

QUIMIOTERAPIA DEL CÁNCER

José Antonio Jara Q.F. PhD
Laboratorio de farmacología para el desarrollo de antineoplásicos y antifúngicos jsandovalj@u.uchile.cl

CÁNCER Estrategias terapéuticas

Quimioterapia

Radioterapia

Cirugía

Neoplasmas poco diseminados al momento del diagnóstico.

Células germinales Enfermedad de Hodgkin Linfoma no-Hodgkin Coriocarcinoma

Tumores en niños como: Leucemia linfoblástica aguda Linfoma de Burkitt Tumor de Wilms Cáncer avanzado

Vejiga Mama Esófago Cabeza y cuello Colorectal Sarcoma osteogénico Cáncer ampliamente diseminado (metástasis avanzada)

CÁNCER Estrategias terapéuticas

TABLE 124–8. The Role of Chemotherapy in the Treatment of Cancer

Chemotherapy used alone with curative intent

Acute lymphocytic leukemia Acute nonlymphocytic (myelogenous) leukemia

Burkitt's lymphoma Diffuse large cell lymphoma

Hodgkin's lymphoma Testicular cancer

Choriocarcinoma (gestational trophoblastic

neoplasm)

Chemotherapy used as adjuvant therapy with curative intent

Breast cancer Colorectal cancer

Ewing's sarcoma
Wilms' tumor
Osteosarcoma
Ovarian cancer

Willins turnor

Chemotherapy used as neoadjuvant therapy

Anal carcinoma^a Bladder cancer Breast cancer (locally advanced)^a Cervical cancer

Esophageal cancer Head and neck cancers^a

Osteosarcoma^a Rectal cancer

Soft tissue sarcoma^a

^aSignificant increase in survival is achieved.

Adapted from Cotran et al,6 Buick,14 and Haskell.22

CÁNCER Estrategias terapéuticas

TABLE 124–8. The Role of Chemotherapy in the Treatment of Cancer

Chemotherapy used to palliate symptoms in advanced disease

Bladder cancer^a Brain tumors

Breast cancer^a Carcinoid tumors

Cervical cancer Chronic lymphocytic leukemia

Chronic myelogenous leukemia^a Colorectal cancer Endometrial cancer Esophageal cancer

Gastric cancer Head and neck cancers

Hairy cell leukemia^a Kaposi's sarcoma

Indolent lymphomas Metastatic melanoma Multiple myeloma^a Mycosis fungoides

Neuroblastoma^a Non-small-cell lung cancer

Osteosarcoma Ovarian cancer^a
Pancreatic cancer Prostate cancer
Small cell lung cancer^a Soft tissue sarcoma

Chemotherapy has little or no effect on palliation

Hepatocellular cancer Renal cell carcinoma

Thyroid cancer

^aSignificant increase in survival is achieved. Adapted from Cotran et al,⁶ Buick,¹⁴ and Haskell.²²

CÁNCER

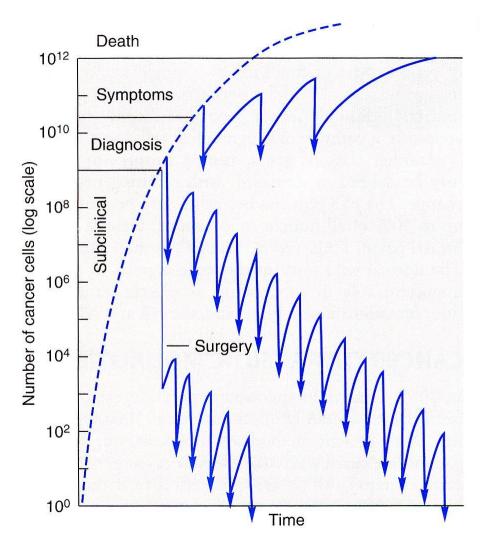
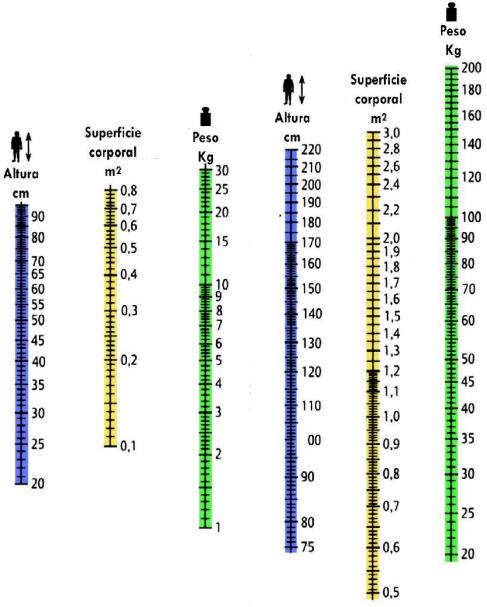



Figure 55–1. The log-kill hypothesis. Relationship of tumor cell number to time of diagnosis, symptoms, treatment, and survival. Three alternative approaches to drug treatment are shown for comparison with the course of tumor growth when no treatment is given (dashed line). In the protocol diagrammed at top, treatment (indicated by the arrows) is given infrequently and the result is manifested as prolongation of survival but with recurrence of symptoms between courses of treatment and eventual death of the patient. The combination chemotherapy treatment diagrammed in the middle section is begun earlier and is more intensive. Tumor cell kill exceeds regrowth, drug resistance does not develop, and "cure" results. In this example, treatment has been continued long after all clinical evidence of cancer has disappeared (1-3 years). This approach has been established as effective in the treatment of childhood acute leukemia, testicular cancers, and Hodgkin's disease. In the treatment diagrammed near the bottom of the graph, early surgery has been employed to remove the primary tumor and intensive adjuvant chemotherapy has been administered long enough (up to 1 year) to eradicate the remaining tumor cells that comprise the occult micrometastases.

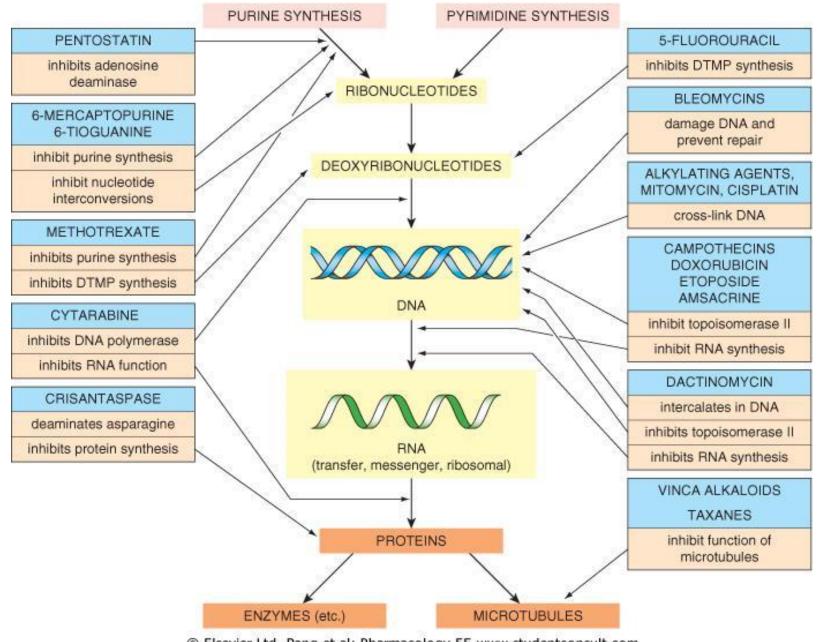
Nomograma para la determinar la superficie corporal por peso y altura (por Crawford) (Doerner)

Medicamento	Dosis	Días	Administración
Carboplatino	Fórmula de Calvert (*) (4,5) ó 300-400 mg/m ²	1	Infusión de 30 min.
Paclitaxel	200-225 mg/m ²	1	Infusión de 3 horas

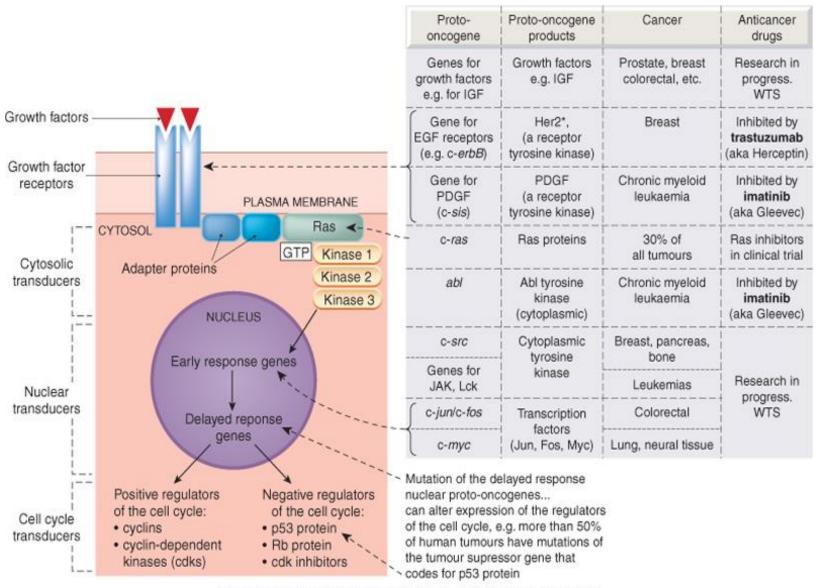
*Fórmula de Cockroft&Gault (para calcular GFR)

Repetir cada 21 días.

Niños:

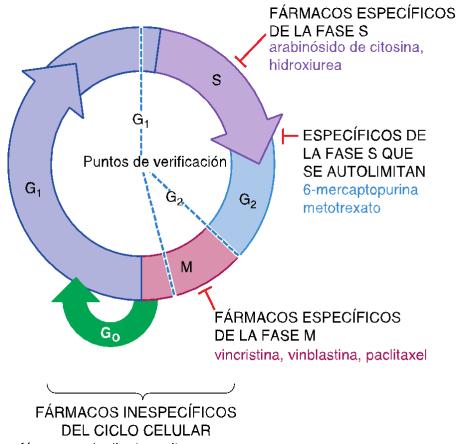

Dosis total (mg/m2) = objetivo AUC x
$$[(0,93 \times TFG) + 15]$$

Se recomienda una AUC de 6-8 mg/ml * min para los pacientes no tratados previamente con carboplatino.


En los pacientes tratados previamente que recibieron carboplatino solo, se recomienda una AUC de 4-6 mg/ml * min.

Para los pacientes que recibieron carboplatino con otros antineoplásicos, se utiliza una AUC de 4-7 mg/ml * min.

GFR: Glomerular filtration rate.



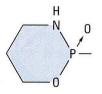
© Elsevier Ltd. Rang et al: Pharmacology 5E www.studentconsult.com

© Elsevier. Rang et al: Pharmacology 6e - www.studentconsult.com

DROGAS ANTITUMORALES

DEL CICLO CELULAR fármacos alquilantes, nitrosoureas, antibióticos antitumorales, procarbazina, cisplatino, dacarbazina

Fase de mayor actividad	Clase	Tipo	Fármacos típicos
Intervalo 1 (G ₁)	Producto natural Hormona	Enzima Corticosteroide	Asparaginasa Prednisona
Transición G ₁ /S	Antimetabolito	Análogo de purina	Cladribina
Síntesis de ADN (S)	Antimetabolito Antimetabolito Antimetabolito Producto natural Varios	Análogo de pirimidina Análogo de ácido fólico Análogo de purina Inhibidor de la topoisomnerasa I Urea sustituida	Citarabina, fluorouracilo, gemcitabina Metotrexato Tioguanina, fludarabina Topotecan Hidroxiurea
Intervalo 2 (G ₂)	Producto natural Producto natural Producto natural	Antibiótico Inhibidor de la topoisomerasa II Polimeralización y estabilización de microtúbulos	Bleomicina Etopósido Paclitaxel (Taxol)
Mitosis (M)	Producto natutal	Inhibidor mitótico	Vinblastina, vincristina, vindesina, vinorelvina


AGENTES ALQUILANTES

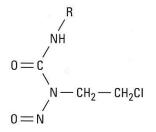
AGENTES ALQUILANTES

BIS(CHLOROETHYL)AMINES

$$\begin{array}{c} \text{CH}_2\text{CH}_2\text{CI} \\ \text{R} - \text{N} \\ \text{CH}_2\text{CH}_2\text{CI} \end{array}$$

Where R is:

Cyclophosphamide

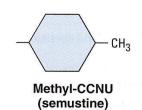

Mechlorethamine

Chlorambucil

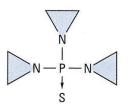
$$\begin{array}{c|c} O & NH_2 \\ || & | \\ HOC - C - CH_2 - \\ | & | \\ H \end{array}$$

