hay tres posibiliadades donde el numerador se convertiría en cero y, por lo tanto Δq =0.

2.3.5. Efectividad de la Selección

En los siguientes gráficos, se muestra el cambio en q, asumiendo un modelo aditivo (s=0,2) y otro con dominancia completa (s=1), considerando selección en contra (*) y a favor (+) de A_2 .



De estos graficos se puede inferir que el cambio máximo en q se observa cuando q=0,5 para el modelo aditivo, mientras que cuando q=0,71 para el modelo de dominancia completa. Se pueden obtener dos conclusiones importantes al considerar ambos gráficos:

- 1.- La selección es más efectiva a frecuencias génicas intermedias y es menos eficiente a frecuencias altas o bajas de un alelo.
- 2.- La selección en contra o a favor del alelo recesivo es extremadamente ineficiente cuando el alelo recesivo se presenta en baja frecuencia, debido a que se encuentra representado casi enteramente en los heterozigotos.

2.3.6. Número de Generaciones Requeridas

Para demostrar el número de generaciones de selección requeridas para producir un cambio específico en las frecuencias génicas, utilizaremos como ejemplo el caso de selección en contra de un alelo recesivo y de eliminación total del genotipo homozigoto para el alelo, es decir cuando s=1.

Como mostramos en 2.3.4., la nueva frecuencia génica bajo esta situación esta dada por,

$$q_1 = q^2(1-s) + pq$$

Reemplazando s=1, se obtiene,

$$q_1 = q_0 \over 1 + q_0$$

y, en la segunda generación

$$q_2 = \underline{q_1}$$

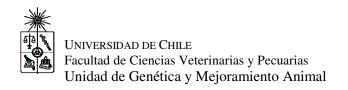
$$1 + q_1$$

Substituyendo on en la última ecuación, resulta en,

$$q_2 = \underline{q_0}$$
$$1 + 2q_0$$

De esta forma, en términos generales, para la generación t la frecuencia génica será igual a,

$$q_t = \underline{q_0} \\ 1 + tq_0$$



Así, el número de generaciones requeridas, t, para cambiar la frecuencia génica

$$t = \underline{q_0 - q_t}$$

$$q_0 q_t$$

$$= \underline{1} \underline{1}$$

$$q_t q_o$$

Referencias

Dobzhansky, Th. 1955. Evolution, Genetics and Man. John Wiley & Sons, Inc. New York, USA.

Falconer, D.S, and M.T.C. Mackay. 1996. Introduction to quantitative genetics. 4th. Ed. Longman. Essex. England.

Mather, K. 1973. Genetical Structure of Populations. Chapman and Hall. London, England.

3. POBLACIONES DERIVA GÉNICA Y CONSANGUINIDAD

PEQUEÑAS:

En este capítulo, analizaremos otro de los procesos que cambian las frecuencias génicas. A diferencia de los procesos analizados anteriormente, los procesos sistemáticos, el proceso que analizaremos aquí se clasifica como un proceso dispersivo debido a que es predecible solo en cantidad, siendo su dirección aleatoria. Con el objeto de excluir este proceso en los capítulos anteriores, hemos asumido siempre una población "grande", demostrándose que en ausencia de mutación. migración y selección, las frecuencias génicas y genotípicas permanecen constantes de generación en generación Sin embargo, esta propiedad no se cumple en poblaciones pequeñas, donde las frecuencias génicas sufren fluctuaciones aleatorias originadas por el muestreo de los gametos. Cuando se muestrea un número finito de gametos desde la generación parental, la frecuencia génica en los gametos desviará en forma aleatoria de la frecuencia génica de los padres. Este proceso se denomina como deriva génica. En éste capitulo, se analizaran las consecuencias del proceso dispersivo y la relación entre el tamaño muestral y la magnitud de éste.

Existen dos formas diferentes a través de las que se puede analizar y deducir las consecuencias de la deriva génica. La primera, se refiere a analizar la deriva como un proceso de muestreo y describirla en función de la varianza de muestreo. La segunda, se refiere a analizar la deriva génica como un proceso de consanguinidad y describirla en función de los cambios en las frecuencias genotípicas resultantes del cruzamiento entre individuos emparentados. De éstas, la primera representa la forma más simple para entender el mecanismo a través del cual se genera el proceso dispersivo, mientras que la segunda provee de una forma más conveniente para cuantificar sus consecuencias.

3.1. Población Ideal

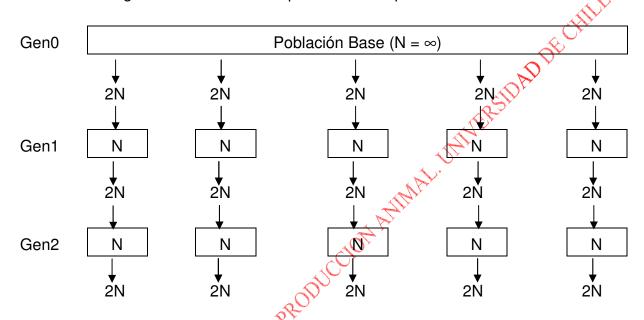
Para modelar el proceso dispersivo se utilizará una población ideal, con estructura muy simplificada. En la población ideal, se asumirá

- Un locus con dos alelos, A₁ y A₂.
- Ausencia de Mutación, Migración y Selección.
- Generaciones discretas.
- Población de Tamaño N = ∞ constante a través de las generaciones.
- Cruzamientos aleatorios, incluyendo auto-fertilización.
- Población base en equilibrio de Hardy-Weinberg.

