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Abstract: Objective: This narrative review aims to analyze physical activity as a central
pillar of lifestyle modification in the management of chronic musculoskeletal pain by
examining its effects on pain modulation as well as related lifestyle domains, including
sleep, stress regulation, dietary habits, and smoking behavior. Methods: A narrative struc-
tured review was conducted. We searched MEDLINE/PubMed, Embase, and Cochrane
Reviews using terms related to chronic pain and lifestyle. Randomized controlled trials,
observational studies, systematic reviews, and narrative reviews reporting on the con-
cepts of interest were included. The results were synthesized and described narratively.
Results: Through the release of neuromodulatory compounds such as endorphins, endo-
cannabinoids, dopamine, and serotonin, exercise improves analgesia, promotes emotional
resilience, and reduces the reward response associated with addictive behaviors such as
smoking. Its effects on the hypothalamic–pituitary–adrenal axis reduce cortisol levels,
while melatonin regulation promotes circadian synchronization and deeper sleep stages.
In addition, exercise modulates appetite by increasing insulin sensitivity and altering hor-
mones such as leptin and ghrelin, contributing to appetite control and energy balance.
These mechanisms support a comprehensive approach to chronic pain management. Con-
clusions: Physical activity is a core component of lifestyle-based chronic pain management,
not only because of its analgesic effects, but also because of its positive influence on sleep,
stress regulation, dietary habits, and smoking reduction. Although the available evidence is
promising, more randomized controlled trials are needed to examine the effects of exercise
on other healthy lifestyle behaviors, such as stress reduction, dietary modification, and
smoking cessation, to consolidate its role in the comprehensive prevention and management
of chronic pain.
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1. Introduction
Chronic pain is a major global health problem, affecting more than 30% of the world’s

population and causing economic costs comparable to those of cancer and cardiovascular
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disease [1,2]. This condition is the leading cause of disability worldwide, profoundly
affecting daily activities, social interactions, quality of life, and work capacity [3]. Evidence
has also shown that people with chronic widespread pain experience excess mortality [4].
The excess mortality observed in people with chronic pain could be largely explained
by modifiable lifestyle factors, reinforcing the need for interventions aimed at improving
physical activity, diet, weight control, and smoking cessation in this population [4].

Chronic pain is defined as pain that persists longer than the normal tissue healing time,
usually considered to be 12 weeks [5], and is characterized by functional and structural
brain changes, neuroinflammation, and central sensitization [6,7]. Emerging evidence also
highlights the role of lifestyle factors—such as physical inactivity, stress, sleep problems,
unhealthy diet, and smoking—in influencing the severity and persistence of chronic pain [8].
These findings support a paradigm shift toward integrative, lifestyle-based approaches to
chronic pain management that address both its symptom burden and long-term health risks.

Advances in the understanding of chronic pain in recent decades have led to a sig-
nificant shift in therapeutic approaches away from exclusively biomedical interventions
towards multimodal strategies that integrate the biopsychosocial complexity of chronic
pain [9]. This shift also promotes self-management and patient autonomy through active
treatments [10]. In this regard, physical activity and exercise are recognized as essential
components in the treatment of chronic pain, due to their safety and demonstrated clinical
benefits in improving physical and mental health [11–14]. Beyond its direct benefits, physi-
cal activity can also influence the full spectrum of lifestyle factors, supporting not only pain
relief but also broader improvements in overall lifestyle.

Chronic pain is a major global health challenge and a leading cause of disability
worldwide. While its clinical management has evolved toward multimodal strategies,
current approaches still often overlook the interrelated role of lifestyle behaviors (sleep,
stress, diet, and smoking) in shaping the pain experience. Despite the wealth of evidence
supporting physical activity as a safe and effective treatment for chronic pain, its potential
as a central modulator of other health-related behaviors remains underexplored. A clearer
understanding of this relationship could inform more holistic and integrated rehabilitation
strategies. The aim of this narrative review is to analyze physical activity as a central pillar
of lifestyle modification in the management of chronic musculoskeletal pain by examining
its effects on pain modulation as well as related lifestyle domains, including sleep, stress
regulation, dietary habits, and smoking behavior.