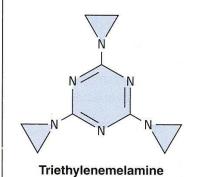
Melphalan

NITROSOUREAS



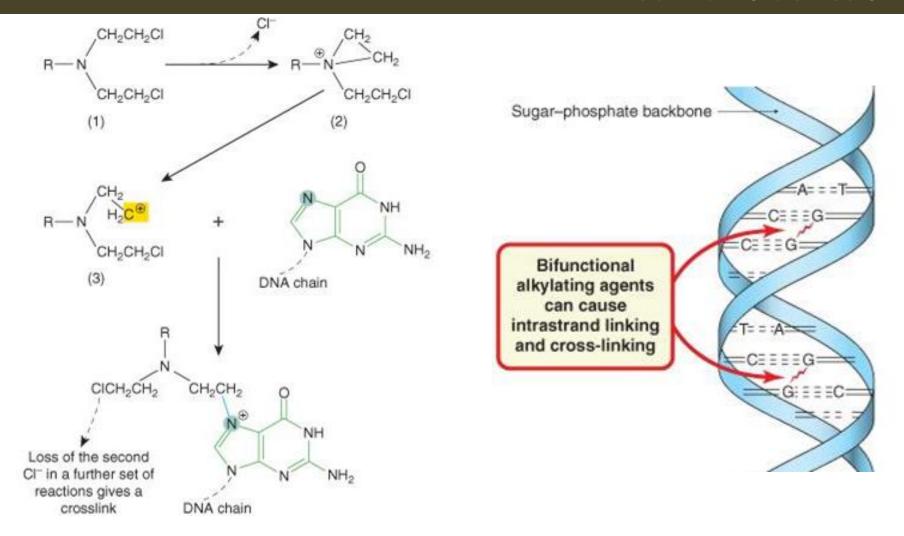
Where R is:


BCNU (carmustine)


CCNU (lomustine)

AZIRIDINES

Thiotepa


ALKYLSULFONATE

$$\begin{array}{c} \text{CH}_2 - \text{O} - \text{S} - \text{CH}_3 \\ | \\ | \\ \text{CH}_2 & \text{O} \\ | \\ \text{CH}_2 & \text{O} \\ | \\ \text{CH}_2 - \text{O} - \text{S} - \text{CH}_3 \\ | \\ | \\ \text{O} \\ \end{array}$$

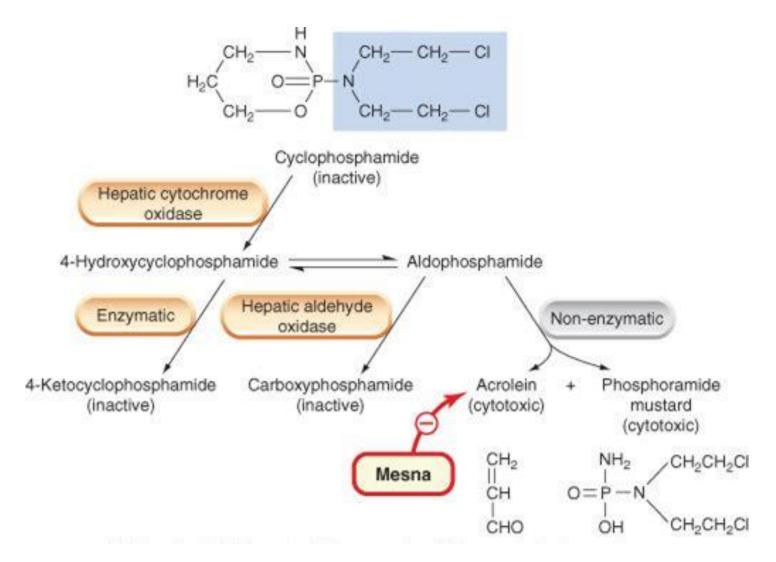

Busulfan

Figure 55–3. Structures of major classes of alkylating agents.

AGENTES ALQUILANTES Mecanismo de acción

A bis(chloroethyl)amine (1) intramolecular cyclisation, forming an unstable ethylene immonium cation (2) releasing Cl⁻, the tertiary amine is transformed to a quaternary ammonium compound. The ring of the ethylene immonium opens to form a reactive carbonium ion (in yellow box) (3), which reacts with N7 of guanine (in green circle). These reactions can then be repeated with the other -CH₂CH₂Cl to give a cross-link.

Metabolismo de la ciclofosfamida. Ciclofosfamida está inactiva hasta que se metaboliza en el hígado por oxidasas de función mixta del sistema P450 a 4-hydroxycyclophosphamide, que (reversiblemente) da origen a aldophosphamide. Aldophosphamide se distribuye a otros tejidos, donde se convierte a la mostaza fosforamida, la molécula citotóxica real, y acroleína, que es responsable de los efectos no deseados. La parte de la molécula de ciclofosfamida que da lugar a los metabolitos activos se muestra en el cuadro azul. Mesna (2-sulfaniletansulfonato de sodio) interactúa con la acroleína, que forman un compuesto no tóxico.

AGENTES ALQUILANTES

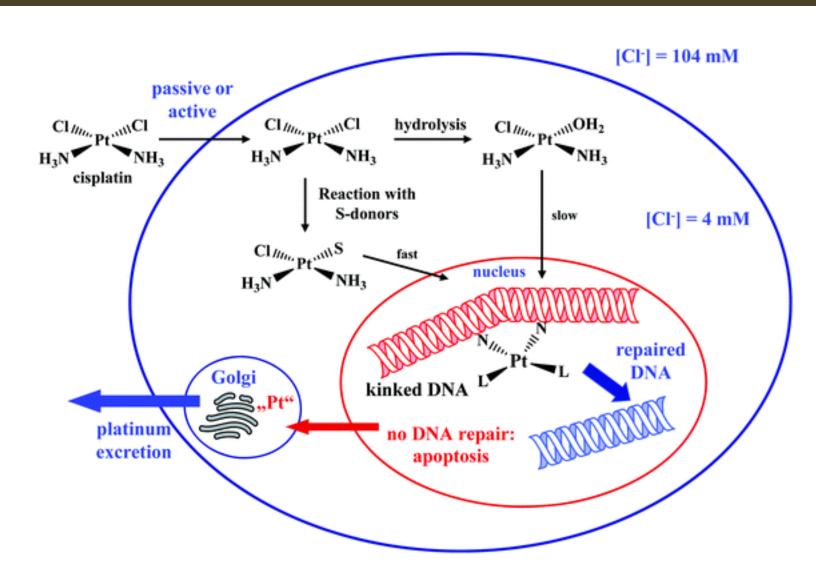
Alkylating Agent	Single-Agent Dosage	Acute Toxicity	Delayed Toxicity
Mechlorethamine (nitrogen mustard)	0.4 mg/kg IV in single or divided doses	Nausea and vomiting	Moderate depression of peripheral blood count; excessive doses produce severe bone marrow depression with leukopenia, thrombocytopenia, and bleeding; alopecia and hemorrhagic cystitis occasionally occur with cyclophosphamide; cystitis can be prevented with adequate hydration; busulfan is associated with skin pigmentation, pulmonary fibrosis, and adrenal insufficiency
Chlorambucil	0.1–0.2 mg/kg/d <mark>orally;</mark> 6–12 mg/d	Nausea and vomiting	
Cyclophosphamide	3.5–5 mg/kg/d orally for 10 days; 1 g/m² IV as single dose	Nausea and vomiting	
Melphalan	0.25 mg/kg/d orally for 4 days every 4–6 weeks	Nausea and vomiting	
Thiotepa (triethylenethio- phosphoramide)	0.2 mg/kg IV for 5 days	Nausea and vomiting	
Busulfan	2–8 mg/d <mark>orally;</mark> 150–250 mg/ course	Nausea and vomiting	

AGENTES ALQUILANTES

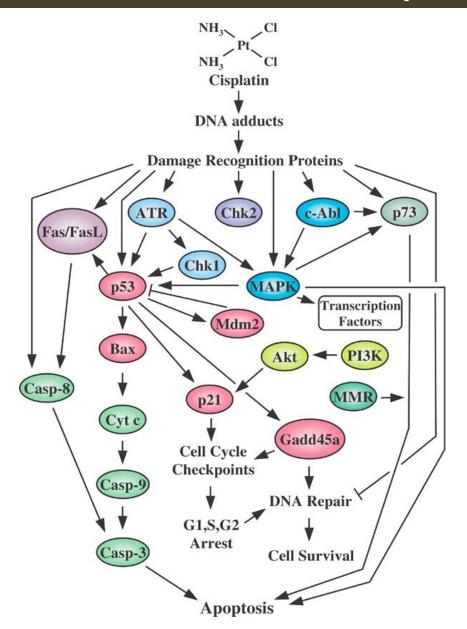
Alkylating Agent	Single-Agent Dosage	Acute Toxicity	Delayed Toxicity
Carmustine (BCNU)	200 mg/m² IV every 6 weeks	Nausea and vomiting	Leukopenia, thrombocytopenia, and
Lomustine (CCNU)	150 mg/m² orally every 6 weeks	Nausea and vomiting	rarely hepatitis
Altretamine	10 mg/kg/d for 21 days	Nausea and vomiting	Leukopenia, thrombocytopenia, and peripheral neuropathy
Temozolomide	150 mg/m² orally for 5 days every 28 days	Nausea and vomiting, head- ache and fatigue	Leukopenia, thrombocytopenia

NITROSOUREAS

- 1. No presentan resistencia cruzada con otros agentes alquilantes
- 2. Requieren biotransformación (no enzimática)
- 3. Altamente liposolubles (atraviesan BHE)


AGENTES ALQUILANTES Compuestos relacionados

Alkylating Agent	Single-Agent Dosage	Acute Toxicity	Delayed Toxicity
Procarbazine	50-200 mg/d orally	Nausea and vomiting	Bone marrow depression, central nervous system depression, leukemogenia
Dacarbazine	300 mg/m² daily IV for 5 days	Nausea and vomiting	Bone marrow depression
Cisplatin	20 mg/m²/d IV for 5 days or 50–70 mg/m² as single dose every 3 weeks	Nausea and vomiting	Nephrotoxicity, peripheral sensory neuropathy, ototoxicity, nerve dysfunction
Carboplatin	AUC 5–7 mg x min/mL	Nausea and vomiting	Myelosuppression; rarely: peripheral neuropathy, renal toxicity, and hepatic dysfunction
Oxaliplatin	130 mg/m² IV every 3 weeks or 85 mg/m² IV every 2 weeks	Nausea and vomiting, laryn- gopharyngeal dysesthesias	Peripheral sensory neuropathy, diarrhea myelosuppression, and renal toxicity


CISPLATINO

Activo contra un rango amplio de tumores, incluyendo cáncer pulmonar, cáncer esofágico y gástrico, cáncer de cuello y cabeza y genitourinarios (testículos, ovario y vejiga)

AGENTES ALQUILANTES Compuestos relacionados

AGENTES ALQUILANTES Compuestos relacionados

AGENTES ALQUILANTES Conceptos clave

Anticancer drugs: alkylating agents and related compounds

- Alkylating agents have groups that form covalent bonds with cell substituents; a carbonium ion is the reactive intermediate. Most
 have two alkylating groups and can cross-link two nucleophilic sites such as the N7 of guanine in DNA. Cross-linking can cause
 defective replication through pairing of alkylguanine and thymine, leading to substitution of AT for GC, or it can cause excision of
 guanine and chain breakage.
- · Their principal effect occurs during DNA synthesis and the resulting damage triggers apoptosis.
- Unwanted effects include myelosuppression, sterility and risk of non-lymphocytic leukaemia.
- The main alkylating agents are:
 - nitrogen mustards, for example cyclophosphamide^R, which is activated to give aldophosphamide, then converted to
 phosphoramide mustard (the cytotoxic molecule) and acrolein (which causes bladder damage that can be ameliorated by
 mesna^R). Cyclophosphamide^R myelosuppression affects particularly the lymphocytes.
 - o *nitrosoureas*, for example lomustine, may act on non-dividing cells, can cross the blood-brain barrier, and cause delayed, cumulative myelotoxicity.
- Cisplatin^{R_s} causes intrastrand linking in DNA. It has low myelotoxicity but causes severe nausea and vomiting, and can be nephrotoxic. It has revolutionised the treatment of germ cell tumours.

AGENTES ALQUILANTES Resistencia

La resistencia a los agentes alquilantes es de rápido desarrollo cuando son usados como agentes únicos.

- Disminución de la permeabilidad de fármacos transportados activamente.
 (mecloretamina y melfalán).
- 2. Incremento de las concentraciones intracelulares de sustancias nucleofílicas, especialmente tioles como glutatión, los cuales pueden conjugarse el agente alquilante, eliminando el agente electrofílico.
- 3. Incremento de las vías de reparación del DNA.

