

Estructura atómica: Nomenclatura inorgánica I

Preuniversitario Antumapu.

Números de oxidación

Los números de oxidación son números enteros, que determinan la cantidad de electrones que el elemento puede compartir, aceptar o ceder para formar enlaces.

En el caso de los metales, los números de oxidación son siempre positivos, en los no metales, generalmente son negativos.

Para la solución de algunos de los ejercicios propuestos, se adjunta una parte del Sistema Periódico hasta el elemento Nº 20.

1 H 1,0	133	98596	atómico atómica	•		→ →	2 He 4,0
3	4	5	6	7	8	9	10
LI	Be	B	C	N	0	F	Ne
6.9	9.0	10,8	12,0	14,0	16,0	19,0	20,2
11	12	13	14	15	16	17	18
Na	Mg	AI	Si	P	S	CI	Ar
23,0	24,3	27.0	28,1	31,0	32,0	35,5	39.9
19 K 39.1	20 Ca 40.0				To proceed the		

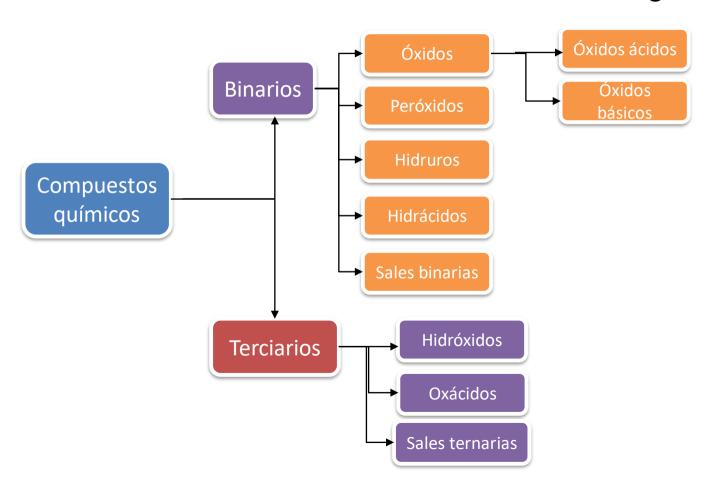
Reglas Generales

- El grupo 1, siempre tiene un número de oxidación de +1, con la excepción del H que puede tener además el número -1.
- El grupo 2, siempre tiene un número de oxidación de +2.
- El grupo 17, tienen valencias variables, pero todos ellos tienen la valencia -1. Esto quiere decir que si uno de ellos se ubica al lado derecho en su formulación, el número de oxidación es siempre -1.
- Generalmente el Oxígeno se encuentra con valencia -2, pero puede encontrarse con valencia -1 en los Peróxidos.

Estado de Valencia

De acuerdo con la definición de Lewis, la capacidad de combinación de un átomo, esto es, la cantidad de electrones que aporta cuando enlaza (independiente del tipo de enlace y su energía) corresponde a su *valencia*. Para determinar este parámetro, debe dibujarse correctamente la estructura de Lewis para una molécula y calcular el número de electrones que el elemento requiere para completar un octeto o dueto. El número de electrones que aporte al enlace será la valencia y muchas veces coincidirá con el número de electrones de valencia del propio átomo.

En esta molécula (formaldehído), el átomo de Carbono tiene valencia 4, cada átomo de Hidrógeno releveia 1 y el átomo


- Los símbolos de los elementos que forman el compuesto.
- La cantidad de átomos de los elementos que conforman el compuesto y que están dados por los números que aparecen como subíndices.

Por ejemplo, la fórmula Al₂O₃ indica:

Por otra parte, en la formación de compuestos químicos es importante conocer el **estado de oxidación** de los átomos, o sea, el número de electrones que un átomo puede ceder o captar al formar un compuesto. Revisa los

Clasificaciones en Química Inorgánica

Nomenclatura sistemática

Primero se nombra el tipo de compuesto y luego el elemento menos electronegativo, sin embargo se debe indicar la cantidad de elementos presentes en el compuesto, mediante prefijos simples.

Prefijo	Cantidad de átomos	
1	Mono	
2	Di	
3	Tri	
4	Tetra	
5	Penta	

Prefijo	Cantidad de átomos	Ejemplo
6	Hexa	CO = Monóxido de carbono
7	Hepta	CO ₂ = Dióxido de Carbono
8	Octa	TiO = Monóxido de Titanio
9	Nona	Al(OH)3 = Trihidroxido de aluminio
10	Deca	Fe2O3 = Trióxido de Dihierro

Nomenclatura STOCK

Primero se nombra el tipo de compuesto (hidruro, oxido) y luego el elemento menos electronegativo (generalmente un metal) seguido de su estado de oxidación (en números romanos y entre paréntesis), si el elemento posee un solo estado de oxidación se omite el numero romano. Se utiliza generalmente para óxidos, hidruros e hidróxidos.