2. Materials and Methods
This study was a narrative review using an evidence search and selection approach.

MEDLINE/PubMed, Embase, and the Cochrane Reviews were searched from inception to
19 November 2024. Specific search terms included combinations of “chronic pain”, “physi-
cal activity”, “exercise”, “sleep”, “stress”, “diet”, “nutrition”, and “smoking”, linked by
Boolean operators (AND/OR). The search strategy is presented in Table A1 (Appendix A).
Additional records were identified through manual searches, including reference lists of
eligible articles and related reviews. No date or language restrictions were imposed. Two
independent reviewers were involved in the selection of studies, and disagreements were
resolved by consensus. Rayyan software (http://rayyan.qcri.org) was used for duplicate
removal and study selection.

The research team selected relevant studies that exemplified the most relevant infor-
mation on the topic. We included randomized controlled trials, systematic reviews, and
meta-analyses that reported on the concepts of interest. Eligibility was determined based on
thematic relevance to the predefined areas of interest and the clarity of reported outcomes.
We preferred primary studies that directly investigated the concepts of interest and system-
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atic reviews that summarized the evidence. If two studies reported similar information, the
more recent and complete study was included in the manuscript. Commentaries, letters to
the editor, protocols, and trial registries were excluded from this review.

All information gathered in this review was summarized and qualitatively classified
according to an outline previously defined by the team: (1) physical activity and modulation
of chronic pain, (2) physical activity and improvement of sleep quality, (3) physical activity
to reduce stress, (4) impact on diet and metabolic regulation, (5) physical activity and
smoking reduction. This framework was established a priori by the team based on known
associations between physical activity and lifestyle factors that influence chronic pain.
The information provided by the studies was summarized and synthesized narratively
and is presented in figures as a summary (created with BioRender.com). Furthermore,
a standardized table was created to extract information from the representative studies,
including the following data: study design, population, lifestyle domain, and main findings.

3. Results
Figure A1 (Appendix A) illustrates the selection process for the main RCTs and

systematic reviews retrieved through the structured database search. Other relevant articles
selected for their thematic relevance are included in the narrative synthesis.

3.1. Physical Activity and Modulation of Chronic Pain

Physical activity, which includes different forms such as aerobic exercise and resis-
tance training, modulates pain pathways through peripheral and central mechanisms.
Exercise stimulates the production of neurotransmitters and neurotrophic factors, such
as brain-derived neurotrophic factor (BDNF), in brain areas involved in pain perception,
such as the hippocampus and prefrontal cortex [15–17], favoring activity-dependent neu-
ronal plasticity [15,18] and emotional regulation [19]. Chronic pain, often characterized by
human-assumed central sensitization, involves an amplification of nociceptive signals in
the central nervous system [6,7]. In this sense, physical activity decreases the release of
excitatory neurotransmitters, such as glutamate, and increases the production of endoge-
nous opioids (endorphins and enkephalins) and endocannabinoids, which reduce pain
sensitivity through their actions on the pathways of the central and peripheral nervous
systems [20]. Also, regular physical activity may have a protective effect on the brain
by promoting the release of serotonin and BDNF, which may both play key roles as pain
modulators [21,22]. Animal studies suggest that regular aerobic exercise increases serotonin
release and modulates synaptic plasticity in the anterior cingulate cortex, a region essential
for pain processing [21]. Exercise-induced analgesia is explained by the activation of central
inhibitory pathways, mediated by opioid and serotonergic mechanisms and the modulation
of NMDA receptors in the rostral ventromedial medulla [23], which regulate nociceptive
transmission and decrease pain perception.