ANTIMETABOLITOS

ANTIMETABOLITOS

ANALOGOS DEL ÁCIDO FÓLICO (ANTIFOLATOS)

Metotrexato

Pemetrexed

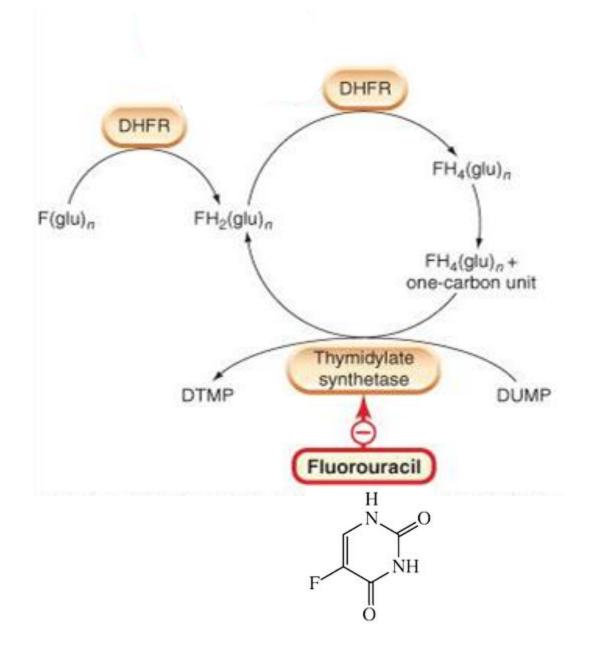
ANTAGONISTAS DE PURINA

6-Tiopurinas (6-mercaptopurina, 6-Tioguanina)

Fludarabina

Cladribina

ANTAGONISTAS DE PIRIMIDINA


5-Fluorouracilo

Capecitabina

Citarabina

Gemcitabina

ANTAGONISTAS DE PIRIMIDINA: 5-FLUOROURACILO

ANTAGONISTAS DE PIRIMIDINA

Chemotherapeutic Agent	Single-Agent Dosage	Delayed Toxicity ¹
Capecitabine	1250 mg/m²/bid orally for 14 days followed by 1 week of rest. Repeat every 3 weeks.	Diarrhea, hand-and-foot syndrome, myelosup- pression, nausea and vomiting
Cytarabine	100 mg/m²/d for 5–10 days, either by continuous IV infusion or SC every 8 hours.	Nausea and vomiting, bone marrow depression with leukopenia and thrombocytopenia, and cerebellar ataxia
5-Fluorouracil	15 mg/kg/d IV for 5 days by 24-hour infusion; 15 mg/kg weekly IV	Nausea, mucositis, diarrhea, bone marrow depression, and neurotoxicity
Gemcitabine	1000 mg/m² IV weekly for up to 7 weeks followed by 1 week of rest	Nausea, vomiting, diarrhea, myelosuppression

¹These drugs do not cause acute toxicity.

5-FLUOROURACILO. Tratamiento del cáncer colorectal, también tiene actividad contra cáncer de mama, estómago, páncreas, esófago, cuello y cabeza.

CAPECITABINA. Prodroga, se transforma en 5-FU **preferentemente** en las células tumorales. Útil en el tratamiento de cancer de mama metastásico tanto sólo como en combinación con otros agentes (docetaxel)

ANTAGONISTAS DE PIRIMIDINA

CITARABINA (análogo de citosina). Bloquea la síntesis y reparación del DNA (DNA polimerasas α y β , respectivamente). Útil exclusivamente en cáncer de origen hematológico, incluyendo leucemia mielogenosa y linfoma no-Hodgkin.

GEMCITABINA. Produce el efecto antitumoral por dos mecanismos:

- Inhibición de la ribonucleótido reductasa
- 2. Incorporación de gemcitabina trifosfato en el DNA.
 - Inhibición de la síntesis de DNA.

Usado en el tratamiento de cáncer de vejiga y linfoma no-Hodgkin.

ANTIMETABOLITOS Conceptos Clave

- Antimetabolites block or subvert pathways of DNA synthesis.
- Folate antagonists. Methotrexate inhibits dihydrofolate reductase, preventing generation of tetrahydrofolate interfering with
 thymidylate synthesis. Methotrexate is taken up into cells by the folate carrier and, like folate, is converted to the polyglutamate
 form. Normal cells affected by high doses can be 'rescued' by folinic acid. Unwanted effects are myelosuppression and possible
 nephrotoxicity.
- Pyrimidine analogues. Fluorouracil[®] is converted to a 'fraudulent' nucleotide and inhibits thymidylate synthesis. Cytarabine[®] in its trisphosphate form inhibits DNA polymerase. They are potent myelosuppressives.
- Purine analogues. Mercaptopurine^{R₂} is converted into fraudulent nucleotide. Fludarabine in its trisphosphate form inhibits DNA polymerase and is myelosuppressive. Pentostatin^{R₂} inhibits adenosine^{R₃} deaminase-a critical pathway in purine metabolism.

Enzymology of Purine and Pyrimidine Antimetabolites Used in the Treatment of Cancer

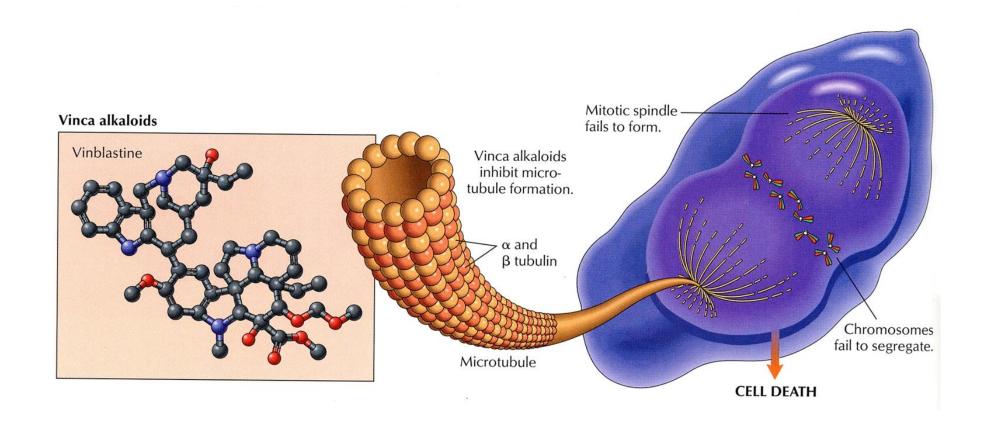
William B. Parker*,†

Southern Research Institute, 2000 Ninth Avenue, South Birmingham, Alabama 35205

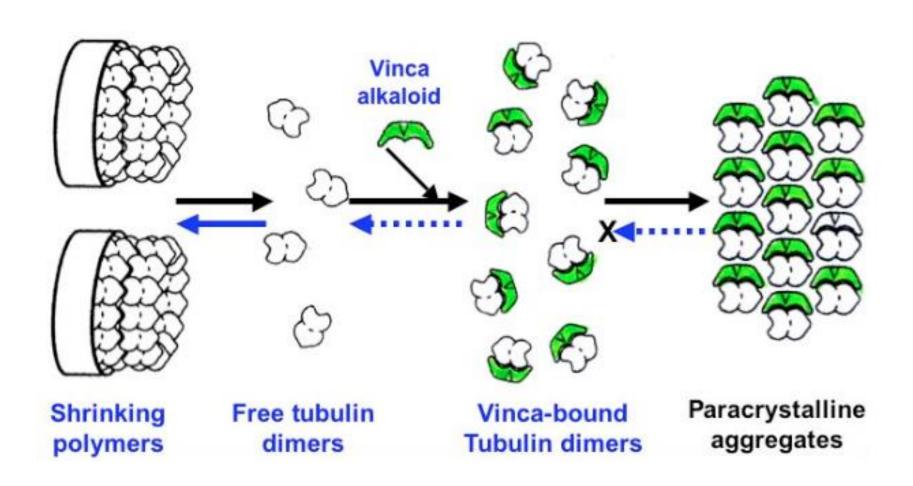
Received January 23, 2009

ALCALOIDES NATURALES

ALCALOIDES DE LA VINCA


Los alcaloides de la vinca es un set de fármacos que son derivados de la planta del bígaro, Catharanthus roseus (también Vinca rosea, Lochnera rosea, y Ammocallis rosea)

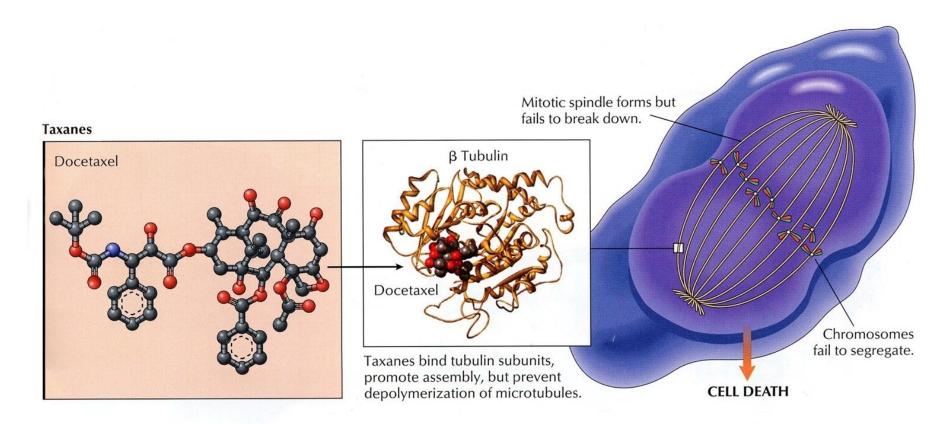
(A)


OH

$$CH_3OCO$$
 CH_3OCO
 CH_3OCO

ALCALOIDES DE LA VINCA Mecanismo de acción

ALCALOIDES DE LA VINCA Mecanismo de acción


ALCALOIDES DE LA VINCA Usos terapeuticos

Drug	Single-Agent Dosage	Acute Toxicity	Delayed Toxicity
Vinblastine	0.1–0.2 mg/kg IV weekly	Nausea and vomiting	Alopecia, loss of reflexes, bone marrow depression
Vincristine	1.5 mg/m² IV (maximum: 2 mg weekly)	None	Areflexia, muscle weakness, peripheral neuritis, paralytic ileus, mild bone marrow depression, alopecia
Vinorelbine	30 mg/m² IV weekly	Nausea and vomiting	Bone marrow depression, fatigue, con- stipation, hyporeflexia, paresthesias

VINCRISTINA. Leucemia en niños. Linfoma de Hodgkin en adultos (politerapia). Riesgo de extravasación.

VINBLASTINA. Útil en linfoma de Hodgkin y no-Hodgkin, cáncer de mama y cáncer de células germinales.

TAXANOS Mecanismo de acción

Taxanos: Docetaxel y Paclitaxel

TAXANOS Usos terapéuticos

Drug	Single-Agent Dosage	Acute Toxicity	Delayed Toxicity
Docetaxel	100 mg/m ² IV over 1 hour every 3 weeks	Hypersensitivity	Neurotoxicity, fluid retention, neutropenia
Paclitaxel	130–170 mg/m² IV over 3 or 24 hours every 3–4 weeks	Nausea, vomiting, hypo- tension, arrhythmias, hypersensitivity	Bone marrow depression, peripheral sensory neuropathy

PACLITAXEL. Tiene actividad contra una amplia gama de tumores, incluyendo ovario, mama, pulmón, cuello y cabeza, esófago, próstata y vejiga.

DOCETAXEL. Fármaco de segunda línea en cáncer de mama avanzado y cáncer pulmonar. También tiene actividad sobre tumores de cuello y cabeza, cáncer gástrico, cáncer de ovario avanzado y vejiga.

CAPTOTEQUINAS

IRINOTECAN Y TOPOTECAN: Se unen a la enzima topoisomerasa I, enzima que está altamente expresada durante todo el ciclo celular; y la inhiben.

Podría observarse diarrea y mielodepresión reversible.

Son fármacos en general bastante seguros y con un buen perfil de efectos adversos.

ANTIBIÓTICOS ANTITUMORALES

ANTRACICLINAS

$$\begin{array}{c} 0 \\ CH_3 \\ O\\ CH_3 \\ O\\ R: \\ -C \\ -CH_3 \\ R: \\ -C \\ -CH_2OH \\ \hline \\ Daunorubicin \\ \end{array}$$

Inhibición de la Topoisomerasa II

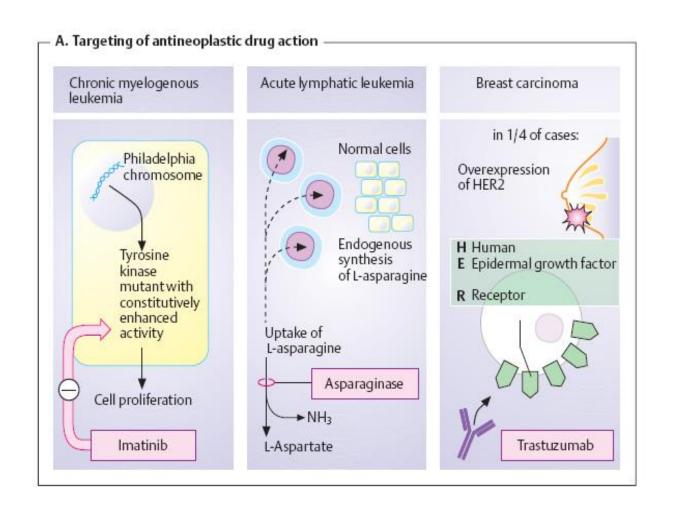
Unión a membranas celulares, alterando la fluidez y el transporte de iones

Generación de radicales libres (proceso reductivo dependiente de Fe)

Intercalación con el DNA, por unión de alta afinidad. Bloqueo de la síntesis de DNA y RNA

ANTRACICLINAS

Drug	Single-Agent Dosage	Acute Toxicity	Delayed Toxicity
Daunorubicin (daunomycin)	30–60 mg/m² daily IV for 3 days, or 30–60 mg/m² IV weekly	Nausea, fever, red urine (not hematuria)	Cardiotoxicity (see text), alopecia, bone marrow depression
Doxorubicin (Adriamycin)	60 mg/m² daily IV for 3 days, or 30–60 mg/m² IV weekly	Nausea, red urine (not hematuria)	Cardiotoxicity (see text), alopecia, bone marrow depression, stomatitis
Idarubicin	12 mg/m ² IV daily for 3 days (with cytarabine)	Nausea and vomiting	Bone marrow depression, mucositis, ca

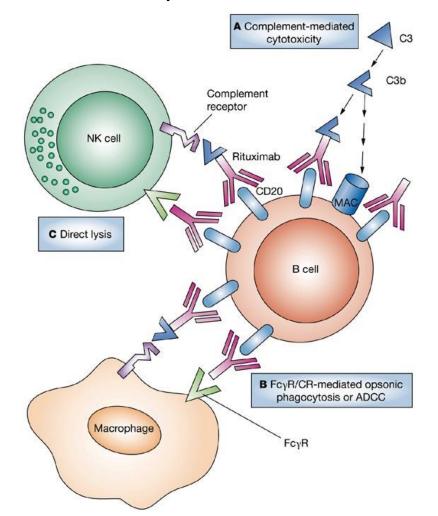

CARDIOTOXICIDAD.