Ejemplo:

CaH₂: Hidruro de Calcio TiO: Oxido de titanio (II)

CaO: Oxido de Calcio FeH3: Hidruro de Hierro (III)

Al(OH)₃: Hidróxido de Aluminio Cu(OH)₂: Hidróxido de Cobre (II)

Nomenclatura tradicional

Primero se nombra el tipo de compuesto (hidruro, oxido) y luego el elemento menos electronegativo se nombra utilizando su raíz, un prefijo y sufijo dependiendo del número de oxidación.

Ejemplo:

CuO: Oxido Cúprico Oxido es el tipo de compuesto. La raíz del elemento cobre es Cuprum.

Cu₂O: Oxido Cuproso Si el elemento tiene dos estados de oxidación, el de menor estado de oxidación

obtiene el sufijo oso y el de mayor estado de oxidación obtiene el sufijo ico.

Reglas:

Cantidad de valencias o números de oxidación	Prefijo	Sufijo
1	EQ. (Ico
2	St. 1	Oso: menor valencia
	S .	Ico: mayor valencia
3	Hipo	Oso: menor valencia
		Oso:
		Ico: mayor valencia
4 (Cl, Br y I)	Hipo	Oso: menor valencia
	63	Oso:
		Ico:
	Per	Ico: mayor valencia
Q5	Hipo	Oso: menor valencia
	RL C	Oso:
	EL C	Ico:
	Per	Ico:
	Hiper	Ico: mayor valencia

Cuando se utiliza	Elemento	Raíz
la nomenclatura	Cobre	Cuprum
tradicional	Oro	Aurum
algunos	Plata	Argentum
elementos	Hierro	Ferrum
cambian su	Plomo	Plumbum
nombre por su	Azufre	Sulfurum
raíz griega o	Nitrógeno	Nitrum
latina	Estaño	Estan

Son compuestos formados por un elemento metálico más oxígeno (O-2). Siempre llevan el prefijo oxido. NaO_2

FÓRMULA	SISTEMÁTICA	STOCK	TRADICIONAL
CaO	3	Oxido de calcio	Oxido cálcico
Ni ₂ O ₂	Dióxido de diniquel		Oxido niqueloso
Ni ₂ O ₃	Trióxido de diniquel	Oxido de niquel III	95 92) 95 4

Óxidos no metálicos (Anhídridos)

Son compuestos formados por un elemento no metálico más oxígeno (O-2).

FÓRMULA	SISTEMÁTICA	STOCK	TRADICIONAL
SO ₂	1	Óxido de azufre IV	Anhídrido sulfuroso
P ₂ O ₅	Pentaóxido de difosforo		Anhídrido fosfórico
I ₂ O ₇	Heptaóxido de diyodo	Oxido de yodo VII	2

Peróxidos

Son compuestos derivados de los óxidos, en el que existen dos átomos de oxígeno enlazados con una valencia -1 cada uno, llamado ión peróxido $(O_2)^{-2}$.

FÓRMULA	SISTEMÁTICA	STOCK	TRADICIONAL
Cu ₂ O ₂	Monoperóxido de dicobre		Peróxido cuproso
$Cu_2(O_2)_2$		Peróxido de cobre II	(%)

 Na_2O_2

Hidruros metálicos

Son compuestos formados por un elemento metálico y un metal, el hidrógeno se presenta con un estado de oxidación de -1.

FÓRMULA	SISTEMÁTICA	STOCK	TRADICIONAL
CoH ₂	Dihidruro de cobalto		Hidruro cobaltoso
CoH₃		Hidruro de cobalto III	

Hidruros no metálicos (Hidrácidos)

Son compuestos formados por hidrógeno y un elemento no-metálico.

FÓRMULA	SISTEMÁTICA	STOCK	TRADICIONAL
H₂S	Monosulfuro de dihidrógeno		Ácido sulfhídrico
HBr	Monobromuro de hidrogeno		
HSe	130		Ácido selenhídrico

Hidruros no metálicos (volátiles)

Son compuestos formados por hidrógeno y un elemento no metal que puede ser: P, N, As, Sb, B todos se presentan con estado de oxidación -3 y -4 y el hidrógeno con carga +1.

FÓRMULA	SISTEMÁTICA	STOCK	TRADICIONAL
NH₃	Trihidruro de nitrógeno		Amoniaco
PH ₃	Trihidruro de fosforo		Fosfina
AsH ₃	Trihidruro de arsénico		Arsina
SbH ₃	Trihidruro de antimonio		Estibina
BH₃	Trihidruro de boro		Borano
SiH₄	Tetrahidruro de silicio		Silano
CH ₄	Tetrahidruro de carbono		Metano

Pregunta 71 - 2009

 Los estados o números de oxidación del nitrógeno en los óxidos NO₂ y N₂O son

```
NO_2 N_2O
A) -4 -1
B) -4 +2
C) -2 -1
D) +2 -2
E) +4 +1
```

Pregunta 39 - 2013

39. El potasio (K) forma un compuesto con el oxígeno llamado óxido de potasio (K₂O).
ME ¿Cuál es el estado de oxidación del potasio en el K₂O?

```
A) 0
```