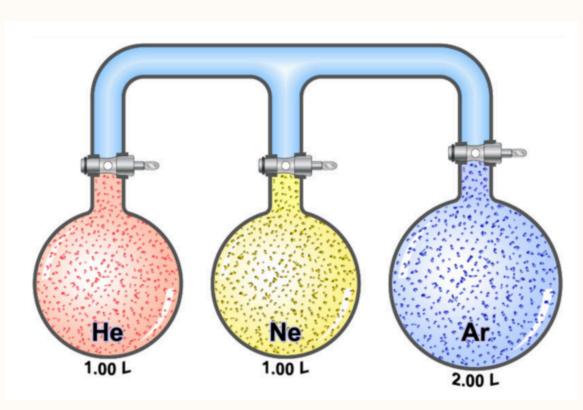

Química Preu.JCT

CLASE N°17 GASES


CONTENIDOS

- 1. Características de los gases
- 2. Gases ideales
- 3. Ecuación general de los gases ideales
- 4. Procesos gaseosos particulares
- 5. Ley combinada de los gases
- 6. Volumen molar y condiciones normales
- 7. Conversiones de unidades
- 8. Aplicaciones
- 9. Propiedades coligativas
- 10. Punto triple del agua
- 11. Contaminación ambiental

¿Por qué estudiar gases?

- Presentes en procesos naturales e industriales: atmósfera, combustión, bioprocesos y neumática.
- Responden rápido a cambios de presión y temperatura → útiles para modelar y controlar.
- Base para temas posteriores: leyes de los gases, mezclas y propiedades termodinámicas.

¿Qué es un gas? Rasgos macroscópicos

- No tiene forma ni volumen propios: ocupa todo el recipiente.
- Alta compresibilidad y rápida difusión.
- Variables de estado: P (presión), V (volumen), T (temperatura en K), n (moles).
- Procesos típicos: isotérmico (T cte), isobárico (P cte), isocórico (V cte).
- Descripción macroscópica: el estado se define por (P, V, T, n).

Modelo de gas ideal

El modelo de gas ideal simplifica el comportamiento de un gas suponiendo partículas puntuales sin interacción entre sí. Permite relacionar presión, volumen, temperatura y cantidad de sustancia con una ecuación sencilla y predecir tendencias en muchos procesos habituales.

Supuestos del modelo

- Partículas puntuales: volumen propio despreciable frente al del recipiente.
- Sin fuerzas intermoleculares: solo colisiones elásticas (no atracción/repulsión).
- Movimiento aleatorio; choques frecuentes y totalmente elásticos con paredes.

Modelo de gas ideal

Alcance de validez

- Funciona bien a baja presión y alta temperatura (gases "poco densos").
- Aproximación típica para aire, N_2 , O_2 , He, etc., lejos de la condensación.

Cuándo falla (gas real)

- Altas presiones y bajas temperaturas (gas denso o cerca de licuarse).
- Sustancias polares o con interacciones fuertes (p. ej., NH₃, H₂O).
- Zonas cercanas a cambio de fase (ebullición/condensación).

Modelo de gas ideal

PV = nRT

P = presión

V= volumen

n = moles

T = temperatura (K)

R = constante de los gases.

Unidades y convenciones que usaremos

Presión: Pa, kPa, bar, atm, mmHg (torr).

- 1 atm = 101 325 Pa \approx 1.01325 bar \approx 760 mmHg (torr)
- 1 bar = 10^5 Pa = 100 kPa

Volumen: m^3 , L (1 m^3 = 1000 L)

Temperatura absoluta (usar K siempre en ecuaciones):

• T [K]=t [°C]+273,15

Constante de los gases, R (elige según unidades):

- R=8,314 J/mol K
- R=0,082057 L atm / mol K
- R=62,364 L mmHg / mol K

Coherencia de unidades: si usas atm y L, usa R=0,082 ; si usas Pa y m³, usa R=8,314. **Tip rápido**: nunca mezcles °C con K en PV = nRT; convierte siempre a Kelvin.