Central sensitization involves the activation of inflammatory cells such as macrophages
and the release of pro-inflammatory mediators, including cytokines and chemokines, in
both the peripheral and central nervous systems. In the central nervous system, this process
is closely associated with neuroinflammation, which is characterized by the activation of
glial cells such as microglia and astrocytes in the spinal cord and brain [24]. Studies have
shown that glial density is increased in the brains of patients with chronic non-specific
low back pain, migraine, and fibromyalgia, supporting the role of neuroinflammation in
the development of chronic pain [25,26]. Inflammatory markers interact with nociceptors
and spinal cord neurons, leading to altered excitability, conductance and transmission
in pain pathways, disrupting their normal processing [27] and playing a critical role as
mediators of neuroinflammation associated with chronic pain [28,29]. Recent studies iden-
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tify an imbalance in cytokine levels in fibromyalgia patients, characterized by elevated
tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8) [30], with
serum concentrations of IL-6 and IL-8 significantly correlating with disease severity [31,32].
Likewise, in patients with knee osteoarthritis, increased levels of intra-articular biomarkers
of acute inflammation are related to peripheral sensitization, while biomarkers of cartilage
degeneration and chronic inflammation are associated with central sensitization [33]. In this
context, physical activity can improve the function of the immune system, which plays an
essential role in the regulation of inflammation [34]. Exercise impacts the immune system
through the release of exercins, signaling molecules produced by various tissues in the
body [35]. Physical activity may induce circulatory and intra-articular anti-inflammatory
effects in patients with knee osteoarthritis [22], as well as inducing an immunomodulatory
response in fibromyalgia, characterized by decreased pro-inflammatory signaling, espe-
cially IL-8 [36]. Finally, exercise improves mitochondrial function and reduces oxidative
stress [37,38], key factors in the maintenance of chronic inflammation. The main mecha-
nisms by which physical activity can mitigate chronic pain are summarized in Figure 1. It
is important to note that some of these mechanisms are supported by preclinical studies
and may not be fully established in chronic pain populations.

Figure 1. A summary of the benefits of physical activity in the modulation of chronic pain.

3.2. Physical Activity and Improvement of Sleep Quality

Chronic musculoskeletal pain and sleep problems have a bidirectional relationship [39,40],
meaning that they both reinforce each other and influence symptomatology through psychological,
physiological, and attentional factors [41]. A recent meta-analysis reported that up to 75% of
people with chronic musculoskeletal pain have sleep problems [42]. The high prevalence of sleep
disturbances in these individuals could be related to common physiological mechanisms, such as
the possible modulation of endogenous substances, altered melatonin levels, low-grade systemic
inflammation that sensitizes the nociceptive system, and the possible alteration of the circadian
rhythm [43–48]. Therefore, sleep problems should be addressed in the management of persons
with chronic musculoskeletal pain who have a comorbid sleep disorder [49].

Physical activity has been proposed as an effective alternative to improve sleep prob-
lems in people with chronic musculoskeletal pain [50–52]. Recent meta-analyses confirm
that different types of exercise (e.g., aerobic exercise, resistance training, stabilization ex-
ercise, and mind–body exercise) significantly improve sleep in this population, but effect
sizes are small and may not reach the level of clinical significant improvements [53–55].
The small beneficial effect is explained by factors such as increased central physiological
fatigue, exercise-induced analgesia, and improved psychological function, including mood
and reduced anxiety [56–58]. In addition, exercise regulates key biological processes, such
as decreasing pro-inflammatory cytokines [59], BDNF [60], and serotonin secretion [61],
which play important roles in regulating wakefulness and rapid eye movement (REM)
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sleep [55,62,63]. It also adjusts the circadian rhythm through the release of melatonin
(modulated by serotonin) [64,65], a hormone that regulates the onset, maintenance, and
quality of sleep [66]. Nevertheless, exercise performed in the afternoon tends to alter the
circadian rhythm in healthy individuals [67]. Therefore, careful consideration should be
given to the timing of exercise. On the other hand, endorphins and endocannabinoids
released during exercise promote relaxation and reduce stress [68] by acting on receptors in
the central nervous system, regulating pain perception and mood, which facilitates sleep
onset and sleep quality [68,69]. Moreover, exercise modifies sleep architecture by increasing
the proportion of deep sleep (N3 phase) in healthy people, a crucial stage for physical and
mental recovery [70]. The effect of exercise on sleep architecture, especially in increasing
deep sleep, requires further investigation in people with chronic pain.