Supondremos, además, que esta población es subdividida en un gran número de subpoblaciones de tamaño finito, N, restringiendo los cruzamientos sólo dentro de cada subpoblación. Esta subdivisión puede originarse debido a condiciones geográficas o ecológicas en condiciones naturales. La población ideal original se denominará como población base, y las subpoblaciones se denominarán como líneas. Todas las líneas en conjunto constituyen la población

completa, y cada línea es una población pequeña en la cual las frecuencias génicas son sujetas al proceso dispersivo. Como mencionamos anteriormente, consideraremos un solo locus, por lo que difícilmente podamos entender que es lo que sucede en una línea sino consideramos a ésta como parte de un gran número de líneas. Sin embrago lo que sucede en un locus en un número de líneas es igual a lo que sucede en muchos loci dentro de una línea, asumiendo que todos se inician con la misma frecuencia génica.

Un diagrama de la estructura poblacional se presenta a continuación.

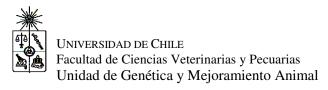


3.2. Promedio y Varianza de la Frecuencias Génicas

Denominaremos a que como la frecuencia del alelo A_2 en la generación O, y, por lo tanto, P_o como la frecuencia del alelo A_1 . Como muestra el diagrama anterior, 2N gametos son muestreados aleatoriamente desde la generación 0, para producir N individuos en la generación 1 en cada línea. Denominaremos a Y como el número de alelos A_2 en cualquiera línea de la generación 1. Debido a que un gameto puede portar al alelo A_2 con probabilidad q_o y que se muestrean 2N gametos en forma independiente, el número de alelos A_2 en cada línea, Y, sigue una distribución Binomial:

La frecuencia de q_1 para el alelo A_2 en cualquiera línea de la generación 1 es:

$$q_1 = \frac{Y}{2N}$$



El valor esperado de q₁ es:

$$E(q_1) = \frac{E(Y)}{2N}$$

$$E(q_1) = \frac{2Nq_0}{2N}$$
$$= q_0$$

y la varianza de q₁ es:

$$var(q_1) = \frac{Var(Y)}{(2N)^2}$$

$$= \frac{2Nq_0(1-q_0)}{(2N)^2}$$

$$= \frac{q_0(1-q_0)}{2N}$$

Entonces, para el alelo A_2 , algunas subpoblaciones pueden presentar una frecuencia mayor y otras una frecuencia menor en la generación 1 con relación a la generación 0, q_o . Sin embargo, la distribución de la frecuencia génica en las subpoblaciones en la generación 1 debería estar centrada en q_o . Por otra parte, de la fórmula de la varianza de q_1 , se puede inferir que la mayor dispersión de las frecuencias génicas entre líneas es inversamente proporcional al tamaño poblacional, N.

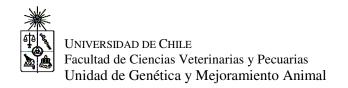
Ahora, 2N alelos se muestrean aleatoriamente desde la generación 1 para producir N individuos en la generación 2. De todas las líneas que tuvieron frecuencia q_1 para el alelo A_2 en la generación 1, la frecuencia q_2 para el alelo A_2 en la generación 2 se distribuye como:

Para estas líneas, el valor esperado para q2 es

$$\mathsf{E}(\mathsf{q}_2|\mathsf{q}_1)=\mathsf{q}_1$$

y la varianza para q₂ es

$$Var (q_2|q_1) = \underline{q_1(1-q_1)} \\ 2N$$



Ahora, el valor esperado para q2 entre todas las líneas es:

$$E(q_2) = \mathop{\mathbb{E}}_{q_1} [E(q_2 | q_1)]$$
$$= E(q_1)$$
$$= q_0$$

y la varianza de q₂ entre estas líneas es:

$$Var(q_{2}) = E[Var(q2|q1)] + Var[E(q_{2}|q_{1})]$$

$$= E\left[\frac{q_{1}(1-q_{1})}{2N}\right] + Var(q_{1})$$

$$= \frac{1}{2N}E(q_{1}-q_{1}^{2}) + Var(q_{1})$$

$$= \frac{1}{2N}\left(q_{0}-q_{0}^{2}-Var(q_{1})\right) + Var(q_{1})$$

$$= Var(q_{1}) + Var(q_{1})\left(1-\frac{1}{2N}\right)$$

$$= Var(q_{1})\left(1-\frac{1}{2N}\right)$$

De manera similar, de todas las líneas que tuvieron frecuencia q_2 para el alelo 2 en la generación 2 da frecuencia de q_3 del alelo 2 en la generación 3 se distribuye como:

$$q_3 \sim \frac{Binomial\ (2N,\ q_2)}{2N}$$

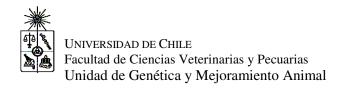
Para las líneas que tuvieron frecuencia q_2 para el alelo 2 en la generación 2, el valor esperado para q_3 es:

$$\mathsf{E}(\mathsf{q}_3|\mathsf{q}_2)=\mathsf{q}_2$$

y la varianza de q₃ es

Var
$$(q_3|q_2) = \underline{q_2(1-q_2)}$$

2N



El valor esperado de q₃ para todas las líneas es:

$$E(q_3) = E_{q_2}[E(q_3 | q_2)]$$
$$= E(q_2)$$
$$= q_0$$

y la varianza de q3 es

$$Var(q_{3}) = \underset{q_{2}}{E}[Var(q_{3} | q_{2})] + Var[E(q_{3} | q_{2})]$$

$$= E\left[\frac{q_{2}(1 - q_{2})}{2N}\right] + Var(q_{2})$$

$$= \frac{1}{2N}E(q_{2} - q_{2}^{2}) + Var(q_{1})$$

$$= \frac{1}{2N}(q_{0} - q_{0}^{2} - Var(q_{2})) + Var(q_{2})$$

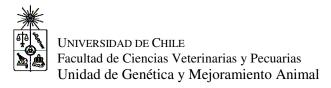
$$= Var(q_{1}) + Var(q_{2})\left[1 - \frac{1}{2N}\right]$$

$$= Var(q_{1}) + Var(q_{1})\left[1 + \left(1 - \frac{1}{2N}\right)\right]\left(1 - \frac{1}{2N}\right)$$

$$= Var(q_{1})\left[1 + \left(1 - \frac{1}{2N}\right) + \left(1 - \frac{1}{2N}\right)^{2}\right]$$