Aguda (primeros 2-3 días): Arritmias, anormalidades en la conducción, cambios en el ECG. Generalmente es asintomático.

Crónica: Cardiomiopatía dilatada dosis dependiente, asociada a insuficiencia cardiaca.

Disminución de dosis o infusión constante permiten disminuir toxicidad.

NUEVAS APROXIMACIONES EN TRATAMIENTO DEL CÁNCER

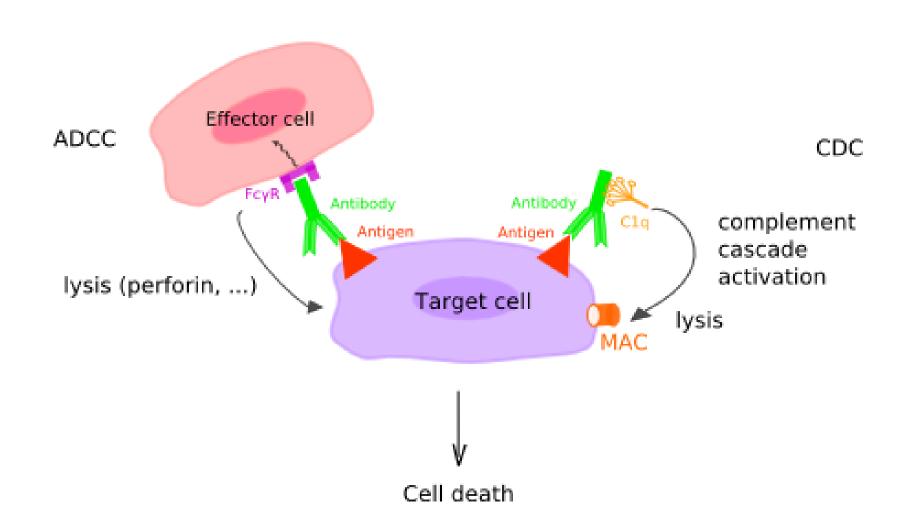

• Son inmunoglobulinas.

Algunos son humanizados.

• En algunos casos por las células NK.

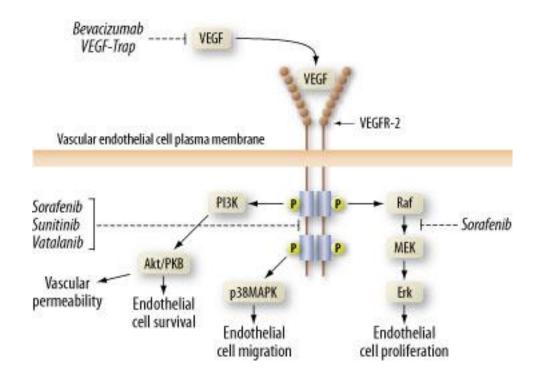
• Otros anticuerpos inhiben la vías de supervivencia celular y promueven la apoptosis.

• **Rituximab:** Es un anticuerpo monoclonal aprobado (en combinación con otros agentes quimioterapéuticos) para el tratamiento de ciertos tipos de linfoma.



Rituximab:

Es eficaz en el 40-50% de los casos cuando se combina con la quimioterapia estándar.


El fármaco se administra por infusión, y su vida media en plasma es de aproximadamente 3 días en los que administra por primera vez, aumentando con cada administración a cerca de 8 días por la cuarta administración.

Los efectos adversos incluyen hipotensión, escalofríos y fiebre durante las infusiones iniciales y posteriores reacciones de hipersensibilidad. Se ha observado una reacción de liberación de citoquinas lo que es fatal. El medicamento puede exacerbar los trastornos cardiovasculares.

BEVACIZUMAB

 Bevacizumab se une al factor de crecimiento del endotelio vascular (VEGF), inhibiendo así la unión de éste a sus receptores Flt 1 (VEGFR 1) y KDR (VEGFR 2), situados en la superficie de las células endoteliales. Al neutralizar la actividad biológica del VEGF se reduce la vascularización de los tumores y, por tanto, se inhibe el crecimiento del tumor.

BEVACIZUMAB

Bevacizumab

- se utiliza para el tratamiento del cáncer de colon o recto avanzado. Este medicamento se administra con quimioterapia que contenga 5-fluorouracilo y ácido folínico.
- Irinotecan también puede ser parte de la quimioterapia.
- Bevacizumab se utiliza también para el tratamiento del cáncer de mama metastásico.
- En pacientes con cáncer de mama, se administrará con un paclitaxel.
- Bevacizumab se utiliza también para el tratamiento del cáncer de pulmón no microcítico avanzado, por lo general se administrará junto con un régimen de quimioterapia con platino.

 Alemtuzumab es otro anticuerpo monoclonal que destruye los linfocitos B, y se utiliza en el tratamiento de la leucemia linfocítica crónica resistente. También puede causar una reacción de liberación de citoquinas similar a la que se observa con rituximab.

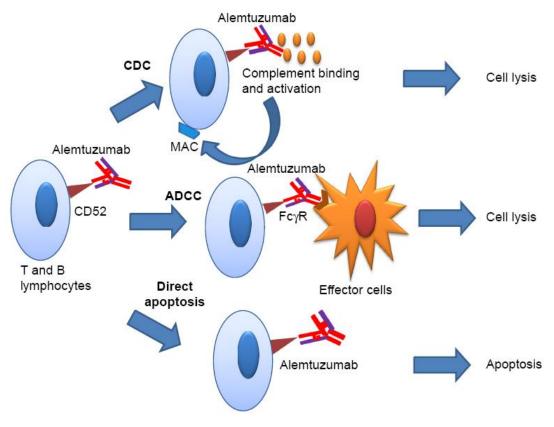
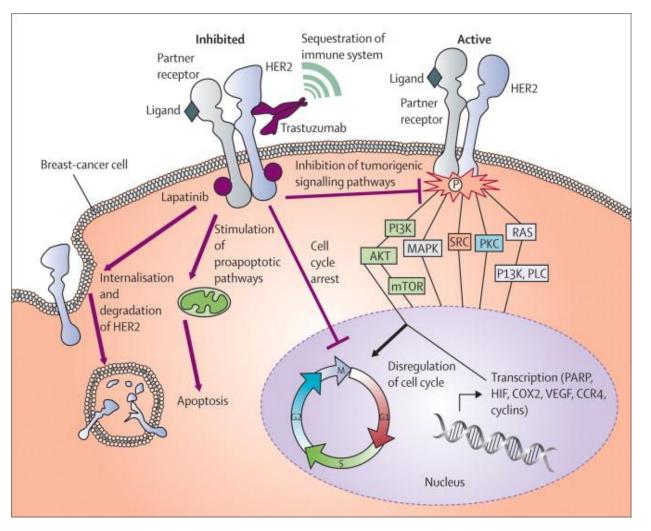



Figure I Alemtuzumab-mediated cytolysis and apoptosis of T- and B-lymphocytes.

Abbreviations: ADCC, antibody-dependent cell-mediated cytotoxicity; CDC, complement-dependent cytotoxicity; MAC, membrane attack complex; FcγR, Fc-gamma receptor.

- Trastuzumab: es un anticuerpo monoclonal murino humanizado que se une a una proteína llamada HER2/neu (receptor humano del factor de crecimiento epidérmico 2), un receptor con actividad tirosina quinasa.
- Hay evidencia de que, además de inducir las respuesta inmune del huésped, trastuzumab induce los inhibidores del ciclo celular p21 y p27.
- Las células tumorales, en el 25% de los pacientes con cáncer de mama, sobre expresan este receptor.
- Los primeros resultados muestran que el trastuzumab se administra con la quimioterapia estándar se ha traducido en una tasa de supervivencia del 79% al cabo de 1 año en pacientes sin tratamiento previo.
- se coadministra generalmente con un taxano, como docetaxel.
- Los efectos adversos son similares a aquellos con rituximab.

Trastuzumab: es un anticuerpo monoclonal murino humanizado que se une a una proteína llamada HER2/neu (receptor humano del factor de crecimiento epidérmico 2), un receptor con actividad tirosina quinasa.

Fármacos aprobados por la FDA para cáncer oral

Name	Indications (year of first approval)[15]	
Unconjugated		
antibodies		
Cemiplimab	Cutaneous squamous cell carcinoma (2018)	
Cetuximab	Colorectal cancer (2004)	
	Head-and-neck squamous cell carcinoma (2006)	
Ipilimumab	Melanoma (2011), renal cell carcinoma (2018)	
Nivolumab	Melanoma (2014), lung (2015), and renal (2018) cancers	
Olaratumab	Sarcoma (2016)	
Rituximab	B cell lymphoma (1997)	
ADCS		
Polatuzumab vedotin	B cell lymphoma (2019)	
Ibritumomab tiuxetan	Non-Hodgkin's lymphoma (2002)	
Iodine (I131) tositumomab	Non-Hodgkin's lymphoma (2003)	
Blinatumomab	Acute lymphoblastic leukemia (2014)	

ADCS=Antibody-drug conjugates, FDA=Food and Drug Administration

REVIEW ARTICLE

Open Access

Beyond EGFR inhibition: multilateral combat strategies to stop the progression of head and neck cancer

Hyung Kwon Byeon 61,23, Minhee Ku3,4,5 and Jaemoon Yang3,4,5

Abstract

Epidermal growth factor receptor (EGFR) overexpression is common in head and neck squamous cell carcinoma. Targeted therapy specifically directed towards EGFR has been an area of keen interest in head and neck cancer research, as EGFR is potentially an integration point for convergent signaling. Despite the latest advancements in cancer diagnostics and therapeutics against EGFR, the survival rates of patients with advanced head and neck cancer remain disappointing due to anti-EGFR resistance. This review article will discuss recent multilateral efforts to discover and validate actionable strategies that involve signaling pathways in heterogenous head and neck cancer and to overcome anti-EGFR resistance in the era of precision medicine. Particularly, this review will discuss in detail the issue of cancer metabolism, which has recently emerged as a novel mechanism by which head and neck cancer may be successfully controlled according to different perspectives.

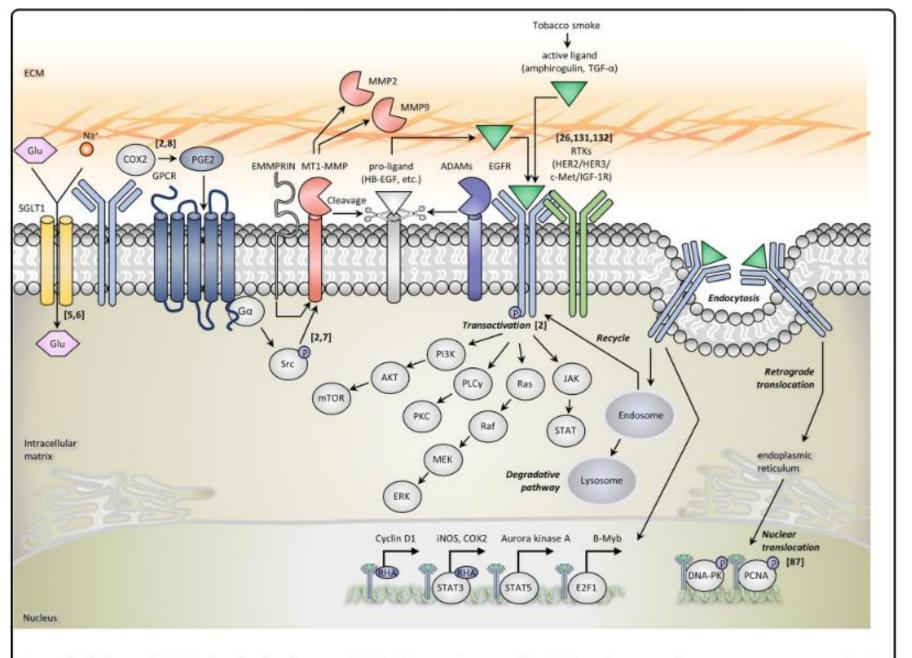
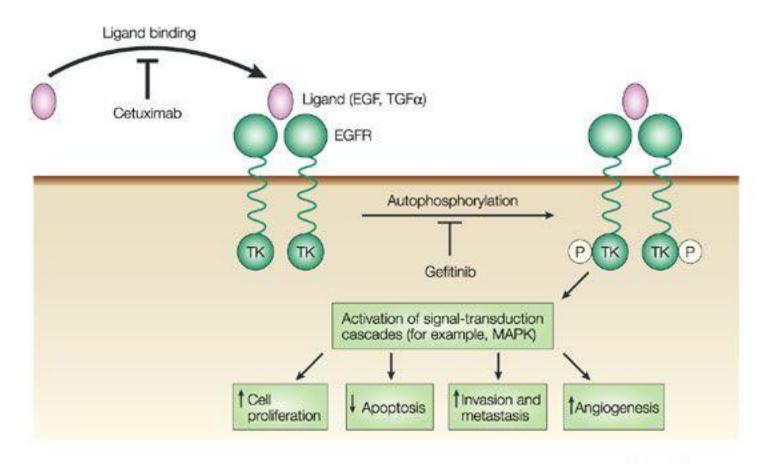
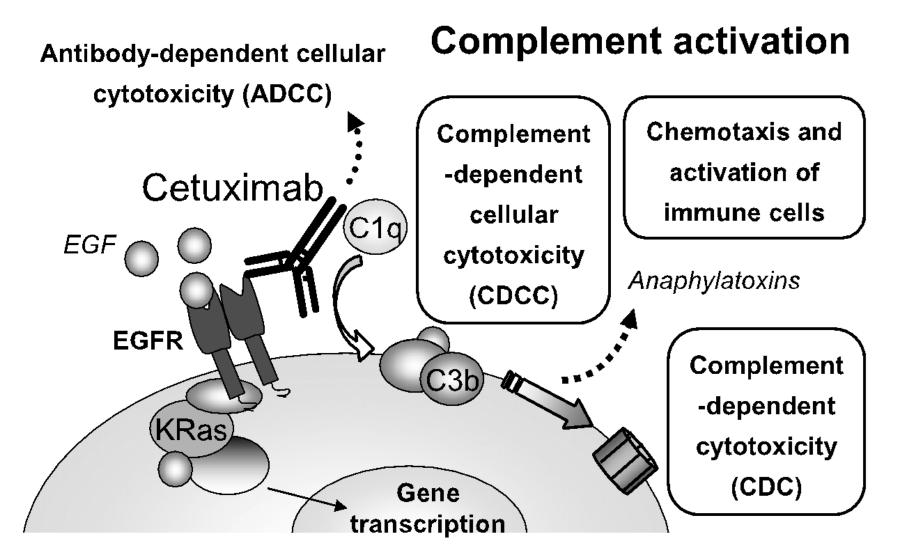
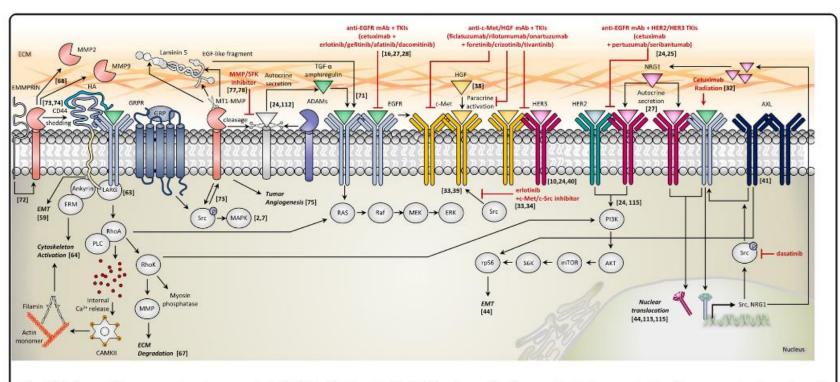