Research suggests that nocturnal exercise generally does not adversely affect sleep in
healthy individuals [71–73]. However, performing high-intensity exercise close to bedtime
may alter some components of sleep [73]. In people with severe chronic pain, it has
been proposed that high-intensity physical activity during leisure time, regardless of the
time of day, may increase the risk of sleep disturbance [74]. Therefore, future studies
should investigate the most appropriate frequency, intensity, duration, timing, and type
of therapeutic exercise for different clinical conditions, since the current evidence is still
limited in these aspects [55]. In any case, it is clear that the beneficial effects of exercise
therapy on sleep in patients with chronic pain with sleep problems (e.g., insomnia, sleep
apnea) are not large enough to have a clinically meaningful impact on sleep outcomes.
Hence, despite the small beneficial effects of exercise therapy on sleep in patients with
chronic pain, specific sleep treatment is mandatory to ‘solve’ the sleep problem. This
often implies combining exercise therapy with the first-line evidence-based treatment for
insomnia and most sleep problems: cognitive–behavioral therapy for insomnia. A recent
study supports the combined used of cognitive–behavioral therapy for insomnia with
cognition-targeted exercise therapy and pain science education in patients with chronic
spinal pain with comorbid insomnia [75]. In that study, sleep treatment was initiated early
in the treatment, aligning well with the idea that patients require proper sleep to be able to
recover from exercise or physical activity interventions. Sleep might be a prerequisite for
optimal exercise effects.

3.3. Physical Activity to Reduce Stress

Stress represents an organism’s efforts to maintain homeostasis. In chronic pain pa-
tients, stress intolerance (due to physical, psychosocial, or emotional stressors) exacerbates
symptoms such as pain, fatigue, and cognitive impairment [76]. A dysfunctional stress
system in chronic pain patients is characterized by an imbalance between the sympathetic
and parasympathetic branches of the autonomic nervous system, with sympathetic pre-
dominance keeping the body in a constant state of physical stress [76,77]. In addition,
the hypothalamic–pituitary–adrenal (HPA) axis, which plays a key role in stress recovery
and has metabolic and immunoregulatory functions, can be dysfunctional, ranging from
hypercortisolism to hypocortisolism [78,79]. Thus, stress intolerance implies that the body
is physiologically unable to cope effectively with stressors.

Physical activity could be a key strategy for improving stress tolerance in chronic
pain patients. Regular exercise reduces resting sympathetic tone and basal cortisol lev-
els, improving stress regulation [80]. In healthy subjects, muscle-strengthening physical
activity moderately stimulates the HPA axis, reducing the resting cortisol response and
inflammation [81]. Importantly, chronically elevated cortisol is associated with increased
cardiovascular risk [82]. This mechanism could also apply to people with chronic pain, a
hypothesis that merits further investigation. Exercise also decreases systemic inflammation
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and oxidative stress, two factors that aggravate the stress response. This protects the
brain against the detrimental effects of chronic stress [83]. Additionally, neurotransmitters
(serotonin, endocannabinoids, and endogenous opioids) released during exercise produce
a sense of well-being and contribute to emotional resilience [83].

Despite the above, few clinical trials have evaluated the effect of exercise on perceived
stress in people with chronic pain. One randomized controlled trial found that Pilates
exercise can effectively decrease the level of perceived stress and pain intensity in women
affected by premenstrual syndrome [84]. Another randomized controlled trial study re-
ported that a walking program improved perceived stress levels in patients with chronic
low back pain [85]. According to the secondary analysis of one randomized controlled
trial, high-intensity training has also been shown to decrease both central sensitization and
perceived stress in people with non-specific chronic low back pain [86]. Importantly, stress
reduction could be maximized if physical activity interventions are performed with expo-
sure to green spaces [87], and in groups, taking into account the benefits of social support
for stress management in people with chronic pain [79]. Stress management is critical for
people with chronic pain, as a dysfunctional stress response system perpetuates chronic
pain. In this context, physical activity, through its physiological effects, is positioned as a
fundamental tool to promote resilience to stress.

