2009/2010 SHELL ECO MARATHON
CHASSIS AND BODY

Design Team 16

Peter Inglis Scott Flindall Jason Belliveau
Agenda

- Background
 - Goals
 - Requirements
- Design Considerations
- Chassis
- Shell
- Steering/Wheels/Brakes
- Budget
- Next Steps
- Question Period
Background

Competition

- The principle of the Shell Eco-marathon is simple: to design and build a vehicle that uses the least amount of fuel to travel the farthest distance.” - Shell

Goals

- Improvements from 2008-2009 Car
- A 15% reduction in weight from the 2008/2009 Supermileage car.
- Reduce rolling resistance as well as air drag from the 2008/2009 Supermileage car.
- Design a chassis and body which will help the Super-Mileage team place 1st in the 2010 Shell Eco-Marathon in Houston, Texas.
Design Requirements

- **Chassis**
 - *Structural Integrity, Visibility, Vehicle access*

- **Body**
 - Max height < 100 cm & < 1.25 times track width
 - Width < 130 cm
 - Length < 350 cm
 - *Ventilation*

- **Steering assembly**
 - Track width > 50 cm
 - Wheelbase > 100 cm

- **Total weight of vehicle < 140 kg (w/o driver)**
Initial Considerations

- Observations
 - 2008/2009 Car
 - Large
 - Heavy
 - 42.5 lb Body
 - 46.6 lb Chassis
 - Poor visibility

- Chassis
 - Entirely supporting
 - Lightweight
 - Small
 - Good driver position
 - Safety

- Body
 - Non load bearing body
 - Wheels inside or out
 - Construction requirements
 - Cost

- Steering / Wheels / Brakes
 - Simple, precise
 - Good brakes from 2008/2009
 - High performance bearings from 2008/2009
 - Custom machined hubs / spindles
Chassis Constraints

- Requirements
 - Fit engine & drive train – (8” x 8” x 10”) envelope
 - Contain driver – Reasonable driving position
 - Safely support
 - a driver (120lbs),
 - all components (Motor/drive train 50 lbs) and body
 - Support installation of a safety harness
Design Process – Chassis

Material & Budget

- Considerations
 - Non Structural Body
 = Space Frame
 - Strong, Lightweight materials.
 - Chassis
 - Carbon Fiber vs. Aluminum
Carbon Fiber Tubing vs. Aluminum Tubing

Strength

- **6061-T6 Aluminum Tube**
- **Braided Carbon Fiber Tube**

Weight

- **6061-T6 Aluminum Tube**
- **Braided Carbon Fiber Tube**

Super mileage Chassis and Body – Design Team 16

12/4/2009
Chassis Material Selection

Material Selection

- Carbon Fiber
 - Very Expensive
 - Very High Strength to Weight

- Aluminum
 - Inexpensive
 - Workable
 - Predictable

- Best material for this application

Cost

- 6061-T6 Aluminum Tube
- Braided Carbon Fiber Tube

$/ft
Stress Analysis of Chassis

Initial calculations

- Approximated 2D frame
- Modeled as beams under bending and axial loading
- Analytically solved
 - Maximum moment location and magnitude
- Approximate required tubing
Aluminum Tubing Selection Process

In tube stress

<table>
<thead>
<tr>
<th>Weight (lbs/ft)</th>
<th>1.5" 1/16" wall</th>
<th>1.25" 1/8" wall</th>
<th>1.25" 1/16" wall</th>
<th>1" 1/8" wall</th>
<th>1" 1/16" wall</th>
<th>3/4" 1/16" wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress (Psi)</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Weight

<table>
<thead>
<tr>
<th>Weight (lbs/ft)</th>
<th>1.5" 1/16" wall</th>
<th>1.25" 1/8" wall</th>
<th>1.25" 1/16" wall</th>
<th>1" 1/8" wall</th>
<th>1" 1/16" wall</th>
<th>3/4" 1/16" wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress (Psi)</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>
FEM Analysis

- 2D mesh
 - Triangular elements.

- Worst case scenario loading condition
 - Proper constraints

- Adjust mesh size
 - Observed convergence

Stress VS Mesh Size Convergence

Super mileage Chassis and Body – Design Team 16

12/4/2009
Chassis Analysis

- Results display a safety factor above 3.0
- Tool to observe high stress locations, stress concentrations.
Chassis Design

Safety

- Roll Bar
 - Shell regulations

- Safety Harness
 - 5 point safety harness
 - Last year's harness will be mounted in similar fashion
 - Also provides a lightweight seat for the driver
Final Chassis Design

Chassis

- 1 ¼” .065 wall Aluminum Tube
- 1 ¼” 0.125 wall square tube
- 1/16” sheet aluminum
- ~15 ½ lbs
DESIGN PROCESS

STEERING / BRAKES / WHEELS
Steering Design

Considerations

- Rack and Pinion
 - Pros
 - Small space required
 - Cons
 - Relatively expensive and heavy

- 4-Link Style
 - Pros
 - Lightweight, simple, inexpensive
 - Cons
 - Steering operation not intuitive

- Ackerman Style Setup
 - Pros
 - Improves rolling efficiency when turning
 - Cons
 - Requires more precision to work correctly
 - More expensive parts
Design Choice

- **4 Link Style**
 - Adjustable
 - Relatively simple to construct
 - Lightweight