Fig. 1 The biology of EGFR in head and neck cancer (HNC). Schematic diagram of the EGFR signaling network, its various interactions and mode of actions according to cellular localization. Numbers indicate relevant references in the text

Nature Reviews | Drug Discovery




Table 2: Adverse events related to cetuximab

Toxicity	Grade I/II (%)	Grade III (%)
Skin rash	9 (47.3%)	2 (10.5%)
Diarrhea	4 (21%)	1 (5.3%)
Infusion reaction	2 (10.5%)	0
Fatigue	2 (10.5%)	0
Nail changes	1 (5.3%)	0
Hypomagnesaemia	2 (10.5%)	0
Nausea	2 (10.5%)	0
Vomiting	1 (5.3%)	0

CBT: cetuximab based therapy

Table 1 Resistance mechanisms to anti-EGFR monoclonal antibodies

Major mechanisms	Action	References
Overexpressions of EGFR/	Overexpressions of EGFR and TGF-a	24,112
Dysregulation of EGFR internalization and degradation by ubiquitination	EGFR is downregulated but its affinity to other activating signals are strengthened	24,113
MDG1 binding	MDG1-bound intracellular EGFR avoids extracellular targeting	114
Nuclear translocation of EGFR	Transcription of multiple genes or directly phosphorylates PCNA and DNA-PK	87
Enhanced SFK-mediated signaling	Promotion of EGFR nuclear translocation	113,115
EGFRVIII	Constitutively activated EGFR in a ligand- independent manner	116
KRAS mutation	Constant activation of EGFR downstream signals	117
PTEN loss	PI3K/AKT signal activation	117
Increased heterodimerization of EGFR or HER2 with HER3	PI3K/AKT pathway signal enhanced	24,115
Crosstalks	Crosstalk with HGF-MET	24,37
	Crosstalk with VEGF-VEGFR1	118,119
EMT	Local invasion and distant metastasis	120

Fig. 2 Major resistance mechanisms against EGFR inhibition in HNC. This schematic diagram illustrates reported resistance mechanisms to anti-EGFR monoclonal antibodies (mAbs) or tyrosine kinase inhibitors (TKIs) that are relevant in HNC. Inhibitors of specific targets are highlighted in red. Numbers indicate relevant references in the text

Cetuximab Usos

- SCCHN
- Cáncer colo-rectal EGFR positivo

Review

Revolutionization in Cancer Therapeutics via Targeting Major Immune Checkpoints PD-1, PD-L1 and CTLA-4

Pratibha Pandey ¹, Fahad Khan ^{1,*}, Huda A. Qari ², Tarun Kumar Upadhyay ³, Abdulhameed F. Alkhateeb ⁴ and Mohammad Oves ^{5,*}

scientific reports

OPEN Correlation of PD-1 and PD-L1 expression in oral leukoplakia and oral squamous cell carcinoma: an immunohistochemical study

L. R. Greeshma^{□1⊠}, Anna P. Joseph^{□1}, T. T. Sivakumar¹, Varun Raghavan Pillai^{□1} & Gopikrishnan Vijayakumar 62

The programmed cell death protein (PD-1)/programmed cell death protein ligand (PD-L1) pathway and cytotoxic T lymphocyte antigen are the most important co-stimulatory molecules that play a key role in the negative regulation of T cells during carcinogenesis. We aimed to evaluate the immunohistochemical expression of PD-1 and PD-L1 in oral leukoplakia and squamous cell carcinoma compared with normal oral mucosa. Twenty-five cases of oral squamous cell carcinoma, oral leukoplakia and normal oral mucosa tissue specimens were immunohistochemically stained to assess PD-1 and PD-L1 expression. The PD-L1 positivity of subepithelial TAFs (p < 0.001) increased with increasing grades of oral leukoplakia. Pearson's correlation indicated a high positive correlation between the PD-L1 labelling index of epithelial tumour cells and the PD-1 labelling index of tumour infiltrating lymphocytes (p value: 0.005) in OSCC. A high positive correlation was noted between the H-score of PD-L1 positive tumour epithelial cells and the H-score of PD-1 positive tumour infiltrating lymphocytes in OSCC (p value: 0.001). PD-L1 positivity increased in dysplastic epithelial cells from premalignant lesions to malignancy. The sub-epithelial PD-L1 positive TAFs were higher in oral leukoplakia compared to OSCC inferring that PD-L1 positivity in TAFs decreased with malignant

ANTICUERPOS MONOCLONALES anti PD-1 y PDL-1

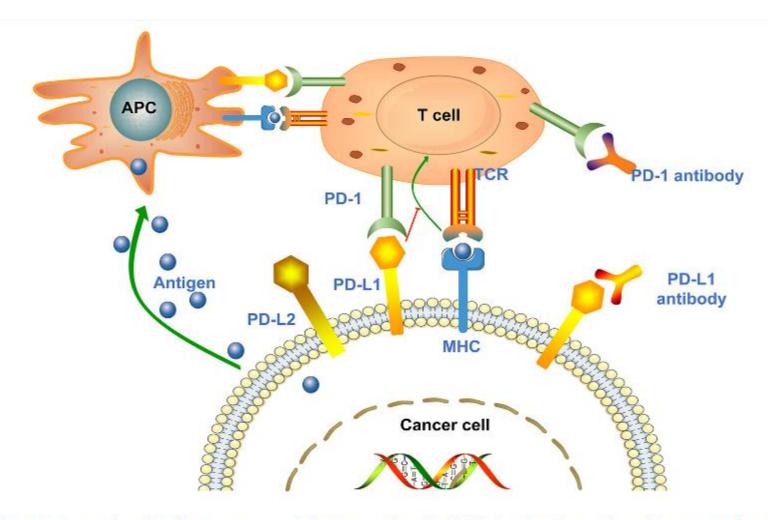


FIGURE 1 | Mechanisms of cancer cell mediated immune escape. Antigen presenting cells (APCs) absorb antigens released by cancer cells and present them to T cells to promote T cells activation and high expression of PD-1. Upon T cell activation, the PD-1 receptor binds to PD-L1/PD-L2 expressed on the surface of cancer cells and suppresses the immune response. In addition, tumor cells can also present antigens directly to activated T cells in the context of MHC. Anti-PD-1/PD-L1 antibodies can block the above process and enhance the body's immune response.

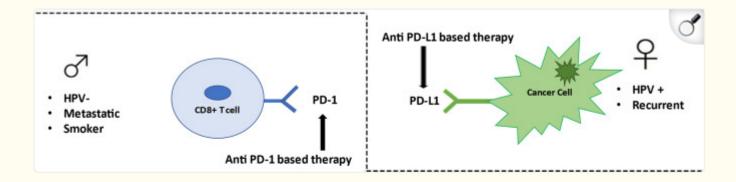
ANTICUERPOS MONOCLONALES anti PD-1 y PDL-1

Drug; Target	Brand name; Marketed by	Approved indications*	Recommended dose & Route*
Nivolumab	Ondivo: Bristol-	Metastatic melanoma,	For melanoma, NSCLC, RCC, &
Anti-PD-1	Opdivo; Bristol- Myers Squibb	Metastatic Non-small cell lung cancer (NSCLC),	For melanoma, NSCLC, RCC, & urothelial carcinoma: 240 mg IV infusion for every 2 weeks until disease progression or toxicity
		Renal cell carcinoma (RCC),	For Classical Hodgkins lymphoma
		Classical Hodgkins lym- phoma,	& HNSCC: 3 mg/kg IV infusion for every 2 weeks until disease pro-
		Head and Neck Squa- mous cell carcinoma (HNSCC),	gression or toxicity
		Urothelial Carcinoma Microsoft Himalaya	
Pembrolizumab Anti-PD-1	Keytruda; Merck	Metastatic melanoma, Metastatic NSCLC,	For NSCLC, classical Hodgkins lym- phoma & HNSCC: 200 mg IV infu-
7414.752		Classical Hodgkins lym- phoma,	sion for every 2 weeks until dis- ease progression, toxicity or up to 24 months
		HNSCC	2 7 1110113115
		Microsoft Himalaya	For melanoma: 2 mg/kg IV infusion for every 3 weeks until disease progression or toxicity
Atezolizumab	Tecentrig; Genen- tech/Roche	Urothelial carcinoma, Metastatic NSCLC	1200 mg IV infusion for every 3
Anti-PD-L1	tecn/Rocne	Metastatic NSCLC	weeks until disease progression or toxicity
Avelumab	Bavencio; Pfizer	Merkel cell carcinoma,	10 mg/kg IV infusion for every 2
Anti-PD-L1		Metastatic urothelial carcinoma	weeks until disease progression or toxicity
Durvalumab	Imfinzi; Astrazene-	Metastatic urothelial carcinoma	10 mg/kg IV infusion for every 2
Anti-PD-L1	са	Carcillottia	weeks until disease progression or toxicity

▶ Front Immunol. 2021 Aug 9;12:705096. doi: 10.3389/fimmu.2021.705096 🔀

Anti-PD-1 and Anti-PD-L1 in Head and Neck Cancer: A Network Meta-Analysis

Andrea Botticelli ¹, Alessio Cirillo ^{2,*}, Lidia Strigari ³, Filippo Valentini ², Bruna Cerbelli ², Simone Scagnoli ²,


Edoardo Cerbelli ², Ilaria Grazia Zizzari ⁴, Carlo Della Rocca ⁵, Giulia D'Amati ², Antonella Polimeni ⁶, Marianna

Nuti ⁴, Marco Carlo Merlano ⁷, Silvia Mezi ^{2,†}, Paolo Marchetti ^{1,†}

▶ Author information ▶ Article notes ▶ Copyright and License information

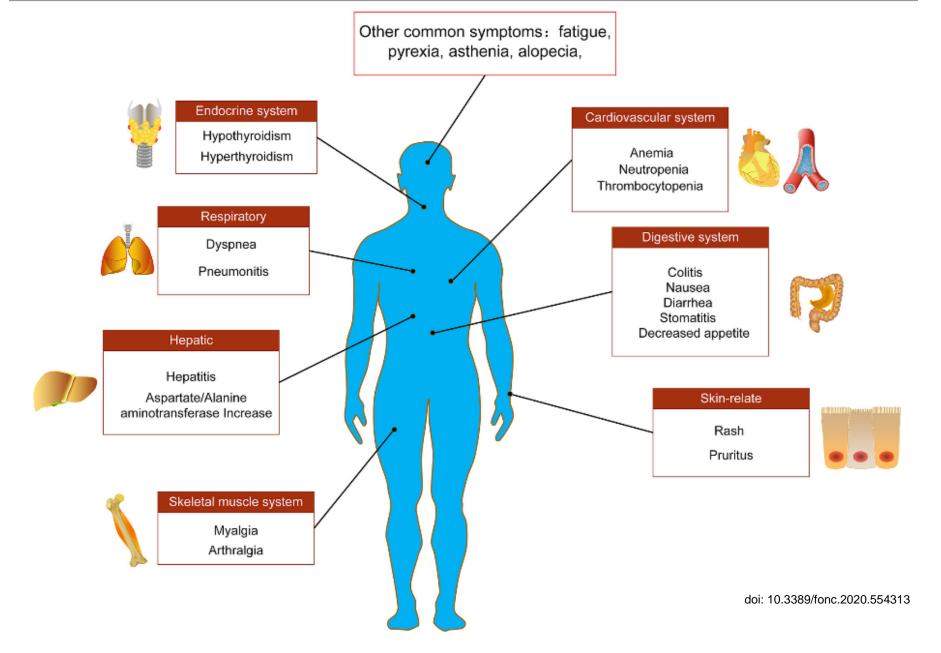

PMCID: PMC8380817 PMID: 34434192

Figure 4.