On the other hand, it has been suggested that patients with chronic pain could benefit
from a stress management program in preparation for exercise therapy [88]. Any exercise
bout or physical activity is a (healthy) stressor, implying that improved stress tolerance will
facilitate patients to cope better with (incremental) exercise programs, including dealing
with possible pain flares or any other temporary discomfort associated with exercise
programs or physical activity. In addition, many patients with chronic pain present with
overactivity/persistence behavior [89,90] due to motivational or contextual factors related
to their perceived roles in life and in spite of experiencing frequent pain flares during and
in response to these activities. Such persisted activities and exercises typically increase
stress levels in patients with chronic pain, requiring skills to accept and cope better with
the stress rather than (graded) exercise therapy programs.

3.4. Impact on Diet and Metabolic Regulation

People with persistent pain often have unhealthy dietary habits (e.g., low fruit and
vegetable intake and pro-inflammatory dietary behaviors) that can negatively affect pain
management. For example, deficiencies in essential nutrients such as antioxidants, omega-3
fatty acids, vitamin D, and magnesium appear to be strongly associated with pain [91,92].
Recent studies suggest a causal relationship between higher intakes of fresh and dried
fruits and grains and lower pain scores, while high intakes of salt, alcohol, poultry, and
pork are associated with higher persistent pain scores [93]. Chronic systemic and low-grade
inflammation, associated with diets poor in antioxidants and anti-inflammatory agents,
elevates biomarkers such as C-reactive protein, triggering neuroinflammation and nerve
sensitization that favor the chronification of pain [94,95]. Also, deficiency of neurotransmit-
ter precursors, such as tryptophan for serotonin, aggravates pain sensitivity [96]. In this
context, chronic pain, especially high-intensity pain, is independently associated with dys-
lipidemia, obesity, a high waist-to-hip ratio, increased cardiovascular risk, and an increased
prevalence of metabolic syndrome [97].

Physical activity may be an appropriate strategy for improving eating habits. Exercise
influences energy balance not only by increasing calorie expenditure, but also by modifying
appetite control through physiological and psychological mechanisms. This effect includes
changes in hormones such as ghrelin, leptin, and insulin, and gastrointestinal peptides such
as GLP-1 and CCK, which regulate hunger and satiety [98]. Furthermore, fat mass, fat-free
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mass, and resting metabolic rate play essential roles in the expression of appetite, with
fat-free mass acting as a possible appetite signal derived from skeletal tissue [98,99]. On the
other hand, sedentary lifestyles are associated with increased adiposity, overconsumption,
and appetite dysregulation, possibly mediated by molecular signals that are not yet fully
understood [99].

Physical activity not only promotes weight control and reduces metabolic inflamma-
tion, but also improves insulin sensitivity [100], counteracting the metabolic dysfunction
common in people with chronic pain [97]. Additionally, exercise may act as a modula-
tor between dopamine and the reward system [101], helping to regulate appetite, reduce
anxiety, and promote healthier eating habits. Exercise improves eating habits by reduc-
ing emotional eating, increasing self-efficacy, and promoting self-regulation, facilitating
better control of caloric intake and conscious dietary choices [102]. This link highlights
the importance of exercise not only for energy balance, but also for the emotional and
behavioral regulation associated with eating. In this regard, an 18-month randomized
clinical trial of 454 overweight or obese older adults with osteoarthritis of the knee found
that the combination of diet and exercise resulted in greater weight loss (11.4%), lower
IL-6 levels, and improvements in pain, function, and quality of life compared with diet
or exercise alone [103]. These findings highlight the benefits of integrated approaches to
treating musculoskeletal conditions in overweight and obese adults. In fact, individual-
ized nutritional interventions improve the management of persistent pain by focusing on
healthy eating patterns (vegan, vegetarian, Mediterranean) for their anti-inflammatory
properties and gut benefits [104]. Finally, the dietary intake of sufficient nutrients is es-
sential for allowing the human body to exercise, suggesting that dietary interventions
should accompany or even precede exercise therapy for patients with chronic pain. For the
same reason, in non-chronic pain populations, dietary strategies are becoming increasingly
recognized as potential strategies to optimize training effects and recovery from exercise
interventions [105], creating important innovative angles for future research in the field of
exercise therapy in patients with chronic pain.