- Total weight: approx. 1.5 lb
- Total cost: approx. $50
Final Design

Rolling Components

- Shell Eco-marathon radials 44-406
 - 150 grams each
 - Low coefficient of rolling resistance
 - 0.0024 (Tested by PAC car)
- Lightweight wheels to be built by Nauss Bike shop
- Custom (last years) front hubs and axles, high performance bearings
- High performance rear hub
- Disk brakes
 - Last years set-up
 - Good quality
 - Integrated into spindles
Rolling Chassis
DESIGN PROCESS

SHELL
Design Process

Shell Design

- Closed wheel design
 - Steering not exposed
 - More compact front end
- Smooth, streamlined body
- Simplicity of construction
 - Time requirements
 - 3 person team
 - Chassis Construction
 - Body Construction
 - Steering / Wheels / Brakes components
Shell Design

Shape

- Shell conforms to chassis dimensions
- Polycarbonate windshields
 - Will be placed during driver fitting/testing
- Collaboration with Team 15 to integrate an air intake and exhaust outlet.
- Get access to CFD software
 - Testing/refinement
Shell Material Selection

Carbon Fiber vs. Kevlar vs. Fiberglass

- **Determining factors:**
 - Strength requirement
 - Weight
 - Very similar cloth weight
 - Resin requirements differ, fiberglass requires less
 - Cost
 - Carbon Fiber - $39/yard
 - Kevlar - $30-40/yard
 - Fiberglass – $8-12/yard
Shell Material

Fiberglass Composite

- Divinycell H 60 3/8“ Rigid Foam
 - 4lbs/ft^3
 - Workable
 - Scored grid, flexible.
- Fiberglass Boat cloth
 - 6oz /yd^2
- MAS Epoxy Kit
 - ~ 10lbs / ¾ Gallon
- No mold required!

Images courtesy of:
www.jamestowndistributors.com
www.masepoxies.com
Final Body Design

Body

- 6oz Fiberglass cloth
- Epoxy and Hardener
- 3/8 “ Polystyrene Foam core
- ~20 lbs

- Estimated total weight
 - Approx. 58 Lbs (conservative)
 - Approx 35% weight reduction
 - More compact, better driving position
Final Design

Budget

- Overall Low costs
- Bang for buck material
- Local purchases
 - Marine Fiberglass Supply
 - Metals-R-Us
 - Nauss Bike Shop
- Local machining
- Reusing components

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost (CAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body</td>
<td></td>
</tr>
<tr>
<td>Components</td>
<td></td>
</tr>
<tr>
<td>Supports</td>
<td>$35</td>
</tr>
<tr>
<td>Raw Material</td>
<td></td>
</tr>
<tr>
<td>Fiberglass cloth</td>
<td>$50</td>
</tr>
<tr>
<td>Epoxy/Hardener</td>
<td>$250</td>
</tr>
<tr>
<td>Foam</td>
<td>$300</td>
</tr>
<tr>
<td>Polycarbonate windshield</td>
<td>$30</td>
</tr>
<tr>
<td>Body construction Materials - PPE, Plywood Etc</td>
<td>$170</td>
</tr>
<tr>
<td>Frame</td>
<td></td>
</tr>
<tr>
<td>Raw Material</td>
<td></td>
</tr>
<tr>
<td>1 1/4" Aluminum Tubing 1/16 wall 6061</td>
<td>$60</td>
</tr>
<tr>
<td>1 1/4" Square tubing 1/8" wall 6061</td>
<td>$8</td>
</tr>
<tr>
<td>Aluminum Sheet 1/16" 5052</td>
<td>$30</td>
</tr>
<tr>
<td>Gussets/Brackets</td>
<td></td>
</tr>
<tr>
<td>C Channel 6061 2w * 1.5D * 1/8" 6061</td>
<td>$10</td>
</tr>
<tr>
<td>Wheels</td>
<td></td>
</tr>
<tr>
<td>Components</td>
<td></td>
</tr>
<tr>
<td>Tires</td>
<td>$230</td>
</tr>
<tr>
<td>Rims</td>
<td>$225</td>
</tr>
<tr>
<td>Steering/Brakes</td>
<td></td>
</tr>
<tr>
<td>Components</td>
<td></td>
</tr>
<tr>
<td>Steering linkage</td>
<td>$52</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>misc</td>
<td></td>
</tr>
<tr>
<td>Nuts/Bolts/Washers/Fasteners</td>
<td>$100</td>
</tr>
<tr>
<td>Grand Total</td>
<td>$1,550</td>
</tr>
</tbody>
</table>
NEXT STEPS

WINTER BREAK & DESIGN PROJECT II
Next Steps

- **Body Refinement**
 - CFD over the break
 - Working to access CFD software
 - Construction Planning

- **Collaboration with team 15**
 - Drive train Fitting, Air intake, Exhaust, Rear hub, Component Mounting, throttle controls
Next Steps - Construction

Schedule
Competition

- Testing Feb 9 – Mar 1
- Car leaving March 1
- Competition
 - Houston, Texas
 - March 26 - 28
Area of potential revision

Steering setup

- May need to revise steering geometry
- Rack and pinion located
 - Inexpensive
 - Lightweight
- Throttle and Brake controls

Ackermann Angle Comparison

<table>
<thead>
<tr>
<th>Turning Radius (ft)</th>
<th>Wheel Angle Difference (Deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.58</td>
</tr>
<tr>
<td>20</td>
<td>0.64</td>
</tr>
</tbody>
</table>

2008/2009 Car
2009/2010 Car
http://www.rouesartisanales.com/