

#### Microbiología Bucal Semestre Primavera 2011

# Factores de virulencia de patógenos periodontales

Prof. Marta Gajardo R.

# Periodontitis Crónica o Agresiva

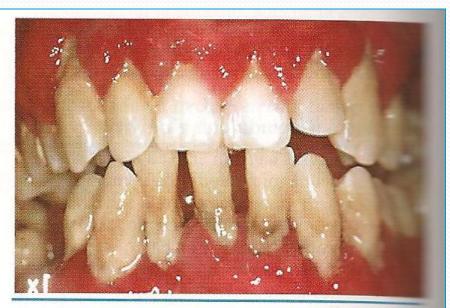
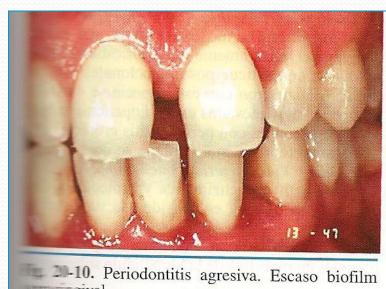




Fig. 20-9. Periodontitis crónica. Abundante cula supragingival y en el subgingival predomina los complejos naranja, rojo y, en menor propositiones los complejos amarillo, púrpura, azul, verde



gival.

# Complejos Bacterianos en la Microbiota Bucal

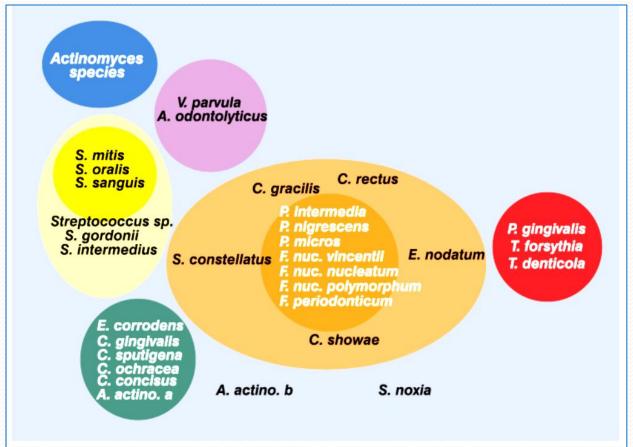



Fig. 9. Diagrammatic representation of the relationships of species within microbial complexes and between the microbial complexes. Updated from (156) with *B. forsythus* changed to *T. forsythia*.

#### Principales patógenos periodontales:

Sólo unas 20 especies pertenecientes principalmente a los complejos naranja y rojo de Socransky, más Aa serotipo b, no asociado a complejos

F.nucleatum

P.intermedia

P.nigrescens

P.micros

Campylobacter sp

E.nodatum

S.constellatus

P. gingivalis
T. forsythensis
T. denticola

Aa serotipo b

# Criterios de Socransky para definir Patógenos periodontales (Socransky & Haffajee, 1992)

- 1. Asociación: Encontrarse más frecuentemente y en mayor número, asociado con periodontitis
  - 2. Eliminación: Su eliminación debe detener el progreso de la enfermedad
    - 3. Respuesta del Hospedero: Debe ser evidenciada mediante exámenes de laboratorio

- 4. Mecanismos de patogenicidad: Deben ser evidenciados mediante pruebas
- 5. Reproducir la enfermedad en modelos animales: Si es posible, debe ser demostrada.

Patógenos que cumplen todos estos requisitos son: Aggregatibacter actinomycetemcomitans y Porphyromonas gingivalis

# Evidencias de *A. actinomycetemcomitans* como un patógeno periodontal (Adaptado de Socransky, 1992)

| Asociación                 | Nº elevado en sitios con PJ, algunos de PA, en sitios<br>activos de PJL. Detectado en regiones apicales de sacos<br>periodontales y en tejidos de PJL<br>Bajo o ausente en sanos o en gingivitis |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eliminación                | Supresión o eliminación permite resolución clínica.<br>Presente en lesiones recurrentes                                                                                                          |
| Respuesta del<br>hospedero | Anticuerpos sistémicos y locales elevados en<br>Periodontitis Juvenil vs. Salud periodontal                                                                                                      |
| Factores de<br>Virulencia  | Leucotoxina, colagenasas, endotoxina, epiteliotoxina, factor que inhibe fibroblastos, factor que induce reabsorción ósea                                                                         |
| Modelos Animales           | Enfermedad inducida en ratas gnotobióticas                                                                                                                                                       |