3.5. Physical Activity and Smoking Reduction

Over their lifetime, people with chronic pain are more likely to be active smokers
and to have been diagnosed with nicotine dependence [106]. Prospective studies have
also shown that smoking is a factor in chronic widespread pain [107], and an indicator of
the increased recurrence of chronic pain [108]. Additionally, smokers tend to experience
greater pain intensity and have more affected areas [109,110], possibly due to dysfunction in
endogenous pain modulation mechanisms [111]. Physical activity and exercise stand out as
effective non-pharmacological strategies to reduce tobacco use [112,113]. A meta-analysis
has shown that exercise produces significant positive short-term effects on tobacco use in
non-chronic pain populations, especially during the intervention period, due to changes
in behavior and lifestyles, driven by affective, biological, and cognitive factors [114]. In
the non-chronic pain population, exercise significantly reduces smoking satisfaction and
craving by reducing the psychological reward associated with smoking, pleasurable airway
sensations, and withdrawal symptoms [115,116]. It also improves self-efficacy, coping, and
sleep quality, and reduces anxiety and depression [117–120]. Physiologically, exercise stim-
ulates dopamine release, activating the limbic reward system [121] and endorphins [122],
replacing the rewarding effects of tobacco and counteracting addictive behavior [123,124].
Physical activity also increases serotonin levels [125], regulates the release of GABA (an
inhibitory neurotransmitter that reduces anxiety) [126], and modulates glutamate levels
(an excitatory neurotransmitter whose overexcitation intensifies symptoms) [127], helping
to alleviate withdrawal symptoms [128]. In summary, exercise, by enhancing neurobio-
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logical rewards, alleviating withdrawal symptoms, and reducing anxiety, is presented as
a potential strategy to help people with chronic pain to quit smoking and improve their
health status. Still, future research should reveal whether the promising findings from
non-chronic pain populations can be translated to the chronic pain population.

The main effects through which physical activity can influence other key healthy
lifestyles for chronic pain are presented in Figure 2.

Figure 2. Main effects through which physical activity can influence other key healthy lifestyles for
chronic pain.

A summary of representative studies included in this narrative review is presented in
Table A2.

4. Comprehensive Intervention Proposal
Clinicians are advised to educate patients with chronic pain about the benefits of

exercise therapy not only for pain management, but also for improving sleep, diet, and
stress, encouraging sustained adherence. Furthermore, to maximize the benefits of exercise
in people with chronic pain, it is essential to adopt a holistic approach which includes the
following aspects:

(I) The design of individualized programs, including aerobic, resistance, and flexibility
exercises, adapted to the patient’s physical and emotional capacities, taking into account
their preferences and goals. Shared decision making is essential to promote adherence to
exercise programs in people with chronic pain [129].

(II) Exercise should be tailored for patients with chronic pain according to their avoid-
ance and persistence behaviors [88]. For avoided activities, it is recommended to use
behavioral graded activity or exposure in vivo according to the level of perceived threat.
Graded activity should focus on personal goals, progressing gradually to overcome fear of
movement. In persistent activities, it is recommended to encourage self-management with
breaks and acceptance strategies.

(III) The integration of exercise with pain education, nutritional strategies, sleep
hygiene, and stress management to address the multiple dimensions of chronic pain,
optimizing exercise therapy. Recent meta-analyses have determined that optimal doses
(between 100 and 200 total minutes) of pain science education added to exercise are effective
in reducing kinesiophobia, anxiety, pain intensity, and disability in people with chronic
pain [130,131]. In addition, they highlight the importance of integrating pain knowledge
transfer to promote adaptive changes in behavior [132]. Thus, incorporating pain education
and reinforcing positive associations can increase confidence in physical activity, promot-
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ing its safe and effective integration into daily life. Improving the quality of sleep can
enhance the effects of exercise, given its essential role in processes such as motor memory
consolidation [133]. Cognitive–behavioral therapy for insomnia has been established as an
effective intervention to treat insomnia in people with chronic pain [134]. In this regard,
a 250 min dose of cognitive–behavioral therapy for insomnia has shown a great effect in
reducing insomnia, reaching a maximum effect at 450 min dosed over several sessions [134].
Also, proper nutrition is key to supporting exercise, improving recovery, and preventing
injuries [105].

