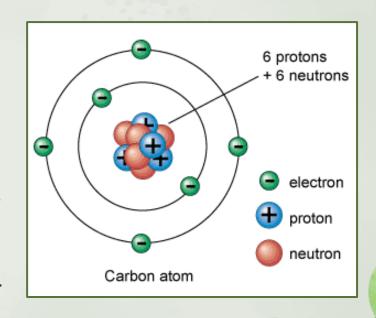

Clase 4: Caracterización del Átomo

- Caracterizar el átomo en base a sus partículas subatómicas
- Extraer información a partir de representaciones atómicas y de la tabla periódica

En esta clase veremos:


Estructura atómica

En esta área temática se evaluará la capacidad del y de la postulante de analizar el comportamiento de la materia: su clasificación, organización y estudio.

- » Clasificación de la materia en sustancias puras (elementos y compuestos) y mezclas.
- » Procedimientos de separación de mezclas (decantación, filtración, tamizado y destilación) y sus aplicaciones en diversos contextos.
- » Propiedades físicas de los elementos (temperaturas de ebullición y de fusión, masa, volumen, densidad).
- » Cambios físicos y químicos.
- » Teoría de Dalton, modelo atómico de Thomson, modelo atómico de Rutherford, modelo atómico de Bohr.
- » Concepto de electrón, protón y neutrón. Número atómico (Z) y número másico (A).
- » Modelos de representación de átomos o iones, según Bohr.

Recordando...

- El átomo está compuesto por 3 partículas subatómicas, el electrón, el neutrón y el protón.
- El electrón (e⁻) se encuentra en la corteza del átomo, aportando **carga negativa pero no masa**.
- El protón (p⁺) se encuentra en el núcleo del átomo, aportando carga positiva y masa.
- El neutrón (n) se encuentra en el núcleo del átomo, aportando **masa pero no carga**.

En resumen:

Partícula	Electrón	Protón	Neutrón
Carga	(-)	(+)	0
Masa	No aporta	Aporta	Aporta

¿Por qué es importante?

 Saber de las partículas subatómicas nos permite describir el átomo, además de que nos permite extraer información de la tabla periódica.

Partícula	Electrón	Protón	Neutrón
Carga	(-)	(+)	0
Masa	No	Sí	Sí

- Es una forma de ordenar los elementos químicos según su número atómico.
- A partir de esta también puede extraerse su masa atómica.

1		Número atómico>					
Н							He
1,0			Masa	atómica		\longrightarrow	4,0
3	4	5	6	7	8	9	10
Li	Be	В	С	N	0	F	Ne
6,9	9,0	10,8	12,0	14,0	16,0	19,0	20,2
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	Р	S	CI	Ar
23,0	24,3	27,0	28,1	31,0	32,0	35,5	39,9
19	20						
K	Ca						
39,1	40,0						