# Evidencias de *Porphyromonas gingivalis* como un patógeno periodontal (Adaptado de Socransky, 1992)

| Asociación                 | En Nº elevado en sitios con periodontitis. Bajo o ausente en sanos o gingivitis                                                                                                                            |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eliminación                | Supresión o eliminación permite resolución clínica. Presente en lesiones recurrentes                                                                                                                       |
| Respuesta del<br>hospedero | Anticuerpos sistémicos y locales elevados en periodontitis vs. salud periodontal                                                                                                                           |
| Factores de<br>Virulencia  | Colagenasas, TLE, fibrinolisina, enzimas degradantes de anticuerpos, otras proteasas, fosfolipasa A, fosfatasas, endotoxina, H <sub>2</sub> S, amonio, ácidos grasos, otros que afectan la función de PMNN |
| Modelos<br>Animales        | Inicio de periodontitis correlacionado con la<br>colonización, en monos<br>Rol clave en infecciones mixtas                                                                                                 |

# Factores de virulencia

Son los mecanismos por los que un microorganismo puede colonizar un nicho ecológico u hospedador, superar sus defensas e iniciar un proceso infeccioso:

- Componentes de pared celular, proteínas, vesículas de membrana externa, cápsula.
  - Productos finales del metabolismo.
- Enzimas extracelulares y endo y exotoxinas

A mayor virulencia, mayor patogenicidad

# Los factores de virulencia se pueden agrupar según función:

- Permitir adherencia e invasión
- Modular la inflamación: inmunosupresión
- Inducir destrucción y/o inhibir la reparación
  - Resistir el efecto de antimicrobianos

(Ebersole y Holt, 2005)

# Factores de virulencia de Aggregatibacter actinomycetemcomitans

- Fimbrias Flp-1 y proteínas de genes tad: gran adherencia y capacidad de coagregar
- Produce la leucotoxina LxtA que forma poros en la membranas de PMNN, Monocitos y Linfocitos. Se une a LFA-1(integrina β-2) Colonias rugosas, adherentes, no secretan LtxA Colonias lisas, no adherentes, si secretan LtxA

La respuesta a LtxA es apoptosis de leucocitos e inmunosupresión

- Produce colagenasas que degradan el colágeno del tejido conectivo subepitelial, ligamento periodontal y hueso alveolar
- Sintetiza proteasas y factores inhibidores de función leucocitaria: inmunosupresores
- Toxina CDT (cytolethal distending toxin): se cree que actúa como nucleasa que detiene el ciclo celular de linfocitos
- Produce un inhibidor de la quimiotaxis de PMNN a FMLP
  - Invade células, se divide intracelularmente y se disemina entre células: Evade respuesta del hospedero