(IV) Clinicians should be aware of the various barriers that may limit physical activity,
including intrapersonal factors (e.g., beliefs and fear of movement), interpersonal factors
(e.g., lack of social support), environmental concerns (e.g., environmental safety), and
systemic issues (e.g., lack of knowledge and programs) [135–137]. To overcome these
barriers, it is essential to educate patients, implement progressive programs, encourage
group exercise, and develop government policies that ensure equitable and timely access to
physical activity programs [138]. Strategies to maximize the effect of exercise and physical
activity in people with chronic pain are summarized in Figure 3.

Figure 3. Strategies to maximize effect of exercise and physical activity in people with chronic pain.

Limitations

This review has several limitations that should be considered. First, the narrative
nature of the review may limit the robustness of the conclusions drawn. Second, although
we used a structured search strategy, the inclusion of studies was based on thematic
relevance and did not involve formal risk-of-bias assessment. Third, the heterogeneity of
the included studies in terms of populations, interventions, and outcome measures may
affect the generalizability of the findings. Finally, the biological mechanisms discussed may
reflect emerging or preclinical findings that are not yet fully validated in clinical settings.
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5. Conclusions
Physical activity is an essential part of a comprehensive approach to chronic pain be-

cause of its ability to reduce pain, improve sleep quality, regulate metabolic processes, and
manage stress. These positive effects create a virtuous circle that promotes both physical
and mental health in people with chronic pain. The implementation of exercise programs
should be personalized and self-directed, integrating the biopsychosocial model to address
individual needs. In addition, it is important to incorporate multimodal strategies that
include pain education, the progressive grading of activity, and adaptive behavior modifica-
tion to promote sustained adherence. Although the available evidence is promising, more
randomized controlled trials are needed to examine the effects of exercise on other healthy
lifestyle behaviors, such as stress reduction, dietary modification, and smoking cessation,
to consolidate its role in the comprehensive prevention and management of chronic pain.
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Abbreviations

BDNF Brain-derived neurotrophic factor
HPA Hypothalamic–pituitary–adrenal
NMDA N-Methyl-D-Aspartate
IL-6 Interleukin-6
IL-8 Interleukin-8
TNF-α Tumor necrosis factor alpha
REM Rapid eye movement
GLP-1 Glucagon-like peptide-1
CCK Cholecystokinin
GABA Gamma-aminobutyric acid

Appendix A

Table A1. Search strategy.

Pubmed/MEDLINE

#1 “chronic pain”[MeSH Terms] OR “chronic pain”[Title/Abstract]

#2 “physical activity”[Title/Abstract] OR “exercise”[Title/Abstract] OR “exercise”[MeSH Terms]

#3
“sleep”[MeSH Terms] OR “sleep”[Title/Abstract] OR “insomnia”[Title/Abstract] OR “stress”[Title/Abstract] OR
“diet”[MeSH Terms] OR “diet”[Title/Abstract] OR “nutrition”[Title/Abstract] OR “smoking”[MeSH Terms] OR
“smoking”[Title/Abstract]

#4 #1 AND #2 AND #3

#5 Filters applied: Meta-Analysis, Randomized Controlled Trial, Review, Systematic Review.
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Table A1. Cont.