En la generación t, el valor esperado para la frecuencia génica, q_t, es

$$E(q_t) = q_o$$



y la varianza de qt es

$$Var(q_{t}) = Var(q_{t}) \left[1 + \left(1 - \frac{1}{2N} \right) + \left(1 - \frac{1}{2N} \right)^{2} + \dots + \left(1 - \frac{1}{2N} \right)^{t-1} \right]$$

$$= \frac{q_{0}(1 - q_{0})}{2N} \left[1 + \left(1 - \frac{1}{2N} \right) + \left(1 - \frac{1}{2N} \right)^{2} + \dots + \left(1 - \frac{1}{2N} \right)^{t-1} \right]$$

Esta última ecuación puede expresarse como:

$$Var(q_t) = \frac{q_0(1-q_0)}{2N} \left[\frac{1 - \left(1 - \frac{1}{2N}\right)^t}{1 - \left(1 - \frac{1}{2N}\right)} \right]$$

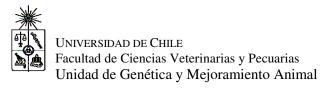
$$= q_0(1-q_0) \left[1 - \left(1 - \frac{1}{2N}\right)^t \right]$$
and t tiende a infinito, ques uno o cero. Es decir, qt se vue

Entonces, cuando t tiende a infinito, q_t es uno o cero. Es decir, q_t se vuelve una variable aleatoria con distribución de Bernoulli. Nosotros también hemos demostrado que en cualquier generación, el valor esperado de q_t es igual a q_o . El valor esperado de una variable aleatoria con distribución de Bernoulli es igual a la probabilidad de que esta sea igual a uno. De esta forma, la probabilidad de que $q_t=1$, la probabilidad de fijación del alelo A_2 , es igual a q_o . Así, después de un número muy grande de generaciones, una proporción de q_o líneas tendrán una frecuencia de 1 para el alelo A_2 y una proporción de $(1-q_o)$ tendrán una frecuencia de 0 para éste alelo. Note que cuando t tiende a infinito, la varianza de q_t es $q_o(1-q_o)$, la que es la varianza de una variable aleatoria con distribución de Bernoulli (igual a 1 con probabilidad q_o).

3.3. Distribución de las Frecuencias Génicas

Denominaremos a Yt, como el número de alelos A2 en la generación t. Entonces,

 $Y_1 \sim Binomial(2N,q_o)$



У

$$q_t = \frac{Y_1}{2N}$$

Entonces, por ejemplo.

$$Pr(q_1) = Pr(Y_1 = 2Nq_1)$$

Así, la distribución de q_t es fácil de obtener desde la distribución de recordamos que:

$$(Y_2 | Y_1 = y_1) \sim \text{Binomial} \left(2N, q_1 = \frac{y_1}{2N}\right)$$

La distribución conjunta de Y₁ y Y₂ puede escribirse como:

$$Pr(Y_1 = y_1, Y_2 = y_2) = Pr(Y_1 = y_1)Pr(Y_2 = y_2|Y_1 = y_1)$$

y la distribución marginal de Y2 es:

$$Pr(Y_{2} = y_{2}) = \sum_{y_{1}=0}^{2N} Pr(Y_{1} = y_{1}, Y_{2} = y_{2})$$

$$= \sum_{y_{1}=0}^{2N} Pr(Y_{1} 0 y_{1}) Pr(Y_{2} = y_{2} | Y_{1} = y_{1})$$

En la generación t,

$$(Y_{t-1} = y_{t-1}) \sim \text{Binomial} \left(2N, q_{t-1} = \frac{y_{t-1}}{2N}\right)$$

Entonces, la distribución conjunta de Y_t y Y_{t-1} se puede escribir como:

$$Pr(Y_{t\text{-}1} {=} y_{t\text{-}1},\, Y_t = y_t) = Pr(Y_{t\text{-}1} = y_{t\text{-}1}) Pr(Y_t {=} y_t \mid Y_{t\text{-}1} {=} y_{t\text{-}1})$$

y la distribución marginal de yt es

$$Pr(Y_{t} = y_{t}) = \sum_{y_{t-1}=0}^{2N} Pr(Y_{t-1} = y_{t-1}, Y_{t} = y_{t})$$

$$= \sum_{y_{t-1}=0}^{2N} Pr(Y_{t-1} = y_{t-1}) Pr(Y_{t} = y_{t} | Y_{t-1} = y_{t-1})$$

3.4. Promedio de las Frecuencias Genotipicas

Hasta el momento hemos visto que el valor esperado de la frecuencia génica q_t en la generación t es q_o . Entonces, el valor esperado de la frecuencia génica es constante a través de les generaciones. Como mostraremos en esta sección, en una población finita bajo cruzamiento aleatorio, las frecuencias genotípicas no permanecen constantes. Bajo cruzamientos aleatorios, la frecuencia del genotipo hornozigoto para el alelo A_2 en cualquier linea esta dada por q^2_t . El promedio o valor esperado para esta frecuencia es

$$E(q_t^2) = [E(q_t)]^2 + Var(q_t)$$

$$= q_0^2 + Var(q_t)$$

De forma similar, la frecuencia esperada del genotipo homozigoto para el alelo A1 en la generación t es

$$E(p_t^2) = [E(p_t)]^2 + Var(p_t)$$
$$= p_0^2 + Var(q_t)$$

Debido a que $p_t = 1 - q_t$ entonces $Var(p_t) = Var(q_t)$.