# Factores de virulencia de Aggregatibacter actinomycetemcomitans

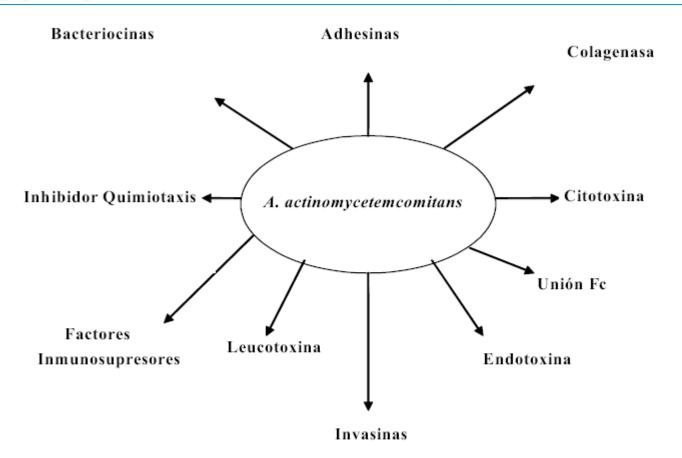
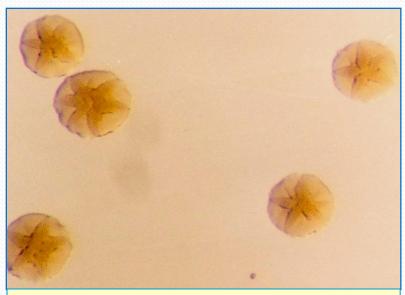
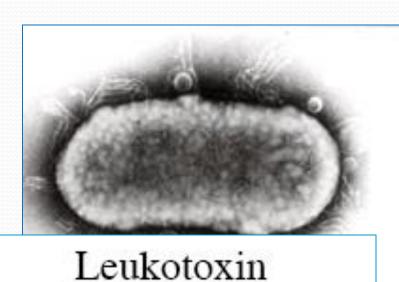





Figura 2.2.13. Esquema de los posibles factores de virulencia de *A. actinomycetemcomitans*: *Bacteriocinas* [76] [77], adhesinas [46] [78], colagenasa [75], inhibidores de la quimiotaxis [79] [80], citotoxina [81] [82], factores inmunosupresores [83] [84] [85], leucotoxinas [70] [72], invasinas y endotoxinas [86] [87].

# Aggregatibacter actinomycetemcomitans



Colonias de *A.actinomycetemcomitans* (Foto: M. Gajardo. Laboratorio de Microbiología Facultad de Odontología Universidad de Chile)



# Factores de virulencia de Porphyromonas gingivalis

Productos finales del metabolismo:

 ácidos grasos volátiles de cadenas cortas: succinato, propionato, butirato, isobutirato, isovalerato

 productos sulfurados: H2S y metilmercaptanos



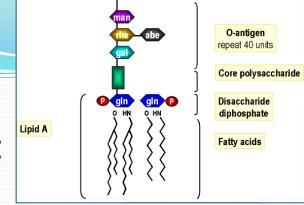
Colonias de *P.gingivalis*.
Foto: M.Gajardo
Laboratorio de Microbiología.
Facultad de Odontología
Universidad de Chile

Todos son citotóxicos para PMNN Macrófagos, LT, fibroblastos gingivales y células del ligamento periodontal.

- Contribuyen como fuente nutricional de otras bacterias del biofilm
  - Estimulan la liberación de citoquinas proinflamatorias
- Todos son moléculas pequeñas: pueden penetrar fácilmente en los tejidos periodontales y contribuir al daño

### Enzimas proteolíticas extracelulares

#### Familia de gingipaínas


- -85% de la actividad proteolítica y 100% de actividad TLE
- -Inhiben la activación de PMNN
- -Degradan proteínas (criptotopos)
- -Activan proenzimas (prekalicreína y kininógeno)
- -Degradan proteínas séricas (Igs, C3 y C5) y Proteínas de la ME (fibrinógeno y laminina).
- -Activan citoquinas (TNF-alpha e IL-6).
- -Participan en la adherencia y colonización.

#### Familia de colagenasas:

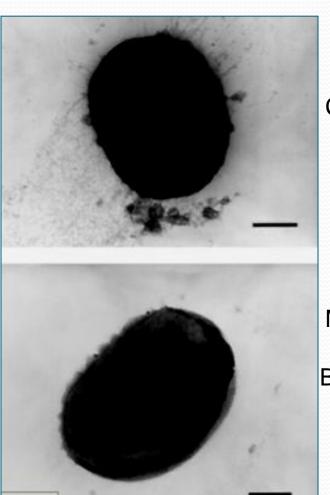
-destruyen tejido conectivo

#### Endotoxina: LPS

Lípido A tiene actividad endotóxica:



- estimula la respuesta inflamatoria indirectamente mediante citoquinas producidas por el hospedero
- Estimula a monocitos/macrófagos
- Produce agregación plaquetaria
- Induce coagulación intravascular
- Es citotóxico para fibroblastos: inhibe crecimiento

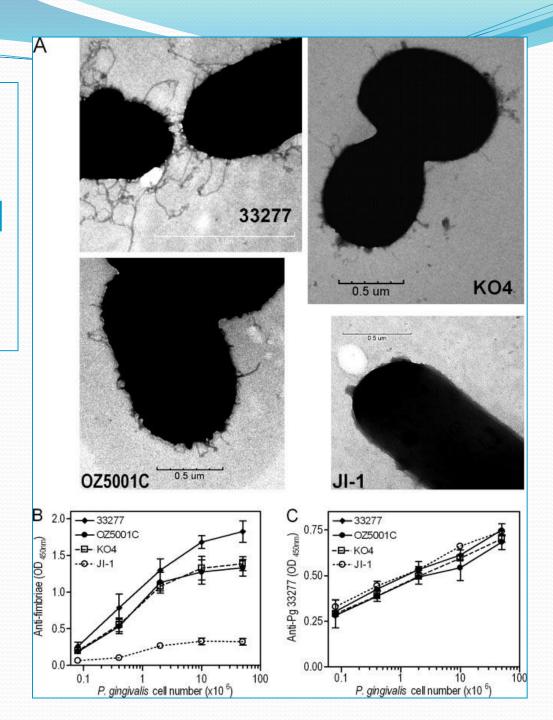

### Cápsula

- Formada por polisacáridos (heteropolímero) sobre la membrana externa de la bacteria
- Forma una barrera físico química para proteger de la opsonización y fagocitosis
- Permite la interiorización de P.gingivalis en las células del saco periodontal y sobrevivir en esa área

#### **Fimbrias**

- Filamentos compuestos de fimbrilina, proteína muy antigénica (inducen IgA e IgG séricas)
- •Su principal papel es la adherencia al epitelio bucal, fibroblastos gingivales, células endoteliales, otras especies bacterianas, proteínas de la matrix extracelular y proteínas salivales
  - Inducen la producción de citoquinas por macrófagos, contribuyendo a la reabsorción de hueso alveolar

# Fimbrias de *P.gingivalis* por microscopía electrónica de transmisión

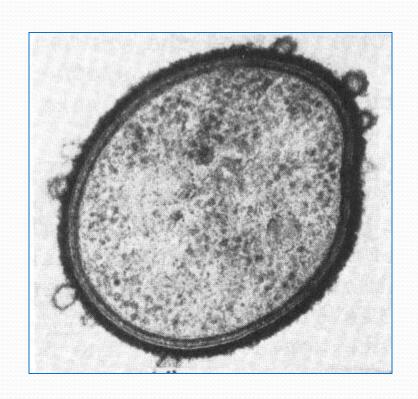



**Cepa 381** 

Mutante MT10

Barra = 0.2 um

Fimbrias de diferentes aislados de Pg y reactividad con anticuerpos anti=fimbrias




### Vesículas de membrana externa (OMV)

 La mayoría de las bacterias GN forman pequeñas estructuras en la superficie de la membrana externas llamadas OMV

- Son liberadas durante el crecimiento
- Pueden contener varios factores de virulencia, incluyendo gingipaínas, colagenasas y LPS

# Vesículas de Membrana externa y fimbrias de Porphyromonas gingivalis



### Proteinas principales de membrana externa

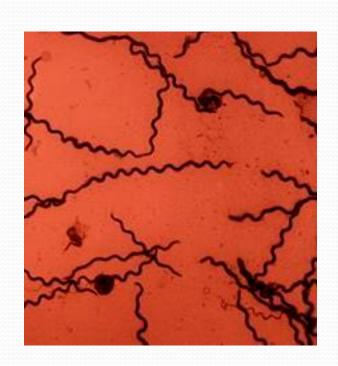
- Capacidad de internalización en las células del epitelio gingival: crítico para protegerse de la fagocitosis
  - Capacidad hemaglutinante y hemolizante