1	1 1 1.0080 H Hydrogen													Puk	© h	em		18 2 4.00260 He Helium
	Nonmetal	2			Atomic N	umber 1	7 35.4	5 Atomic	Mass. u				13	14	15	16	17	Noble Gas
	3 7.0						• •	Symb	ol				5 10.81	6 12.011		8 15.999	9 18.9984	10 20.180
2	Lithium Alkali Metal	Be Beryllium Alkaline Earth Me				Name	Chlorine Halogen		ical Group	Block			B Boron Metalloid	Carbon Nonmetal	Nitrogen Nonmetal	Oxygen Nonmetal	Fluorine Halogen	Neon Noble Gas
	11 22.989	12 24.305					Halogell						13 26.981	14 28.085	15 30.973	16 32.07	17 35.45	18 39.9
3	Na Sodium Alkali Metal	Mg Magnesium Alkaline Earth Me	3	4	5	6	7	8	9	10	11	12	Aluminum Post-Transition M	Si Silicon Metalloid	Phosphorus Nonmetal	Sulfur Nonmetal	Chlorine Halogen	Argon Noble Gas
	19 39.0983	20 40.08	21 44.95591	22 47.867	23 50.9415	24 51.996	25 54.93804	26 55.84	27 58.93319	28 58.693	29 63.55	30 65.4	31 69.723	32 72.63	33 74.92159	34 78.97	35 79.90	36 83.80
4	Potassium Alkali Metal	Ca Calcium Alkaline Earth Me	Scandium Transition Metal	Titanium Transition Metal	Vanadium Transition Metal	Cr Chromium Transition Metal	Mn Manganese Transition Metal	Fe Iron Transition Metal	Cobalt Transition Metal	Nickel Transition Metal	Cu Copper Transition Metal	Zn Zinc Transition Metal	Ga Gallium Post-Transition M	Ge Germanium Metalloid	As Arsenic Metalloid	Se Selenium Nonmetal	Br Bromine Halogen	Kr Krypton Noble Gas
	37 85.468	38 87.62	39 88.90584	40 91.22	41 92.90637	42 95.95	43 96.90636	44 101.1	45 102.9055	46 106.42	47 107.868	48 112.41	49 114.818	50 118.71	51 121.760	52 127.6	53 126.9045	54 131.29
5	Rb Rubidium Alkali Metal	Sr Strontium Alkaline Earth Me	Yttrium Transition Metal	Zr Zirconium Transition Metal	Nb Niobium Transition Metal	Mo Molybdenum Transition Metal	Tc Technetium Transition Metal	Ru Ruthenium Transition Metal	Rh Rhodium Transition Metal	Pd Palladium Transition Metal	Ag Silver Transition Metal	Cd Cadmium Transition Metal	In Indium Post-Transition M	Sn Tin Post-Transition M	Sb Antimony Metalloid	Te Tellurium Metalloid	lodine Halogen	Xe Xenon Noble Gas
	55 132.90	56 137.33		72 178.49	73 180.9479	74 183.84	75 186.207	76 190.2	77 192.22	78 195.08	79 196.96	80 200.59	81 204.383	82 207	83 208.98	84 208.98	85 209.98	86 222.01
6	Cs Cesium Alkali Metal	Ba Barium Alkaline Earth Me		Hf Hafnium Transition Metal	Ta Tantalum Transition Metal	Tungsten Transition Metal	Re Rhenium Transition Metal	Os Osmium Transition Metal	Ir Iridium Transition Metal	Pt Platinum Transition Metal	Au Gold Transition Metal	Hg Mercury Transition Metal	Thallium Post-Transition M	Pb Lead Post-Transition M	Bi Bismuth Post-Transition M	Po Polonium Metalloid	At Astatine Halogen	Rn Radon Noble Gas
	87 223.01	88 226.02		104 267.1	105 268.1	106 269.1	107 270.1	108 269.1	109 277.1	110 282.1	111 282.1	112 286.1	113 286.1	114 290.1	115 290.1	116 293.2	117 294.2	118 295.2
7	Fr Francium Alkali Metal	Ra Radium Alkaline Earth Me		Rf Rutherfordium Transition Metal	Db Dubnium Transition Metal	Sg Seaborgium Transition Metal	Bh Bohrium Transition Metal	HS Hassium Transition Metal	Mt Meitnerium Transition Metal	DS Darmstadtium Transition Metal	Rg Roentgenium Transition Metal	Cn Copernicium Transition Metal	Nh Nihonium Post-Transition M	Flerovium Post-Transition M	Mc Moscovium Post-Transition M	LV Livermorium Post-Transition M	TS Tennessine Halogen	Og Oganesson Noble Gas
				57 138.9055	58 140.116	59 140.90	60 144.24	61 144.91	62 150.4	63 151.964	64 157.2	65 158.92	66 162.500	67 164.93	68 167.26	69 168.93	70 173.05	71 174.9668
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				Lanthanum Lanthanide	Cerium Lanthanide	Praseodymium Lanthanide	Neodymium Lanthanide	Promethium Lanthanide	Samarium Lanthanide	Europium Lanthanide	Gadolinium Lanthanide	Terbium Lanthanide	Dysprosium Lanthanide	Holmium Lanthanide	Erbium Lanthanide	Thulium Lanthanide	Ytterbium Lanthanide	Lutetium Lanthanide
				89 227.02	90 232.038	91 231.03	92 238.0289	93 237.04	94 244.06	95 243.06	96 247.07	97 247.07	98 251.07	99 252.0830	100 257.0	101 258.0	102 259.1	103 266.1
				Ac Actinium	Th Thorium	Pa Protactinium	Uranium	Np Neptunium	Pu	Am Americium	Cm	Bk Berkelium	Cf Californium	Es Einsteinium	Fm Fermium	Md Mendelevium	No Nobelium	Lr Lawrencium
				Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide

Número Atómico (Z)

- Corresponde al número de protones presentes en determinado elemento.
- Todos los átomos de un mismo elemento tienen el mismo número atómico.

Número Másico (A)

- Corresponde a la masa de determinado átomo: es decir, la suma entre los protones y los neutrones.
- No todos los átomos de un mismo elemento tienen el mismo número másico.

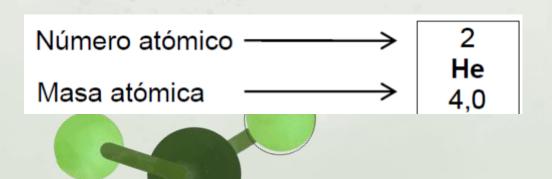
39.1

40,0

Masa Atómica

 A diferencia del número másico, representa la masa promedio de los átomos de cierto elemento.

1 H		Número atómico					
1,0			IVIASA	atorriica	1		4,0
3	4	5	6	7	8	9	10
Li	Be	В	С	N	0	F	Ne
6,9	9,0	10,8	12,0	14,0	16,0	19,0	20,2
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	Р	S	CI	Ar
23,0	24,3	27,0	28,1	31,0	32,0	35,5	39,9
19	20				l.		
K	Ca						



NÚMERO MÁSICO

- Representa la masa de 1 átomo en particular de cierto elemento (la suma de sus protones y sus neutrones)
- No puede ser decimal.
- No aparece en la tabla periódica.

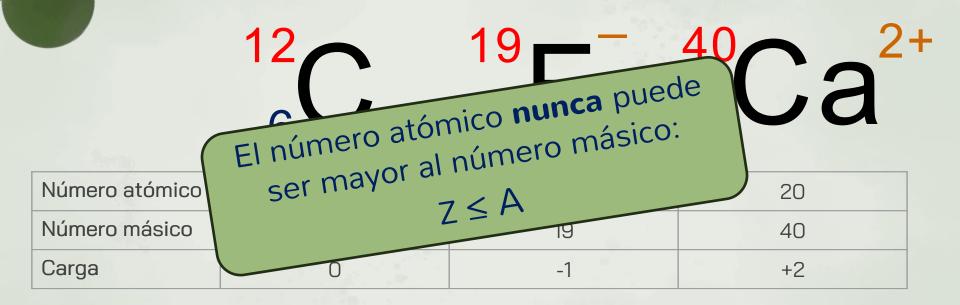
≠ MASA ATÓMICA

- Representa la masa promedio (número másico) de todos los átomos de cierto elemento.
- Puede ser decimal.
- Aparece en la tabla periódica.

Representación del Átomo

- Como se dijo anteriormente, A representa el número másico y Z representa el número atómico.
- Además, los átomos pueden presentar carga negativa o positiva.