La frecuencia del genotipo heterozigoto en cualquiera línea tomada aleatoriamente es 2(1- q_t)q_t, y el valor esperado de esta frecuencia es

$$E(2(1-q_t)q_t) = 2q_0 - 2E(q_t^2)$$

$$= 2q_0 - 2q_0^2 - 2Var(q_t)$$

$$= 2q_0(1-q_0) - 2Var(q_t)$$

De estas formulas, podemos inferir que la varianza de las frecuencias génicas, $Var(q_t)$, incrementa en cada generación. Además, el valor esperado de la frecuencia de los homozigotos aumenta y la de los heterozigotos disminuye.

Cuando t tiende a infinito, $Var(q_t)$ tiende a $q_o(1 - q_o)$. Utilizando este valor límite, se puede mostrar que cada locus se vuelve homozigoto para el alelo A_1 o A_2 .

3.5. Consanguinidad Endogamia o Inbreeding

Como hemos analizado anteriormente en poblaciones naturales, dificilmente los apareamientos son completamente aleatorios. Individuos de diferentes especies tienden a permanecer en las proximidades de sus lugares de nacimiento, y en etapas maduras, tienden a aparease con otros individuos también próximos a ellos. Esta última afirmación ha sido respaldada por una serie de investigaciones que han utilizado marcadores genéticos para analizar el flujo de genes, por ejemplo, en polen de plantas. Esto determina que, en poblaciones de pequeño tamaño, aumente la probabilidad del establecimiento de cruzamientos entre individuos emparentados, resultando en un aumento de la Consanguinidad.

El grado de parentesco entre individuos en una población depende del tamaño poblacional. Por ejemplo, en una población de organismos bisexuados, cada individuo tiene dos padres, cuatro abuelos, y ocho bisabuelos, etc. En t generaciones un individuo tiene 2^t ancestros. De esta forma, no es necesario volver atrás muchas generaciones para que el número de individuos requeridos para proporcionar ancestros diferentes para todos los individuos actualmente existentes en una población sea mayor al que cualquier población real pueda tener. Así, cualquier par de individuos deben estar relacionados a través de uno o más ancestros comunes, y, mientras menor sea el tamaño poblacional, menos remotos serán los ancestros comunes, o mayor su número. Debido a ésto, el cruzamiento aleatorio en poblaciones finitas resulta en Inbreeding.

Una forma de expresar el grado de consanguinidad es a través del coeficiente de consanguinidad. F. Este, representa la probabilidad de que los alelos en cualquier locus sean idénticos por descendencia, entendiendo por alelos idénticos por descendencia (IBD) a aquellos alelos que sean copias de un alelo ancestral. Alelos que no son IBD se dice que son independientes en descendencia

3.6. Consanguinidad en Poblaciones Ideales

Para analizar la consanguinidad utilizaremos la misma población ideal definida anteriormente, en la que todos los alelos en la generación 0 son independientes en descendencia. En cada linea, cada alelo en la generación 1 es una copia de uno de los 2N alelos tomados desde la generación 0. De esta forma, la probabilidad de que dos alelos tomados al azar en la generación 1 sean copias del mismo alelo desde la generación 0 es 1/2N.

Esta es la probabilidad que dos alelos tomados al azar en la generación 1 sean IBD, debido a que todos los alelos en la generación 0 se asumen independientes en descendencia. De esta forma, el coeficiente de consanguinidad en la generación 1 es

$$F_1 = \frac{1}{2N}$$

En la generación 2, la probabilidad que dos alelos tomados al azar, sean copias del mismo alelo de la generación previa es 1/2N, y la probabilidad de que ellos sean copias de alelos diferentes de la generación 1 es (1-1/2N). Sin embargo, dos alelos tomados al azar en la generación 1 pueden ser IBD con probabilidad F_1 . Entonces, el coeficiente de consanguinidad en la generación 2 es

$$F_2 = \frac{1}{2N} + \left(1 - \frac{1}{2N}\right)F_1$$

Entonces, existen dos vías a través de las cuales dos alelos en la generación t pueden ser IBD:

- 1. Ambos alelos sean copias del mismo alelo de a generación t -1.
- 2. Ambos alelos sean copias de alelos diferentes de la generación t-1 que son IBD.