Pubmed/MEDLINE

Embase

#1 (‘chronic pain’:ab,ti)

#2 (‘physical activity’:ab,ti OR exercise:ab,ti)

#3 (sleep:ab,ti OR insomnia:ab,ti OR stress:ab,ti OR diet:ab,ti OR nutrition:ab,ti OR smoking:ab,ti)

#4 #1 AND #2 AND #3

#5 #4 AND (‘article’/it OR ‘clinical trial’/it OR ‘review’/it)

Cochrane Reviews

#1 “chronic pain”

#2 “physical activity” OR “exercise”

#3 “sleep” OR “insomnia” OR “stress” OR “diet” OR “nutrition” OR “smoking”

#4 #1 AND #2 AND #3

Table A2. Summary of representative studies included.

Study Design Population Topic Type of Physical Activity Main Findings

Chang et al.
2024 [53]

Systematic review with
network meta-analysis
(107 RCTs)

8121 adults with
chronic
musculoskeletal pain

Sleep
Aerobic exercise,
resistance training,
mind–body (e.g., Tai Chi)

Exercise and mind–body
exercise significantly improved
sleep quality.

Navarro-
Ledesma
et al. 2024
[55]

Systematic review
(17 RCTs)

Adults with chronic
musculoskeletal pain
(n = 591)

Sleep Aerobic, resistance,
Pilates, mind–body

Therapeutic exercise showed
positive effects on sleep quality.
More research is needed to
determine optimal
exercise parameters.

Calvo et al.
2023 [54]

Systematic review with
meta-analysis (6 RCTs,
4 in meta-analysis)

636 adults with
chronic pain and
sleep disturbance
(mean age 54 ± 9.7)

Sleep

Neck stabilization,
Pilates, walking, yoga,
aerobics, supervised
group exercise

Most interventions improved
sleep and pain in the qualitative
synthesis, but the meta-analysis
showed no statistically
significant effects. A correlation
between pain and sleep
improvements was noted.

Rotter et al.
2022 [85] RCT

55 adults (82%
women) with chronic
low back pain
(VAS ≥ 40 mm)

Stress

Mindful walking
(8 weekly 60 min guided
sessions with
mindfulness training and
self-practice)

No statistically or clinically
significant differences were
found in terms of pain, stress,
or function after 8 weeks. A
slight improvement tendency
was noted at 12 weeks.

Aykut and
Şevgin 2025
[84]

RCT
46 women (18–35)
with premenstrual
syndrome

Stress
Home-based Pilates
(video-guided, 2x/week
for 8 weeks)

Pilates significantly reduced
symptoms of central
sensitization, perceived stress,
and pain in the intervention
group compared to controls.

Verbrugghe
et al. 2023
[86]

Secondary analysis
of RCT

51 adults (mean age
43.6) with chronic
non-specific low
back pain

Stress

High-intensity interval
training:
aerobic + resistance/core
strength training

Exercise reduced perceived
stress at 6 months. Stronger
effects were observed in
participants with clinically
elevated CSI scores. A small but
significant correlation with
improvements in disability and
pain was observed.

Messier et al.
2013 [103]

RCT (18 months,
3 arms)

454 over-
weight/obese older
adults (≥55 años)
with knee
osteoarthritis

Diet and in-
flammation

Aerobic + strength
(3x/sem) combined
with diet

The diet plus exercise group
showed greater improvements
in pain, function, IL-6 levels,
physical quality of life, and
weight loss than those with diet
or exercise alone.

Abbreviations: RCT = randomized controlled trial; VAS = Visual Analog Scale; CSI = Central Sensitization Inventory.
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Records identified: 

MEDLINE/PubMed (n = 257) 

Embase (n = 492) 

Cochrane Reviews (n = 41) 

Records removed before 

screening: 

Duplicate records removed  

(n = 149) 

Records screened 

(n = 641) 

Records excluded by title and 

abstract (n = 617) 

Reports assessed for eligibility 

(n = 24) 

Reports excluded: 

Wrong study design (n = 4) 

RCTs and systematic reviews 

included (n = 6) 

Figure A1. Study selection process.

The flowchart summarizes the records retrieved through the structured database
search. Additional relevant studies identified via manual citation tracking or thematic rele-
vance were also discussed in the narrative synthesis but are not represented in this diagram.
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