Cuando trabajamos con la misma cantidad de gas (n constante), ciertos procesos mantienen fija una variable y simplifican PV=nRT. Estas "leyes" describen tendencias claras y útiles para resolver problemas rápidos.

1. Isotérmico — Ley de Boyle-Mariotte (T constante)

$$P_1V_1 = P_2V_2 \Rightarrow P \propto \frac{1}{V}.$$

al comprimir (↓ V), sube P.

2. Isobárico — Ley de Charles (P constante)

$$rac{V_1}{T_1} = rac{V_2}{T_2} \Rightarrow V \propto T$$

¡Al calentar (↑T), aumenta V!

3. Ley de Gay-Lussac (V constante)

$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \Rightarrow P \propto T$$

¡Al calentar (↑T), aumenta P!

4. Ley de Avogadro (T y P constantes)

$$V \propto n \Rightarrow \frac{V_1}{n_1} = \frac{V_2}{n_2}.$$

¡Más moles ⇒ Más volumen (misma T,P)!

Ley combinada de los gases

Para el mismo gas y misma cantidad (n constante), dos estados (P1,V1,T1) y (P2,V2,T2)se relacionan por:

$$\left[egin{array}{c} P_1V_1 \ T_1 \end{array}
ight] = \left[egin{array}{c} P_2V_2 \ T_2 \end{array}
ight]$$

Ejemplo:

A P constante: T sube de 293,15 K a 313,15 K y V1=2,00 L.

$$V_2 = V_1 rac{T_2}{T_1} = 2{,}00 imes rac{313{,}15}{293{,}15} pprox 2{,}14~ ext{L}$$

Volumen molar y condiciones normales (CN)

El volumen molar es:

$$V_m = rac{V}{n} = rac{RT}{P}$$

En condiciones de referencia podemos estimar rápidamente el volumen por mol de un gas ideal.

- CN del curso: 0 °C (273,15 K) y 1 atm \rightarrow Vm \approx 22,414 L/mol.
- Si tomas 1 bar en vez de 1 atm \rightarrow Vm \approx 22,711 L/mol.

Conversiones de unidades

Usa siempre unidades coherentes con la forma de R que elijas. Aquí están las conversiones más usadas en gases.

Presión

- $1 \text{ atm} = 101,325 \text{ Pa} \approx 1,01325 \text{ bar} = 760 \text{ mmHg (torr)}$
- $1 \, \mathrm{bar} = 10^5 \, \mathrm{Pa} = 100 \, \mathrm{kPa} \approx 0.98692 \, \mathrm{atm}$
- $1 \, \text{kPa} = 10^3 \, \text{Pa}$

Volumen

- $1 \,\mathrm{m}^3 = 1000 \,\mathrm{L}$
- $1 L = 10^{-3} m^3$
- $1 \,\mathrm{mL} = 10^{-3} \,\mathrm{L} = 10^{-6} \,\mathrm{m}^3$

Temperatura

- $T[K] = t[^{\circ}C] + 273,15$
- ullet (Nunca uses °C directamente en PV=nRT)

Conversiones de unidades

Usa siempre unidades coherentes con la forma de R que elijas. Aquí están las conversiones más usadas en gases.

Constante de los gases ${\cal R}$

- Con Pa y m³: $R = 8{,}314~\mathrm{J}~\mathrm{mol}^{-1}\mathrm{K}^{-1}$
- ullet Con atm y L: $R=0.082057~\mathrm{L~atm~mol}^{-1}\mathrm{K}^{-1}$
- ullet Con mmHg y L: $R=62{,}364~\mathrm{L~mmHg~mol}^{-1}\mathrm{K}^{-1}$

Aplicaciones

Las leyes de los gases permiten estimar cambios de P, V y T y dimensionar equipos sencillos. Aquí tienes usos típicos que aparecen en problemas y en la vida real.