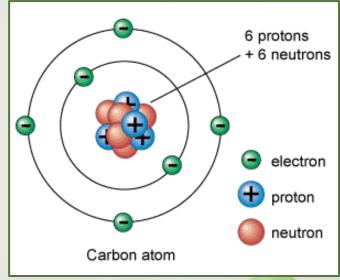
Ejemplos


12 6 ¹⁹₉F⁻ ⁴⁰₂₀Ca²⁺

Número atómico	6	9	20
Número másico	12	19	40
Carga	0	-1	+2

¿Cuántos neutrones tiene cada átomo?

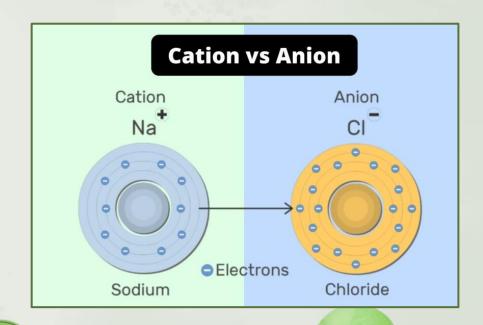
Ejemplos



¿Cuántos neutrones tiene cada átomo?

¿Cómo interpretar la carga?

- Como ya sabemos, las partículas con carga del átomo son los protones y los electrones.
- Los protones se encuentran en el núcleo, por lo que se encuentran estáticos.
- Los electrones presentan un movimiento más libre.



¿Cómo interpretar la carga?

- Cuando un átomo presenta carga, hay dos posibilidades: ganó electrones o perdió electrones.
- Los protones nunca se intercambian, ya que se encuentran en el núcleo.
- A un átomo con carga se le llama ion: anión si es negativa, catión si es positiva.
- Si no tiene carga, el átomo está neutro.

Ejemplo

• Volvamos al siguiente ion:

 Dado que la carga es -1, es un anión que tiene 1 electrón de sobra en comparación a los protones. Como el N° de protones es igual al número atómico (9):

Número atómico	9
Número másico	19
Carga	-1
Neutrones	10
Protones	9
Electrones	10

En resumen:

• Podemos resumir todo en las siguientes ecuaciones:

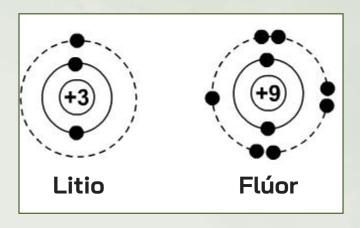
$$A = p^+ + n$$

$$e^- = p^+ - carga$$

(considerando el signo de la carga)

$$p^+ = Z$$

 Cabe destacar que todos los números son enteros, y a excepción de la carga, todos positivos.



Diagramas de Bohr

- Otra manera para representar átomos y iones es mediante los diagramas de Bohr, los cuales siguen la idea de su modelo atómico.
- Recordemos que según este modelo, los electrones se encuentran en distintos niveles de energía.
- La carga del núcleo (es decir, el número de protones) se anota en el centro y alrededor se colocan los electrones en forma de puntos

3 **Li** 6,9 9 **F** 19,0

¿Qué carga tiene cada átomo?

¿Cuál de las siguientes relaciones entre Z y número de electrones (e), corresponde a un anión?

Λ	١
М	•

A)	7	4
B)	9	10

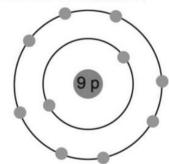
C)

0	0
11	10

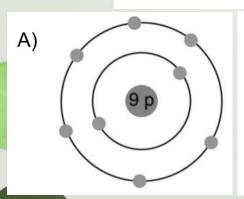
Fuente: PAES Regular 2024

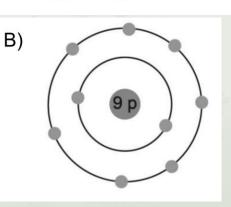
¿Cuál de las siguientes relaciones entre Z y número de electrones (e), corresponde a un anión?