La probabilidad para la primera de éstas es 1 /2N y la probabilidad para la segunda es $(1-1/2N)F_{t-1}$. Así, el coeficiente de consanguinidad en la generación t es

$$F_{t} = \frac{1}{2N} + \left(1 - \frac{1}{2N}\right) F_{t-1}$$

Como mostraremos luego, el coeficiente de consanguinidad también se puede escribir como

$$F_t = 1 - (1 - \Delta_F)^t$$

donde

$$\Delta F = \frac{F_t - F_{t-1}}{1 - F_{t-1}}$$
$$= \frac{1}{2N}$$

Este, es el cambio en F en la generación t, con relación al cambio aún posible. Rearreglando esta formula, resulta en

$$1 - \Delta_{F} = \frac{1 - F_{t}}{1 - F_{t-1}}$$

y entonces,

$$\left(\frac{1-F_{1}}{1-F_{0}}\right)\left(\frac{1-F_{2}}{1-F_{1}}\right)..\left(\frac{1-F_{t}}{1-F_{t-1}}\right) = (1-\Delta_{F})^{t}$$

$$\left(\frac{1-F_{t}}{1-F_{0}}\right) = (1-\Delta_{F})$$

Debido a que todos los alelos en la generación 0 son independientes en descendencia, F_o es 0. De esta forma, la ecuación anterior resulta en

$$F_{t} = 1 - (1 - \Delta_{F})^{t}$$

$$= 1 - (1 - \Delta_{F})^{t}$$

$$= 1 - (1 - \Delta_{F})^{t}$$

Ahora, la varianza de las frecuencias génicas puede escribirse como

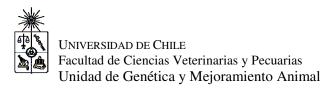
$$Var(q) = q_0(1 - q_0) \left[1 - \left(1 - \frac{1}{2N} \right)^t \right]$$

$$= q_0(1 - q_0) F_t$$

La frecuencia esperada de los genotipos puede ser expresada en términos de F como sigue. Denominaremos al alelo materno en el locus A como A^M y al alelo paterno como A^P . Estos dos alelos pueden ser IBD con probabilidad F_t o, independientes en descendencia con probabilidad (1- F_t). Si ellos son independientes en descendencia, las frecuencias esperadas de $A_1A_1,\,A_1A_2$ y A_2A_2 están dadas por la ley de Hardy-Weinberg (p_0^2 , $2p_0q_0,q_0^2$). Si los alelos maternos y paternos son IBD, la probabilidad de A_1A_1 se puede escribir como

$$Pr(A^{M} = A_{1}, A^{P} = A_{1} | IBD) = Pr(A^{M} = A_{1})Pr(A^{P} = A_{1} | A^{M} = A_{1}, IBD)$$

= p_{0}



Entonces, la probabilidad no condicional de A₁A₁ es

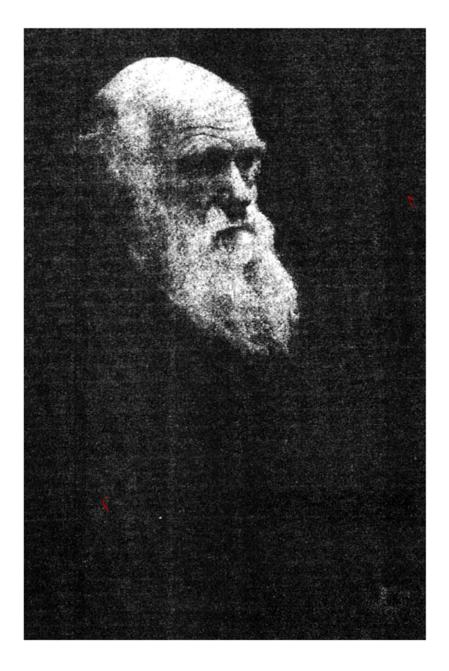
$$Pr(A_1A_1)=p_0^2(1-F_t)+P_0F_t$$

De manera similar, la probabilidad de A₂A₂ es

$$Pr(A_2A_2) = q_0^2(1 - F_t) + q_0F_t$$

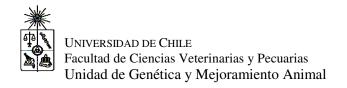
Jobo es Hilling production American Ame Note que si los alelos maternos y paternos son IBD ellos no pueden ser heterozigotos. De este forma, la probabilidad del genotipo heterozigoto es

$$Pr(A_1A_2)=2p_0q_0(1-F_t)$$



CURSI

Ch. Sarwin (1809-1882)



3.7. Deriva Génica en condiciones menos simplificadas

Consideraremos una población P que no cumple con las çondiciones establecidas para una población ideal, y supondremos que calculamos la tasa de consanguinidad Δ_{F_p} para esta población. Definiremos el tamaño poblacional efectivo de P o el número de individuos reproductivamente activos de P, como el tamaño N_e de una población ideal que tiene la misma tasa de consanguinidad que la población P. De esta forma, los cambios en las frecuencias génicas y genotípicas en la población P, atribuibles a la deriva génica serán equivalentes a los cambios en una población ideal de tamaño N_e .

Como mencionamos anteriormente, en una población ideal la taza de consanguinidad está relacionada con el número de individuos:

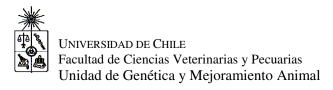
$$\Delta_{\rm F} = \frac{1}{2N}$$

El tamaño poblacional efectivo está relacionado de la misma forma con la taza de consanguinidad, de tal forma que está dado por

$$N_{e} = \frac{1}{2\Delta_{F_{g}}}$$

3.7.1. Organismos bisexuados

Calcularemos ahora la tasa de consanguinidad para una población cruzada al azar que excluye la auto-fertilización. Para hacer esto, introduciremos el concepto de coancestría. El coeficiente de coancestría entre dos individuos, X e Y, es la probabilidad de que un alelo muestreado aleatoriamente desde X sea IBD a uno aleatoriamente muestreado desde Y.