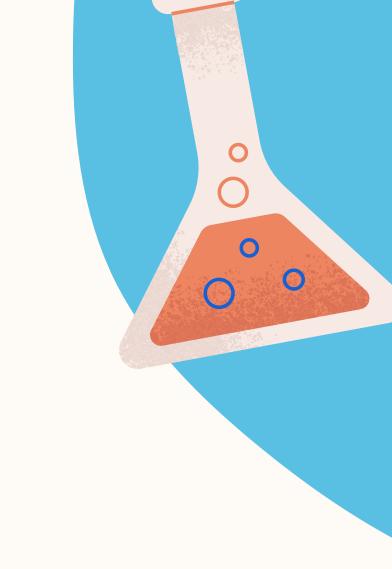
Industria y laboratorio

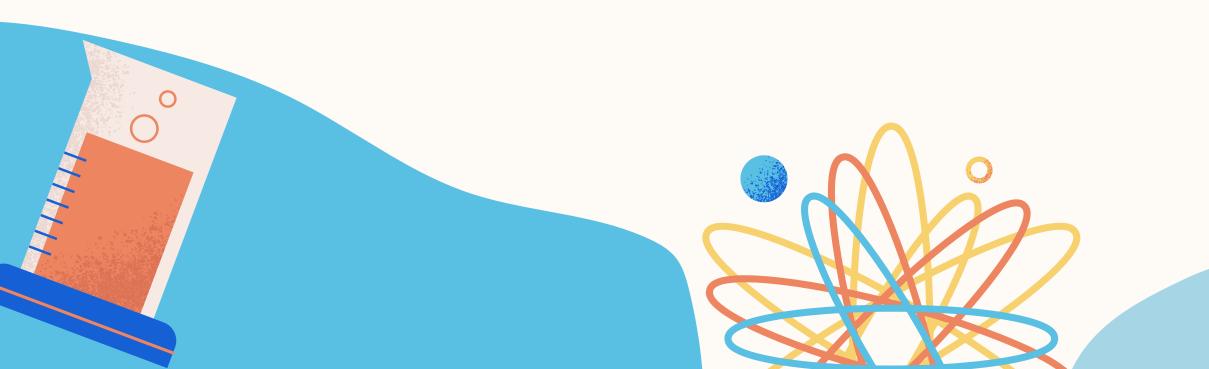
- Cilindros de gas: cálculo de nnn disponible a distintas P,T.
- Jeringas/pistones: compresión/expansión (isotérmico, isobárico, isocórico).
- Secado y aireación: efecto de T y P sobre el volumen de aire inyectado.
- Hornos y combustión: dilatación de gases con la temperatura.

Ambiente y vida diaria

- Neumáticos: variación de P con T ambiente (Gay-Lussac).
- Altitud: descenso de P atmosférica y efecto sobre el volumen de bolsas/sachet.
- Aerosoles: relación P-V al vaciar el envase (Boyle).

Ejercicios


- 1) Pistón con etapas mixtas (isobárico + isocórico + combinada) Un gas ideal (aire seco) ocupa inicialmente V0=2,50 L a P0=1,05 atm y t0=22°C. En un cilindro con pistón:
 - Etapa A (isobárica): Se calienta hasta tA=60°C manteniendo P=P0.
 - Etapa B (isocórica): Se bloquea el pistón (volumen constante) y se enfría a tB=15°C.
 - Etapa C (combinada): Se libera el pistón y el gas cambia a PC=0,95 atm y tC=35°C.


Pide:

- a) VA tras la etapa A.
- b) PB tras la etapa B.
- c) VC al final de la etapa C.
- d) Factor total VC/V0 y cambio porcentual de volumen vs. estado inicial.
- e) Discute si la aproximación de gas ideal es razonable en cada etapa (criterios cualitativos).
- f) Repite (a-c) usando bar y kPa (conversión correcta de unidades y RRR).

Química Preu.JCT

CLASE N°17 GASES