### Tannerella forsythensis

 Produce metabolitos tóxicos para el hospedero



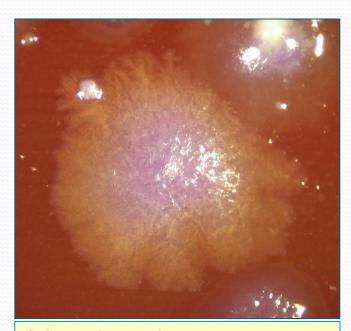
 Sintetiza proteasas (TLE): degradan colágeno






 Sintetiza proteinasas que podrían inducir apoptosis de linfocitos

### Treponema denticola

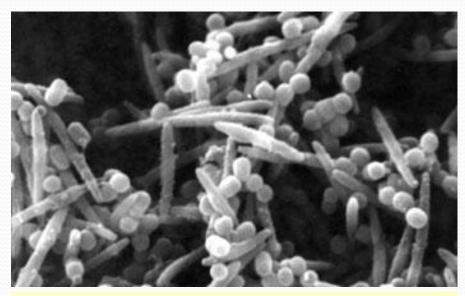

- Es una especie de bacterias con forma espirilar, móvil
  - Al igual que P.gingivalis y Tannerella forsythia, es productora de TLE
- Componentes lipídicos de la membrana externa, no LPS, inducen reabsorción ósea y activación de citoquinas inflamatorias



#### Fusobacterium nucleatum

- Especie de BGN, delgados, fusiformes, anaeróbicos y proteolíticos
  - Pertenece al complejo naranja de Socransky
  - Importante como puente para colonizadores tardíos
- Produce ácido a partir de hidratos de carbono y de alcoholes
  - Posee LPS, cápsula, fimbrias y proteínas de adhesión
- Produce factores de inhibición quimiotáctica para leucocitos
  - Tiene capacidad para invadir el epitelio

#### Fusobacterium nucleatum




Colonia de Fusobacterium nucleatum

Foto: M.Gajardo

Lab. Microbioloía Bucal

Fac. Odontología Universidad de Chile



Fusobacterium nucleatum cells coaggregating with Porphyromonas gingivalis cells.
Susan Kinder Haake and Human Genome

# Daño patológico causado por patógenos en tejidos periodontales

- Inflamación de encías
- Destrucción del ligamento periodontal
  - Reabsorción del hueso alveolar

Resultado: posible pérdida de piezas dentarias

### Transmisión de patógenos periodontales

- Hay transmisión de un lugar a otro de la boca y de una persona a otra.
- •Se ha comprobado la transmisión vertical de Aa y Pg.
- •Estudios epidemiológicos moleculares destacan una cierta correlacion en el estao periodontal dentro de una familia.

- La aparición de formas agresivas de periodontitis PA en niños de corta edad, asociada a Aa, se produce por contacto con un padre previamente infectado.
  - Por métodos moleculares se ha demostrado la transmisión horizontal de Pg entre parejas: no siempre desarrollan la enfermedad.

### Microbiota asociada con periodontitis

- De las más de 700 especies identificadas en el biofilm bucal, sólo 10 a 30 jugarían un papel crítico en la patogénesis de la Periodontitis: complejos naranja y rojo más Aa serotipo b.
- Los mecanismos por los cuáles se inicia, se mantiene o progresa la Periodontitis aún no se conocen completamente, como tampoco el papel específico de cada especie.

- A pesar de los avances en la comprensión del biofilm de placa subgingival, de las propiedades patogénicas de determinadas especies bacterianas y de su papel patogénico, la terapia actual es en gran medida inespecífica:
- Tratamientos utilizados, principalmente medidas de higiene bucal, debridamiento y alisado radicular o enjuagatorios, se orientan a reducir la acumulación de placa e el diente

 En el futuro, se espera que mediante la prevención, se impida la colonización, el crecimiento y el establecimiento de una microbiota patógena en este microambiente bucal.