Denominaremos a g_t como el coeficiente de coancestria entre dos individuos tomados en forma aleatoria desde la generación t. Entonces, bajo cruzamientos aleatorios, el coeficiente de consanguinidad en la generación t es,

$$F_{t}=g_{t-1}$$

Denominaremos a Q_t como la probabilidad de que dos alelos muestreados desde individuos diferentes en la generación t sean originados del mismo padre en la generación t-1. Si los alelos provienen desde el mismo padre en la generación t-1, la probabilidad de que ellos sean IBD es,

$$\frac{1}{2} + \frac{1}{2} \mathsf{F}_{t-1} = \frac{1 + \mathsf{F}_{t-1}}{2}$$

La probabilidad de que dos alelos sean rnuestreados desde diferentes individuos originados en padres diferentes de la generación t-1 es $(1-Q_t)$. Si los alelos provienen de padres diferentes de la generación t-1 ha probabilidad de que ellos sean IBD es g_{t-1} . Asi la probabilidad, no condicional, de que dos alelos muestreados desde diferentes individuos sean IBD es

$$g_t = Q_t \frac{(1 + F_{t-1})}{2} + (1 - Q_t)g_{t-1}$$

Reemplazando la ecuación del coeficiente de consanguinidad, en la última ecuación, se puede escribir el coeficiente de consanguinidad en la generación t como.

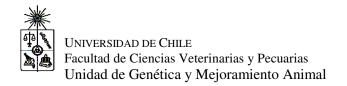
escribir el coeficiente de consanguinidad en la
$$F_{t} = Q_{t-1} \frac{\left(1 + F_{t-2}\right)}{2} + (1 - Q_{t-1})F_{t-1}$$

$$= F_{t-1} + (1 - 2F_{t-1} + F_{t-2})\frac{Q_{t-1}}{2}$$

Entonces, la tasa de consanguinidad se puede expresar como,

$$\Delta_{F_p} = \frac{F_t - F_{t-1}}{1 - F_{t-1}}$$

$$= \left[\frac{1 - F_{t-1} - (F_{t-1} - F_{t-2})}{1 - F_{t-1}} \right] \frac{Q_{t-1}}{2}$$



Utilizando la aproximación $F_{t-1} - F_{t-2} \approx \Delta_{F_b} (1 - F_{t-1})$, resulta en,

$$\Delta_{F_p} \approx \left[\frac{(1 - F_{t-1}) - \Delta_{F_p} (1 - F_{t-1})}{1 - F_{t-1}} \right] \frac{Q_{t-1}}{2}$$

$$\approx \left(1 - \Delta_{F_p} \right) \frac{Q_{t-1}}{2}$$

$$\approx \frac{1}{Q_{t-1}}$$

$$N_e = \frac{1}{2\Delta_{F_p}}$$

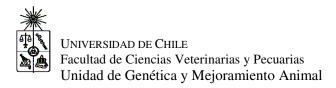
$$\approx \frac{1}{Q_{t-1}} + \frac{1}{2}$$

$$N_e \approx N + \frac{1}{2}$$

 $N_c = \frac{1}{2\Delta_{F_t}}$ $\approx \frac{1}{Q_{t-1}} + \frac{1}{2}$ Bajo cruzamientos aleatorios $Q_t = \frac{1}{N}$, y el tamaño poblacional efectivo es, $N_e \approx N + \frac{1}{2}$ '2. Número desiguar de machos y hembras Considere una población donde N_m 'N_t hembras El tamaño efectivo ando la ecuación:

$$N_{e} = \frac{1}{2\Delta_{F_{p}}}$$

$$\approx \frac{1}{Q_{t-1}} + \frac{1}{2}$$



Sin embargo, debido a que $N_m = N_f$, y a que los cruzamientos son aleatorios

$$Q_{t} = \frac{1}{N}$$

$$= \frac{1}{N_{f} + N_{m}}$$

Donde Q_t , como definimos anteriormente, es la probabilidad de que dos alelos, x e y, muestreados desde individuos diferentes en la generación t sean originados en el mismo padre en la generación t - 1.

Note que aunque $N_m = N_f$, la mitad de los alelos en la generación t provienen de machos de la generación t-1. De esta manera, la probabilidad de que x e y provengan desde machos desde la generación previa es 1/4 Ahora, si x e y provienen desde machos, la probabilidad de que provengan desde el mismo individuo es

$$\frac{1}{N_{m}}$$

Así, la probabilidad no condicional de que x e y provengan desde el mismo macho es

De la misma forma, la probabilidad de que x e y provengan desde la misma hembra es

$$\frac{1}{4N_f}$$

Entonces, la probabilidad de que x e y provengan desde el mismo padre es

$$Q_{t} = \frac{1}{4N_{m}} + \frac{1}{4N_{f}}$$

Sustituyendo esta última expresión en

$$N_{e} = \frac{1}{2\Delta_{F_{p}}}$$

$$\approx \frac{1}{Q_{e,1}} + \frac{1}{2}$$



resulta en

$$N_{e} = \frac{1}{\frac{1}{4N_{m}} + \frac{1}{4N_{f}}} + \frac{1}{2}$$

Ejemplo: Suponga que $N_m = 5$ y $N_f = 95$. Entonces, el tamaño poblacional es $N=N_m+N_f=100$. Pero el tamaño poblacional efectívo es

$$N_{e} = \frac{1}{\frac{1}{4 \times 5} + \frac{1}{4 \times 95}} + \frac{1}{2}$$

$$= 18,9899 + \frac{1}{2}$$

$$= 19,4899$$

3.8. Equilibrio entre Deriva Génica y Mutación

Utilizando el concepto del tamaño poblacional efectivo, en ausencia de selección, mutación o migración, el coeficiente de inbreeding en la generación t se puede escribir como

$$F_{t} = 2N_{e} + \left(1 - \frac{1}{2N_{e}}\right)F_{t-1}$$

Esta es la probabílidad de que dos alelos en un locus sean IBD. Sin embargo, si uno de estos alelos muta, ellos no serán IBD. De esta forma, el coeficiente de consanguinidad cuando la mutación esta presente es igual a

$$F_{t} = \left[\frac{1}{2N_{e}} + \left(1 - \frac{1}{2N_{e}}\right)F_{t-1}\right](1 - u)^{2}$$