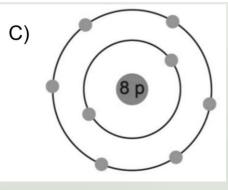
	Ze		
A)	7	4	
B)	9	10	
C)	8	8	
D)	11	10	

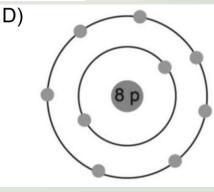

Fuente: PAES Regular 2024

Un profesor presenta el siguiente modelo atómico que representa a un ion, donde p son los protones y

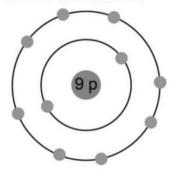

son los electrones.




Respecto al modelo presentado, ¿cuál de las siguientes representaciones corresponde a su átomo neutro?

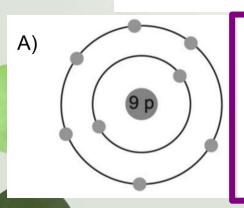


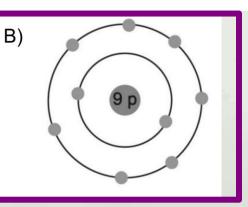
Fuente: PAES Regular 2025

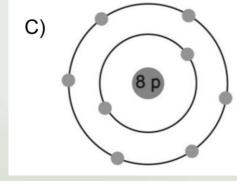


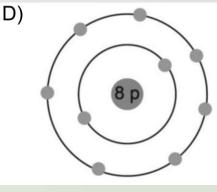
Un profesor presenta el siguiente modelo atómico que representa a un ion, donde p son los protones y

son los electrones.

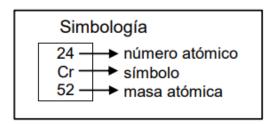







Respecto al modelo presentado, ¿cuál de las siguientes representaciones corresponde a su átomo neutro?

Fuente: PAES Regular 2025



Un grupo de estudiantes encuentra el siguiente extracto de la tabla periódica:

24	28	34
Cr	 Ni	 Se
52	59	79
42	46	52
Mo	 Pd	 Te
96	(masa atómica)	128
74	78	84
W	 Pt	 Po
184	195	(209)
106	110	116
Sg 269	 Ds	 Lv
269	281	293

Considerando la información anterior, ¿cuál de las siguientes opciones es una inferencia correcta para el valor de la masa atómica, aproximada, de **Pd**?

- A) 80 u
- B) 106 u
- C) 130 u
- D) 180 u

Fuente: PAES Regular 2025

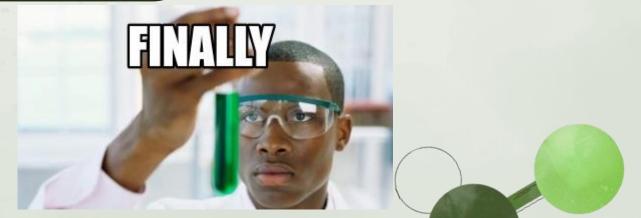
Un grupo de estudiantes encuentra el siguiente extracto de la tabla periódica:

24	28	34
Cr	 Ni	 34 Se
52	59	79
42	46	52
Мо	 Pd	 Te
96	(masa atómica)	128
74	78	84
W	 Pt	 Po
184	195	(209)
106	110	116
Sg 269	 Ds	 Lv
269	281	293

B

Considerando la información anterior, ¿cuál de las siguientes opciones es una inferencia correcta para el valor de la masa atómica, aproximada, de **Pd**?

- A) 80 u
- B) 106 u
- C) 130 u
- D) 180 u


Fuente: PAES Regular 2025

¡Repaso!

Ahora hemos terminado los contenidos del eje de **Estructura Atómica**. El resto de esta clase tu profesor/a estará respondiendo dudas y resolviendo ejercicios de los contenidos vistos.

¡Prepárate para el miniensayo!