Open in a new tab

Anti-PD-1/PD-L1 therapy in HN cancer. Anti-PD-1-based therapy appears to be effective in metastatic patients, smoker patients, and HPV-negative patients. Conversely anti-PD-L1-based therapy seems to be better efficient in female patients, in recurrent setting, and in HPV positive patients.

Main adverse events of PD-1/PD-L1 immunotherapy. Adverse events associated with PD-1/PD-L1 immune checkpoint inhibitors in the treatment of NSCLC involve multiple tissues and organs, including endocrine system, respiratory system, digestive system, cardiovascular system, skeletal muscle system, liver, and skin-related adverse reactions

ANTICUERPOS MONOCLONALES ANTI-CTLA-4

Mechanism of action of ipilimumab. T cell activation requires stimulation through both the TCR and CD28. Binding of B7 family member proteins to CTLA-4 inhibits T cell function. Notably, CTLA-4 expression increases in parallel with TCR stimulation, thereby serving as a break on T cell responses. Anti–CTLA-4 antibodies such as ipilimumab block CTLA-4 binding to B7 proteins and prevent inhibition of T cell function.

Tabla 44-5
Anticuerpos Monoclonales actualmente aprobados en oncología y sus mecanismos de acción

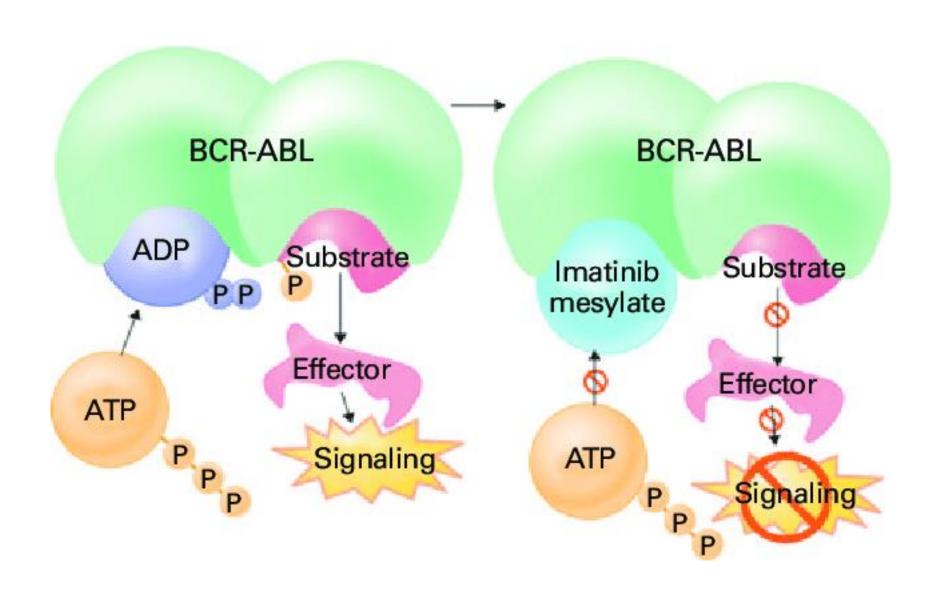
acción					
Anticuerpo	Blanco	Indicación aprobada por la FDA	Mecanismo de acción		
Anticuerpos: tumores solidos					
Trastuzumab (Herceptin; Genentech): humanizado IgG1	ERBB2	Cáncer de mama ERBB2 positivo, mono terapia o en combinación con quimioterapia para terapia adyuvante o terapia paliativa. Carcinoma gástrico o gastro-esofágico ERBB2 positivo como tratamiento de primera línea en combinación con cisplatino y capecitbina o 5-fluorouracilo	Inhibición de ERBB2 y la señalización de ADCC		
Bevacizumab (Avastin; Genentech/ Roche): humanizado IgG1	VEGF	Primera línea y segunda línea en el tratamiento de cáncer de cólon metastásico, en conjunto con 5-fluorouracilo; como primera línea en el tratamiento de NSCLC avanzado, en combinación con carboplatino y plaquitaxel, en pacientes que no han recibido quimioterapia; como monoterapia en pacientes adultos con glioblastoma cuyo tumor a progresado luego del tratamiento inicial; en combinación con INFa para el tratamiento de cáncer metastásico renal.	Inhibición de la señalización de VEGF		
Cetuximab (Erbitux; Bristol- Myers Squibb): IgG1quiimerica humana–murina	EGFR	En combinación con la radioterapia para el tratamiento inicial de la SCCHN localmente o regionalmente avanzado; como agente único en pacientes con SCCHN para quienes la terapia previa basada en platino ha fallado; y tratamiento paliativo del cáncer colorrectal metastásico EGFR-positivo pretratado	Inhibición de EGFR y la señalización de ADCC		
Ipilimumab (Yervoy; Bristol- Myers Squibb): IgG1	CTLA4	Para el tratamiento de melanoma no operable o metastásico	Inhibición de la señalización de CTLA4		
Panitumumab (Vectibix; Amgen): IgG2 humana	EGFR	Como agente único para el tratamiento del carcinoma colorrectal metastásico pretratados que expresan EGFR	Inhibición de la señalización de EGFR		
Anticuerpos : oncohematologías					
Rituximab (Mabthera; Roche): IgG1quiimerica humana– murina	CD20	Para el tratamiento de las células CD20-positivas en NHL y CLL, y para la terapia de mantenimiento para el LNH folicular CD20-positivo sin tratar	ADCC, inducción directa de apoptosis y CDC		
Ofatumumab (Arzerra; Genmab): IgG1	CD20	Tratamiento de pacientes con CLL refractaria a fludarabina y alemtuzumab	AADC y CDC		

Ofatumumab (Arzerra; Genmab): IgG1 humana	CD20	Tratamiento de pacientes con CLL refractaria a fludarabina y alemtuzumab	AADC y CDC
Alemtuzumab (Campath; Genzyme): humanized IgG1	CD52	Como agente único para el tratamiento de células B en leucemia linfocítica crónica	Inducción directa de apoptosis y CDC
Anticuerpos conju	igados: ond	ochematologías	
ibritumomab tiuxetan marcado con ⁹⁰ Y- (Zevalin; IDEC Pharmaceuticals) : IgG1 murino	CD20	El tratamiento de la recaída o refractario, de bajo grado o folicular de células B en NHL NHL folicular Anteriormente no tratada en los pacientes que a lograr una respuesta parcial o completa a la de quimioterapia primera-línea	Liberación del radioisótopo ⁹⁰ Y
Tositumomab marcado con ¹³¹ I (Bexxar; GlaxoSmithKline) : IgG2 murino	CD20	Tratamiento de los pacientes con LNH que expresan el antígeno CD20 en recaída o refractario, de bajo grado, folicular o transformado	Entrega del radioisótopo ¹³¹ I, ADCC y la inducción directa de la apoptosis

ADCC, citotoxicidad celular dependiente de anticuerpos; CDC, la citotoxicidad dependiente del complemento; CLL, leucemia linfocítica crónica; CTLA4, linfocitos T citotóxicos asociado a antígeno 4; EGFR, receptor del factor de crecimiento epidérmico; FDA, Administración de Alimentos y Drogas; IgG, inmunoglobulina G; INFα; interferón-α; NHL, linfoma no Hodgkin; NSCLC, cáncer de pulmón de células no pequeñas; SCCHN, carcinoma de células escamosas de cabeza y cuello; VEGF, factor de crecimiento endotelial vascular. Adaptada de Fabbro et al 2015, British Journal of Pharmacology, **172**, 2675–2700.

EA de anticuerpos monoclonales

Drugs	Systemic effects	Cutaneous effects
Cetuximab	Infusion reactions, cardiopulmonary arrest, gastrointestinal symptoms, pulmonary toxicity, and hypomagnesemia	Rash/desquamation, acneiform rash, nail changes, and pruritus
Cemiplimab	Hypothyroidism, pneumonitis, hepatitis, hyperthyroidism, arthralgia, muscle weakness, anemia, colitis, and adrenal insufficiency	Dry skin, pruritis, maculopapular rash, Stevens-Johnson syndrome (less common but severe), and toxic epidermal necrolysis
Ipilimumab	Immune-mediated reactions due to T cell activation, adrenal insufficiency, hepatitis, neutropenia, hypopituitarism, laryngospasm, colitis, pancreatitis, and uveitis	Dermatitis, pruritus and rash, Steven-Johnson syndrome, and skin eruptions
Rituximab	Infusion reactions, renal toxicity, cardiopulmonary events, bowel obstruction/perforation, cytopenia, and anaphylaxis	Paraneoplastic pemphigus, rash, pruritus, angioedema, Steven-Johnson syndrome, and toxic epidermal necrolysis
Nivolumab	Lymphopenia, hepatitis with/without tumor involvement of the liver, nephritis, and neurological toxicities	Rash, pruritus, vitiligo, and exfoliative dermatologic condition
Olaratumab	Musculoskeletal pain, neutropenia, mucositis, alopecia, and infusion-related reactions	Rash
Ibritumomab	Infusion reactions, severe cytopenia, secondary malignancies, radiation necrosis, and asthenia	Exfoliative dermatitis, Steven–Johnson syndrome, and toxic epidermal necrolysis
Tositumomab	Anaphylaxis, severe cytopenia, infusion reactions, hypothyroidism, secondary malignancies, pneumonia, and pleural effusion	Rash, pruritus, sweating, and dermatitis
Blinatumomab	Febrile neutropenia, abdominal pain, anemia, arrhythmia, hyperglycemia, dyspnea, insomnia, dizziness, thrombocytopenia, chest pain, pain in extremity, bone pain, and altered state of consciousness	Rash
Polatuzumab vedotin	Peripheral neuropathy, decreased calcium, phosphorus, potassium, lipase increased, pneumonia, dyspnea, infusion-related reactions, respiratory tract infection, hypoalbuminemia, and herpes virus infection	


DOI: 10.4103/jss.jss_397_23

Inhibidores de TK (TKI)

IMATINIB

- Imatinib: imatinib es una molécula pequeña inhibidora de las vías de señalización de quinasas.
- No sólo inhibe el factor de crecimiento derivado de plaquetas (un receptor tirosina quinasa), Sino también una quinasa citoplasmática (Bcr / Abl quinasa).
- Considerado un único factor en la patogénesis de la leucemia mieloide crónica.
- Está autorizado para el tratamiento de este tumor cuando este ha demostrado ser resistente a otras estrategias terapéuticas, así como para el tratamiento de algunos tumores gastrointestinales no susceptibles de cirugía.

IMATINIB

IMATINIB

- El medicamento se administra por vía oral.
- La absorción es casi completa, pero la unión a proteínas plasmáticas es alta (95%).
- La vida media es larga, aproximadamente 18 horas, y el sitio principal de metabolismo es en el hígado, donde aproximadamente el 75% de la droga se convierte en un metabolito que también es biológicamente activo.
- La mayor parte (81%) del fármaco metabolizado se excreta por las heces.

Los efectos adversos incluyen síntomas gastrointestinales (dolor, diarrea, náuseas), fatiga, dolores de cabeza y a veces erupciones cutáneas.