En equilibrio,

$$F_{E} = F_{t} = F_{t-1}$$

$$y$$

$$F_{E} = \left[\frac{1}{2N_{e}} + \left(1 - \frac{1}{2N_{e}}\right)F_{E}\right](1 - u)^{2}$$



Despejando F_E en esta ecuación resulta en

$$F_{E} = \frac{(1-u)^{2}}{2N_{e} - (2N_{e} - 1)(1-u)^{2}}$$

$$= \frac{1 - 2u + u^{2}}{4N_{e}u + 1 - 2u - 2N_{e}u^{2} + u^{2}}$$

$$\approx \frac{1}{4N_{e}u + 1}$$

3.9. Equilibrio entre Deriva Genica y Migracion

Utilizando el mismo razonamiento que para mutación y asumiendo que la probabilidad de que se obtengan dos alelos inmigrantes IBD es 0, el coeficiente de consanguinidad con migración es

$$F_{t} = \left[\frac{1}{2N_{e}} + \left(1 - \frac{1}{2N_{e}}\right)F_{t-1}\right](1 - m)^{2}$$

Si m es muy pequeño, el valor de equilibrio del coeficiente de consanguinidad es

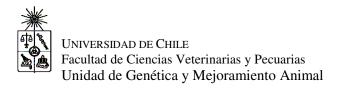
$$F_{e} = \frac{1}{4N_{e}m + 1}$$

3.10. Selección con Deriva Génica

Anteriormente derivamos la distribución de la frecuencia génica en poblaciones finitas asumiendo ausencia de mutación, migración o selección. Ahora, mostraremos como esta se modifica por efecto de la selección. Si denominamos a Y_1 como el número de alelos A_2 en la generación t, entonces, la frecuencia de Q_1 , del alelo A_2 , se definió como

$$q_t = \frac{Y_t}{2N}$$

Debido a esta relación, q_t e Y_t tienen la misma forma distribucional. Esto permite que podamos derivar la distribución de Y_t .



En la generación t, 2N alelos son muestreados. Condicionando sobre la frecuencia $q_{t\text{-}1}$. en la generación previa, en ausencia de selección, mutación o migración, cada alelo muestreado tiene una probabilidad $q_{t\text{-}1}$ de ser un alelo A_2 . De esta forma, en la generación t, la distribución condicional del número de alelos A_2 es

$$(Y_t|Y_{t-1}=y_{t-1}) \sim Binomial \left(2N, q_{t-1} = \frac{y_{t-1}}{2N}\right)$$

Sin embargo, si la selección esta presente, un alelo muestreado en la generación t no tendrá probabilidad igual a la frecuencia génica en la generación previa. La selección cambiará esta probabilidad. Supongamos que q_{t-1} es la frecuencia génica en la generación t- 1. Entonces, con selección, la probabilidad de muestrear un alelo A_2 en la generación t es

$$q' = \frac{q_{t-1} - sq_{t-1}^2 - hs(1 - q_{t-1})q_{t-1}}{1 - 2hs(1 - q_{t-1})q_{t-1} - sq_{t-1}^2}$$

y así, con selección, en la generacion t, la distribucion condicional del número de alelos A_2 es

$$(Y_t|Y_{t-1}=y_{t-1})\sim Binomial(2N,q')$$

La distribución no condicional del número de alelos A2 está dada por

$$Pr(Y_{t} = y_{t}) = \sum_{y_{t-1}=0}^{2N} Pr(Y_{t-1} = y_{t-1}) Pr(Y_{t} = y_{t} | Y_{t-1} = y_{t-1})$$

3.11. Aproximación a la Probabilidad de Fijación

Considere selección para una característica de origen aditivo en una población ideal de tamaño N. Denotaremos la diferencia entre las frecuencias génicas entre la generación t y t + 1 por

$$\Delta_t = p_{t+1} - p_t$$

Anteriormente analizamos el cambio en la frecuencia génica debido a selección en una población infinita. En una población finita, esta fórmula representa el valor esperado para el cambio en las frecuencias génicas debido a selección. Reemplazando W por 1,0 y tomando $h = \frac{1}{2}$, la esperanza condicional de Δ_t dado p_t es

$$E(\Delta t|pt) \approx \frac{1}{2} sp_t(1-p_t)$$

y la esperanza no condicional es

$$E(\Delta_t) \approx \frac{1}{2} sE[p_t(1-p_t)]$$

El valor esperado en el lado derecho de la ecuación se puede escribir como

$$E[p_t(1-p_t)]=E(p_t)-[E(p_t)]^2-Var(p_t)$$

wed AL. UNIVERSIDAD DE CHILLE Cuando Ns es pequeño, e ignorando selección, esta ecuación se puede aproximar en términos de la frecuencia génica p en la generación 0 como

$$E[p_{t}(1-p_{t})]=p-p^{2}-Var(p_{t})$$

$$=p(1-p)-Var(p_{t})$$

$$=p(1-p)\left(1-\frac{1}{2N}\right)^{2}$$

Debido a que

$$Var(p_t)=p(1-p)\left[1-\left(1-\frac{1}{2N}\right)\right]$$

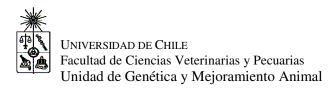
$$E[p_t(1-p_t)] \neq p-p^2-Var(p_t)$$

$$= p(1-p)-Var(p_t)$$

$$= p(1-p)\left(1-\frac{1}{2N}\right)^2$$

$$E(\Delta_t) \approx \frac{1}{2} sE[p_t(1-p_t)]$$

$$E(\Delta_t) \approx \frac{1}{2} \operatorname{sp}(1-p) \left(1 - \frac{1}{2N}\right)^{\frac{1}{2}}$$



Cuando t tiende a infinito, la frecuencia del alelo favorable es 0 ó 1, y así, la frecuencia límite esperada es igual a la probabilidad de fijación. Dada la frecuencia del alelo favorable en la generación 0, el valor esperado de la frecuencia límite es

$$u(p)=p+\sum_{t=0}^{\infty}E(\Delta_{t})$$

$$\approx p+\frac{1}{2}sp(1-p)\sum_{t=0}^{\infty}\left(1-\frac{1}{2N}\right)^{t}$$

$$\approx p+Nsp(1-p)$$

la cual es la probabilidad de fijación. Para cualquier población, la probabilidad de fijación es,

$$\Delta_{P_{\infty}} = u(p) - p$$

$$\approx N_{e} sp(1-p)$$

la cual es igual a 2N_e veces ½ sp(1-p) la respuesta inicial a la selección.

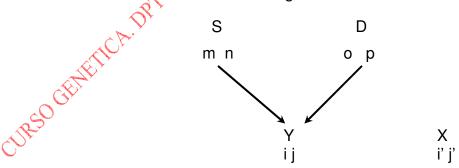
3.12. Consanguinidad a través de pedigrees

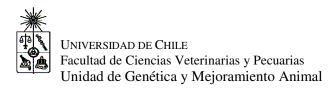
Cuando el pédigree de un individuo se conoce, el coeficiente de consanguinidad especifico para cada individuo puede ser calculado. El coeficiente de coancestria será utilizado para esto. Suponga que X e Y son los padres de Z. Entonces, el coeficiente de consanguinidad Fz para el individuo Z es

$$F_Z = r_{xy}$$

donde rxy es el coeficiente de coancestria entre X e Y

Suponga que X no es un descendiente directo de Y, y denominaremos a S y D como el padre y la madre de Y, respectivamente. Los alelos de S, D, X, e Y serán denominados como muestra el diagrama





Si r_{xy} es la probabilidad de que un alelo tomado al azar desde X sea IBD a un alelo tomado al azar desde Y. El alelo tomado al azar desde Y puede ser i o j con igual probabilidad, y el alelo tomado al azar desde X puede ser i' o j' con igual probabilidad. Entonces,

$$r_{xy} = \frac{1}{4} \left[Pr(i \equiv i') + Pr(i \equiv j') + Pr(j \equiv i') + Pr(j \equiv j') \right]$$

Si i es el alelo paterno de Y. Entonces, i es m o n con igual probabilidad. Entonces,

$$Pr(i = i') = \frac{1}{2} \left[Pr(m = i') + Pr(n = i') \right]$$

De manera similar,

$$Pr(i\equiv j') = \frac{1}{2} \left[Pr(m\equiv j') + Pr(n\equiv j') \right]$$

$$Pr(j\equiv i') = \frac{1}{2} \left[Pr(o\equiv i') + Pr(p\equiv i') \right]$$

У

$$Pr(j\equiv j') = \frac{1}{2} [Pr(o\equiv j') + Pr(p\equiv j')]$$

Substituyendo estas ecuaciones en la fórmula del coeficiente de coancestria resulta en,

$$r_{xy} = \frac{1}{4} \left\{ \frac{1}{2} \left[Pr(m \equiv i') + Pr(n \equiv i') + Pr(m \equiv j') + Pr(n \equiv j') \right] + \frac{1}{2} \left[Pr(o \equiv i') + Pr(p \equiv i') + Pr(o \equiv j') + Pr(p \equiv j') \right] \right\}$$

La que puede escribirse como:

$$r_{xy} = \frac{1}{4} \left\{ \frac{1}{2} \left[\Pr(m \equiv i') + \Pr(n \equiv i') + \Pr(m \equiv j') \right] + \frac{1}{2} \left[\Pr(o \equiv i') + \Pr(p \equiv i') + \Pr(o \equiv j') \right] \right\}$$

$$= \frac{1}{2} \left(r_{xs} + r_{xd} \right)$$

De esta forma, el coeficiente de coancestria entre X e Y es el promedio de la coancestria entre X y los padres de Y. Note que pare calcular la coancestria con esta fórmula, X no puede ser un descendiente de Y.

Otra derivación del coeficiente de consanguinidad individual se presenta en el Anexo N°1.

3.13. El Método Tabular para Calcular el Coeficiente de Coancestria

Las siguientes reglas pueden ser utilizadas para calcular la coancestría entre pares de individuos en un pedigree.

- 1._ Reenumere los individuos de modo tal que los padres precedan a los hijos.
- 2. Para individuos fundadores (padre y madre desconocidos) ingrese ½ en la diagonal y 0 fuera de la diagonal.
- 3._ Para individuo i, no fundador,
 - Calcule la fila desde el elemento 1 hasta i–1 como el promedio de los elementos de los pedres.
 - Iguale los elementos diagonales a

$$\frac{1}{2}(1+r_{SD})$$

Donde, S y D son los padres de i.

4._ Complete la columna i por simetria.

Referencias

Falconer, D.S, and M.T.C. Mackay. 1996 Introduction to quantitative genetics. 4th. Ed. Longman. Essex. England

Mendenhall, W., and R.J. Beaver 1994. Introduction to Probability and Statistics. 9th. Ed. Duxbury Press. Belmont, USA.