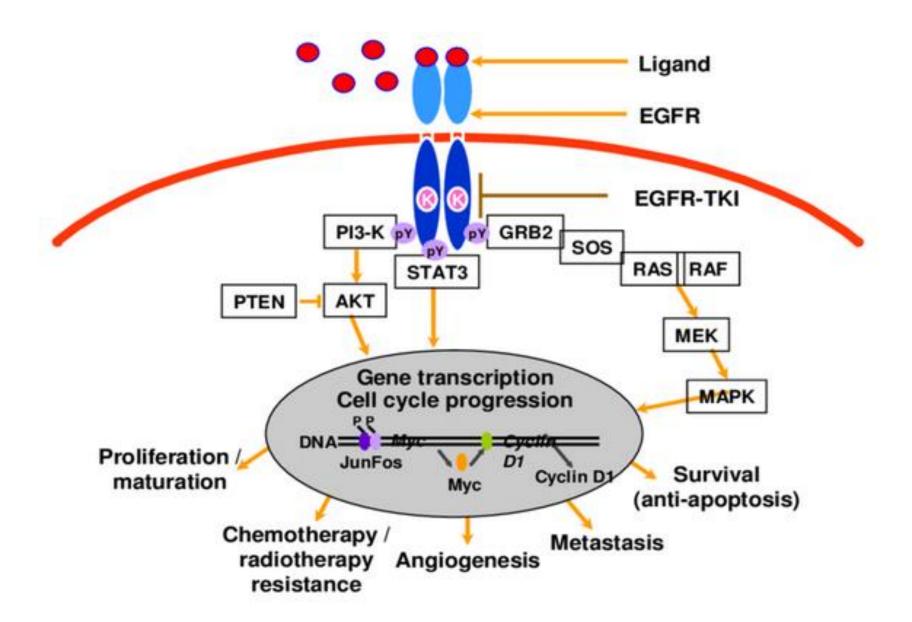
HHS Public Access

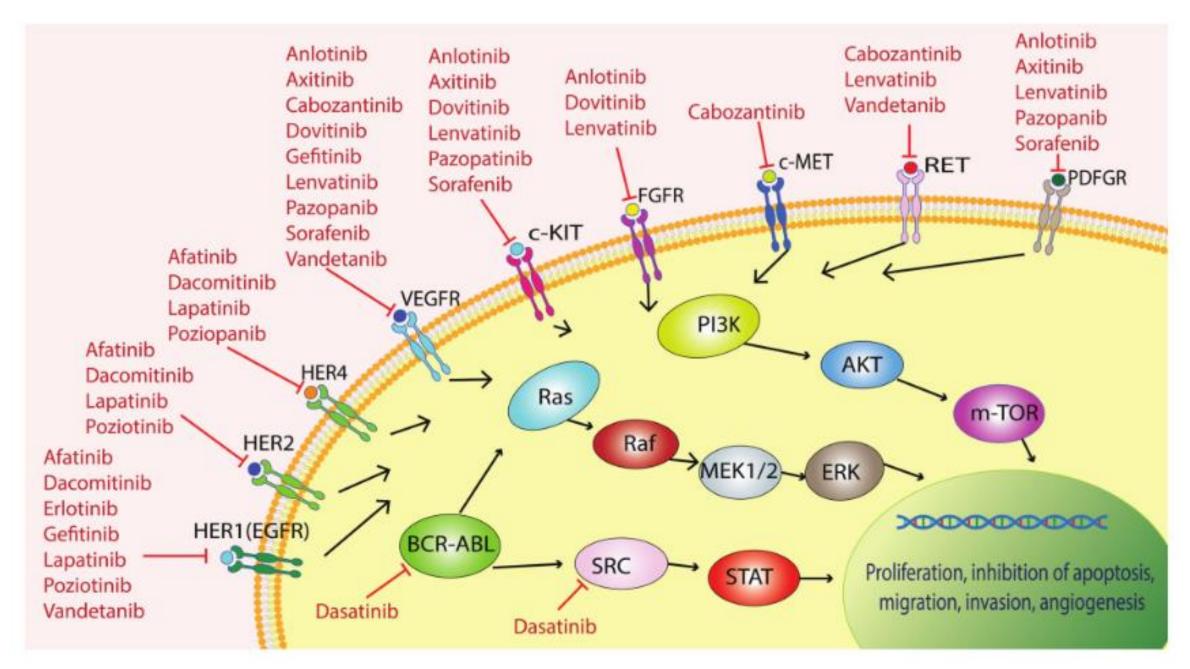
Author manuscript

Expert Opin Emerg Drugs. Author manuscript; available in PMC 2023 September 21.

Published in final edited form as:

Expert Opin Emerg Drugs. 2022 September; 27(3): 333-344. doi:10.1080/14728214.2022.2125954.


Emerging tyrosine kinase inhibitors for head and neck cancer


Zhen Long,

Jennifer R. Grandis,

Daniel E. Johnson*

Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, California, USA

TKI en cáncer Oral

Erlotinib: Como un TKI de primera generación, el erlotinib inhibe competitivamente la actividad de la tirosina quinasa de EGFR. Los ensayos clínicos han demostrado su eficacia en pacientes con CCO, particularmente en aquellos con sobreexpresión o mutaciones de EGFR. Sin embargo, su efectividad puede ser limitada por el desarrollo de resistencia a los medicamentos.

Gefitinib: Al igual que el erlotinib, gefitinib es un inhibidor de EGFR de primera generación que ha mostrado actividad en modelos preclínicos y ensayos clínicos de cáncer oral. Su eficacia puede variar dependiendo de las características del paciente y los perfiles moleculares del tumor.

Afatinib: El afatinib es un inhibidor irreversible de EGFR de segunda generación que se une covalentemente al dominio de la tirosina quinasa del receptor, lo que lleva a la inhibición sostenida de la señalización de EGFR. Los estudios clínicos han demostrado su actividad antitumoral en pacientes con CCO, incluidos aquellos con resistencia adquirida a los TKI de primera generación

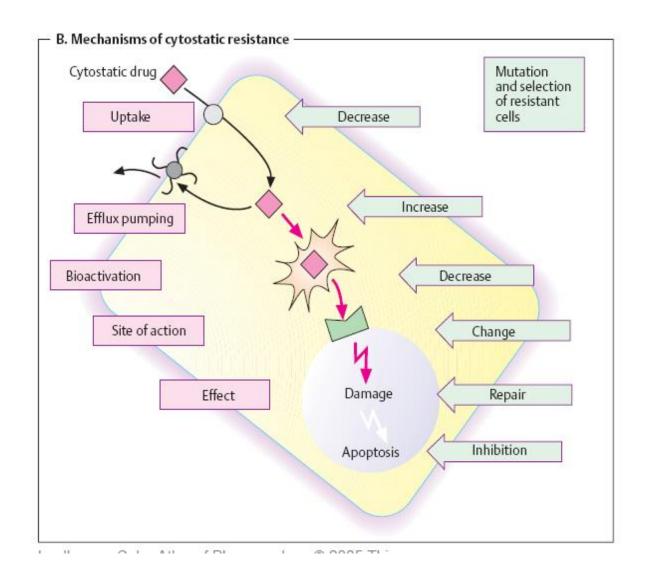
Compound	Company	Monotherapy or combination agent	Indication	Stage of development	Clinical trial NCT#	Molecular target(s)
Afatinib	Boehringer	Pembrolizumab	HNSCC	Phase 2	03695510	HER1 (EGFR), HER2,
	Ingelheim	Cetuximab	HNSCC	Phase 2	02979977	HER4
		Monotherapy	HNSCC	Phase 3	02131155	
		Monotherapy	HNSCC	Phase 3	01856478	1
		Radiation	HNSCC	Phase 1	01783587	
		Monotherapy	HNSCC	Phase 3	01427478	
		Monotherapy	HNSCC	Phase 2	01415674	
		Monotherapy	HNSCC	Phase 2	03088059	
Anlotinib	Jiangsu Chia-	Chemoradiation	HNSCC	Phase 4	04507035	VEGFR1-3, FGFR1-4,
	Tai Tianqing Pharma	Pembrolizumab	HNSCC	Phase 2	04999800	PDGFR, c-KIT
		Monotherapy	Head and neck adenocarcinomas	Phase 2	04910854	
		Chemoradiation	Nasophar-yngeal carcinoma	Phase 2	05232552	
		Toripalimab	Nasophar-yngeal carcinoma	Phase 2	04996758	
		Monotherapy	Nasophar-yngeal carcinoma	Phase 2	03906058	
Axitinib	Pfizer	Monotherapy	HNSCC	Phase 2	02762513	VEGFR1-3, PDGFR,
		Monotherapy	Salivary gland cancers	Phase 2	02857712	c-KIT
Cabozantinib	Excelixis	Nivolumab	HNSCC & melanoma	Phase 2	05136196	VEGFR2, RET, c-MET,
		Atezoluzumab	Solid tumors (HNSCC)	Phase 1/2	03170960	
		Pembrolizumab	HNSCC	Phase 2	03468218	
		Cetuximab	HNSCC	Phase 1	03667482	1
		Nivolumab	Advanced cancers (HNSCC)	Phase 1	04514484	
Dacomitinib	Pfizer	Monotherapy	HNSCC	Phase 2	00768664	HER1 (EGFR), HER2,
		Monotherapy	Solid tumors (HNSCC)	Phase 2	04946968	HER4
Dasatinib	Bristol-Myers Squibb	Monotherapy	Solid tumors (HNSCC), multiple myeloma, lymphoma	Phase 2	02465060	BCR-ABL, SRC family kinases
Erlotinib	Genentech	Monotherapy	HNSCC	Phase 1	00954226	HER1 (EGFR)
		Monotherapy	HNSCC	Phase 2	00076310	1
		+/- chemotherapy	HNSCC	Phase 2	01927744]
		Monotherapy	HNSCC	Phase 1	00079053]
		+/- celecoxib	HNSCC	Phase 2	02748707	1
		Chemoradiation	HNSCC	Phase 3	00442455	1

Compound	Company	Monotherapy or combination agent	Indication	Stage of development	Clinical trial NCT#	Molecular target(s)	
		Monotherapy	HNSCC (oral cancer)	Phase 3	00402779		
		Chemotherapy	HNSCC	Phase 2	01064479		
		Chemotherapy	Nasophar-yngeal carcinoma	Phase 2	00603915		
Gefitinib	Astra Zeneca	Chemoradiation	HNSCC	Phase 2	01185171	HER1 (EGFR)	
Lapatinib	GSK	Chemotherapy	HNSCC	Phase 2	01711658	HER1 (EGFR), HER2	
		Capecitabine	HNSCC	Phase 2	01044433		
		Chemotherapy	HNSCC	Phase 2	01612351		
Lenvatinib	Easai	GI-101	Solid tumors (HNSCC)	Phase 1/2	04977453	VEGFR1-3, FGFR1-4, c-KIT, PDGFR, RET	
			Cetuximab	HNSCC, cutaneous squamous cell carcinoma	Phase 1	03524326	
		Pembrolizumab	HNSCC	Phase 3	04199104	1	
		+/- pembrolizumab	HNSCC	Phase 2	04428151		
Pazopanib	GSK	Cetuximab	HNSCC	Phase 1	01716416	VEGFR1-3, PDGFR,	
		Monotherapy	Salivary gland carcinoma	Phase 2	02393820	FGFR,c-KIT	
Poziotinib	Hanmi	Monotherapy	HNSCC, esophageal SCC	Phase 2	03292250	HER1(EGFR), HER2, HER4	
Sorafenib	Onyx	Chemotherapy	HNSCC	Phase 2	00494182	VEGFR2, VEGFR4, PDGFR, c-KIT, C- RAF, B-RAF	
Vandetanib	Astra-Zeneca	Monotherapy	Precancer-ous H&N lesions	Phase 2	01414426	HER1 (EGFR), VEGFR2, RET	

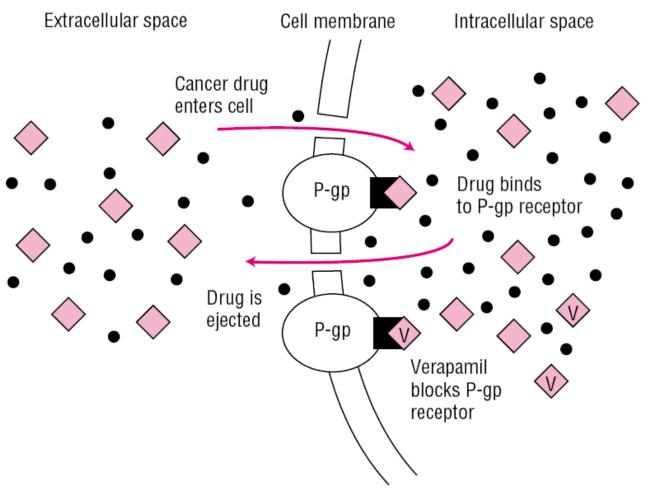
Nombre	Blanco	Indicación	Año
Afatinib	EGFR, ErbB2/4	NSCLC	2013
Axitinib	VEGFR1/2/3, PDGFRβ, Kit	RCC	2012
Bosutinib	BCR-Abl, Src, Lyn, Hck	Ph+ CML	2012
Cabozantinib	RET, c-Met, VEGFR1/2/3, Kit, TrkB, Flt3, Axl, Tie2	Carcinoma medular de tiroides	2012
Ceritinib	ALK, IGF-1R, InsR, ROS1	ALK+ NSCLC en pacientes resistentes a crizotinib	2014
Crizotinib	ALK, c-Met (HGFR), ROS1, MST1R	ALK+ NSCLC	2011
Dabrafenib	B-Raf	Melanoma con mutación BRAF V600E	2013
Dasatinib	BCR-Abl, Src, Lck, Lyn, Yes, Fyn, Kit, EphA2, PDGFRβ	Ph+ CML, Ph+ ALL	2006
Erlotinib	EGFR	Cáncer pancreático, NSCLC	2004
Everolimus	FKBP12/mTOR	Cáncer de mama HER2–, PNET, RCC, RAML, SEGA	2009
Gefitinib	EGFR, PDGFR	NSCLC	2003
Ibrutinib	BTK	MCL, CLL, WM	2013
Imatinib	BCR-Abl, Kit, PDGFR	Ph+ CML, Ph+ B-ALL, DFSP, GIST, HES, MDS/MPD, ASM	2001
Lapatinib	EGFR, ErbB2	Cáncer de mama	2007
Lenvatinib	VEGFR1/2/3, FGFR1/2/3/4, PDGFRα, Kit, RET	DTC	2015
Nilotinib	BCR-Abl, PDGFR, DDR1	Ph+ CML	2007
Nintedanib	FGFR1/2/3, Flt3, Lck, PDGFRα/β, VEGFR1/2/3	Fibrosis pulmonar idiopática	2014
Palbociclib	CDK4/6	Cáncer de mama ER+ y HER2–	2015
Pazopanib	VEGFR1/2/3, PDGFRα/β, FGFR1/3, Kit, Lck, Fms, Itk	RCC, sarcoma de tejidos blandos	2009
Ponatinib	BCR-Abl, BCR-Abl	Ph+ CML y ALL	2012

Pazopanib	VEGFR1/2/3, PDGFRα/β, FGFR1/3, Kit, Lck, Fms, Itk	RCC, sarcoma de tejidos blandos	2009
Ponatinib	BCR-Abl, BCR-Abl T315I, VEGFR, PDGFR, FGFR, EphR, familia de quinasas Src, Kit, RET, Tie2, Flt3	Ph+ CML y ALL	2012
Regorafenib	VEGFR1/2/3, BCR- Abl, B-Raf, B-Raf (V600E), Kit, PDGFRα/β, RET, FGFR1/2, Tie2, and Eph2A	CRC, GIST	2012
Ruxolitinib	JAK1/2	Mielofibrosis, PV	2011
Sirolimus	FKBP12/mTOR	Trasplante renal	1999
Sorafenib	B-Raf, CDK8, Kit, Flt3, RET, VEGFR1/2/3, PDGFR	HCC, RCC, DTC	2005
Sunitinib	PDGFRα/β, VEGFR1/2/3, Kit, Flt3, CSF-1R, RET	RCC, GIST, PNET	2006
Temsirolimus	FKBP12/mTOR	RCC Advanzado	2007
Vemurafenib	A/B/C-Raf and B- Raf (V600E)	Melanoma con mutaciones en BRAF 2011 V600E	2011
Vandetanib	EGFR, VEGFR, RET, Tie2, Brk, EphR	Cáncer medular de tiroides	2011
Tofacitinib	JAK3	Artritis reumatoide	2012
Trametinib	MEK1/2	Melanoma con mutaciones en BRAF 2011 V600E	2013

ALL, leucemia linfoblástica aguda; ASM, mastocitosis sistémica agresiva; CML, leucemia mieloide crónica; CRC, cáncer colorrectal; DDR1, Receptor 1 de la familia de receptores de dominio discoidina; CLL, leucemia linfocítica crónica; CML, leucemia mielógena crónica; DFSP, dermatofibrosarcoma protuberans; DTC, carcinoma diferenciado de tiroides; ER, receptor de estrógenos; FKBP, FK506 (fujimycin) proteína de unión; GIST, tumor del estroma gastrointestinal; HCC, carcinoma hepatocelular; HES, síndrome hipereosinofílico; IGF1-R, receptor de factor de crecimiento 1 similar a la insulina; InsR, receptor de insulina; MCL, el linfoma de células del manto; SMD / SMP, enfermedades mielodisplásicos /mieloproliferativos; MST1R o RON, receptor de la proteína estimulante de macrófagos; NSCLC, cáncer de pulmón de células no pequeñas; PNET, tumores neuroendocrinos progresistas de origen


RESISTENCIA A LOS QUIMIOTERÁPICOS ANTINEOPLÁSICOS

RESISTENCIA AL EFECTO DE ANTITUMORALES


- Probabilidad aumenta con tamaño del tumor
- Células resistentes pueden sobrevivir luego de un régimen de quimioterapia
- Duena respuesta inicial, y luego un nuevo crecimiento celular a pesar del régimen de quimioterapia.

Mecanismos:

- Disminución de la activación de pro-drogas
- Alteración del sistema de transporte
- Cambios en las proteínas blanco
- Alteraciones en el mecanismo de reparación del daño inducido por drogas.
- Aumento de la inactivación de drogas
- Disminución de la apoptósis

RESISTENCIA A FÁRMACOS ANTITUMORALES

FIGURE 124–7. P-glycoprotein (P-gp) is a membrane-associated protein that acts as a drug efflux pump. Anticancer agents enter the cell, bind to the P-gp receptor, and are ejected. Some agents that modify multidrug resistance, like verapamil, block the P-gp receptor, allowing the anticancer agent to remain in the cell.

RESISTENCIA A FÁRMACOS ANTITUMORALES

Table 1 ABC transporters involved in drug resistance						
Gene	Protein/alias	Chemotherapeutic drugs effluxed by transporter	Other drugs and substrates			
ABCA2	ABCA2	Estramustine	_			
ABCB1	PGP/MDR1	Colchicine, doxorubicin, etoposide, vinblastine, paclitaxel	Digoxin, saquinivir,			
ABCC1	MRP1	Doxorubicin, daunorubicin, vincristine, etoposide, colchicine, camptothecins, methotrexate	Rhodamine			
ABCC2	MRP2	Vinblastine, cisplatin, doxorubicin, methotrexate	Sulfinpyrazone			
ABCC3	MRP3	Methotrexate, etoposide	_			
ABCC4	MRP4	6-mercaptopurine, 6-thioguanine and metabolites; methotrexate	PMEA, cAMP, cGMP			
ABCC5	MRP5	6-mercaptopurine, 6-thioguanine and metabolites	PMEA, cAMP, cGMP			
ABCC6	MRP6	Etoposide	-			
ABCC11	MRP8	5-fluorouracil	PMEA, cAMP, cGMP			
ABCG2	MXR/BCRP	Mitoxantrone, topotecan, doxorubicin, daunorubicin, irinotecan, imatinib, methotrexate	Pheophorbide A, Hoechst 33342, rhodamine			

ABC, ATP-binding cassette; BCRP, breast cancer resistance protein; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanine monophosphate; MDR, multidrug resistance; MRP, multidrug-resistance-associated protein; MXR, mitoxantrone resistance protein; PMEA, 9-[2-(phosphonomethoxy)ethyl]adenine.

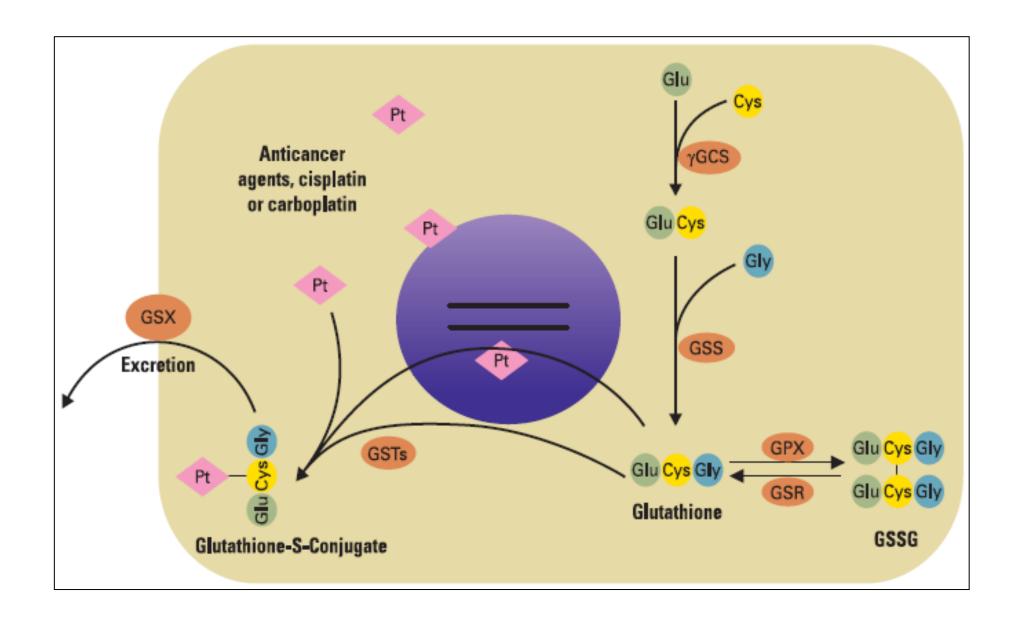
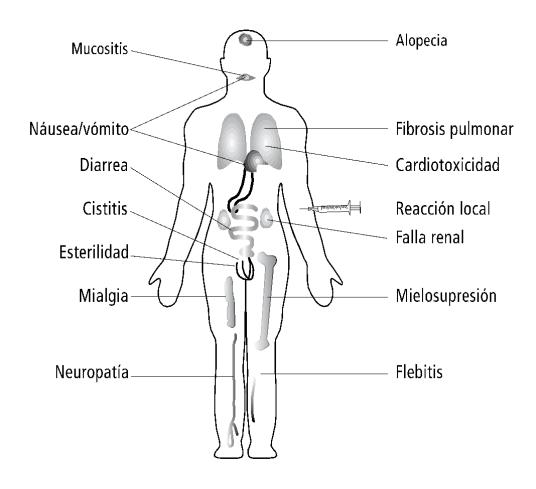



Table 2 Resistance mechanisms to anti-EGFR tyrosine kinase inhibitors

Major mechanisms	Action	References
EGFR mutations	T790M, C797S mutations	21, 121,122
EGFRvIII	Constitutively activated EGFR in a ligand- independent manner	123
PTEN mutation/loss	PI3K/AKT signal activation	124,125
KRAS mutations	Constant activation of EGFR downstream signals	126
Crosstalk	Increased expressions of HER2/HER3	26
	ADAM17 mediated NRG1 release leading to autocrine activation of HER2/HER3	127
	Crosstalk with MET	128
	HGF overexpression	129
	Crosstalk with AXL	41
	Crosstalk with VEGF-VEGFR	119,130
IGF-1R	Crosstalk, upregulation of IGF-1R	131
activation	Decreased expressions of regulators of IGF- 1R ligands (IGFBP3/IGFBP4) leading to increased availability of IGF-1/IGF-2	132
EMT	Local invasion and distant metastasis	120
Histologic transformation	NSCLC to small cell lung cancer	133,134

Grado	Hemoglobina	Leucocitos (recuento total)	Neutrófilos Granulocitos (RAN/RAG)	Plaquetas
0	DLN	DLN	DLN	DLN
1	< LIN a 10 g/dL	< LIN a 3 x10 ⁹ /L < LIN a 3.000/μL	≥ 1,5 a 2 x 10^9 /L ≥ 1500 a < 2.000/ μ L	< LIN a 75 x 10 ⁹ /L < LIN a 75.000/μL
2	8 a < 10 g/dL	> 2 a < 3 x 10 ⁹ /L > 1.000 a < 3.000/μL	> 1 a < 1,5 x 10 ⁹ /L ≥ 1.000 a < 1.500/μL	> 50 a <75 x 10^9 /L ≥ 50.000 a<75.000/ μ
3	6,5 a 8 g/dL	\geq 1 a 2 x 10 9 /L \geq 1.000 a < 2.000/ μ L	$\geq 0.5 \text{ a} < 1 \text{ x } 10^{9}/\text{L}$ $\geq 1.500 \text{ a} < 1.000/\mu\text{L}$	≥ 10 a < 50 x 10 ⁹ /L ≥ 10.000 a < 50.000/µ
4	< 6,5 g/dL	< 1 < 10 ⁹ /L < 1000/μL	< 0,5 x 10 ⁹ /L < 500/μL	< 10 x 10 ⁹ /L < 10.000/μL

^{*}Los recuentos celulares deben efectuarse el mismo día, o el anterior a la administración de la quimioterapia. Ajustar la dosis de la quimioterapia de acuerdo a grado de toxicidad. RAN, recuento absoluto de neutrofilos; RAG, recuento absoluto de granulocitos; DLN, dentro de límites normales; LIN, límite inferior normal.

"HEMATOLOGIA.DIAGNOSTICO Y TERAPEUTICA" 2016 Osorio G y Jara J

Tabla 44-8. Potencial emetizante de drogas oncológicas comúnmente usadas				
	Nivel		l	
Alto (> 90%)	5	Cisplatino (> 50 mg/m²) Mecloretamina Estreptozocina Carmustina (> 250 mg/m²) Ciclofosfamida (> 1.500 mg/m²) Dacarbacina		
Moderado — alto (60% a 90%)	4	Cisplatino (< 50 mg/m²) Citarabina (> 1.000 mg/m²) Doxorrubicina (> 69 mg/m²) Metotrexato (> 1.000 mg/m²) Carboplatino Oxaliplatino Ifosfamida Carmustina (< 250 mg/m²) Ciclofosfamida (> 750 mg/m² < 1.500 mg/m²) Procarbacina oral		
Moderado (30% a 60%)	3	Azacitidina Ciclofosfamida (< 750 mg/m²) Ciclofosfamida oral Citarabina (< 1.000 mg/m²) Doxorrubicina (20 a 69 mg/m²) Epirrubicina (> 90 mg/m²) Idarrubicina Metotrexato (250 a 1.000 mg/m²) Mitoxantrona (< 15 mg/m²)		
Moderado bajo (10% a 30%)	2	Asparaginasa Docetaxel Paclitaxel Etopósido Tenipósido Metotrexato (50 a 250 mg/m²) Melfalán Mercaptopurina Mitomicina Fluorouracil (< 1.000 mg/m²) Pentostatina Tiotepa Topotecan Irinotecan		
Bajo (< 10%)	1	2 -Clorodeoxiadenosina Bleomicina Busulfan Clorambucil Fludarabina Hidroxiurea Metotrexato < 50 mg/m² Vincristina/vinblastina/vinorelbina Interferón Tioguanina	. 2	

"HEMATOLOGIA.DIAGNOSTICO Y TERAPEUTICA" 2016 Osorio G y Jara J