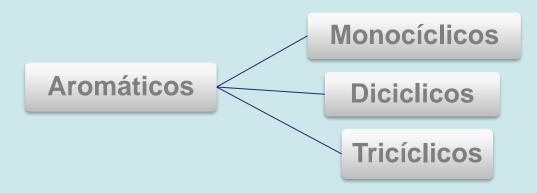
CT 12A - QGO ip

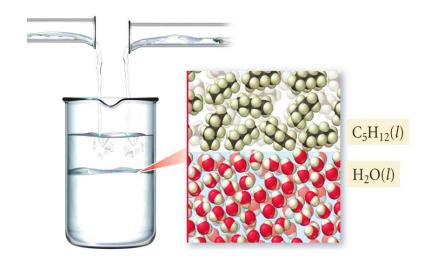
#### HIDROCARBUROS ALIFATICOS

# - ALCANOS, ALQUENOS Y ALQUINOS

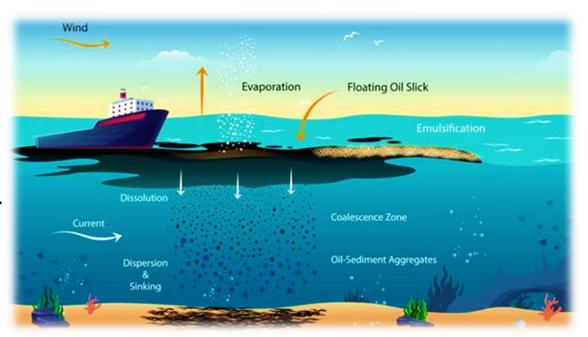



Ulises Urzúa, Dr Cs

Depto. Oncología Básico Clínica
Facultad de Medicina,
Universidad de Chile

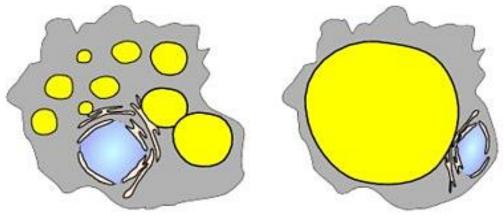

#### Hidrocarburos alifáticos





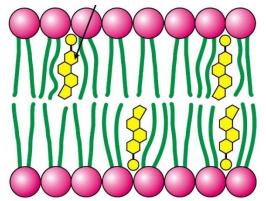

## Alcanos – propiedades físicas

- Son apolares
- Son insolubles en agua
- Son solubles en solventes orgánicos apolares o de baja polaridad (ej benceno, CCl<sub>4</sub>, Cloroformo, otros)

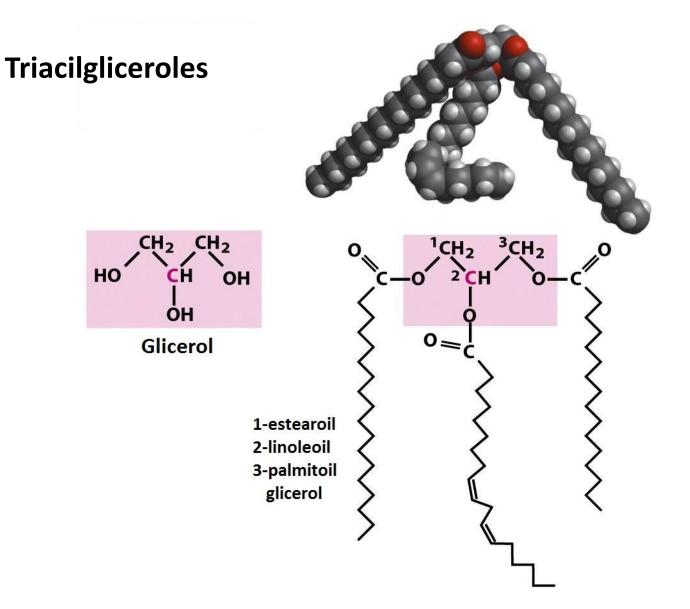



-Tienen una menor densidad que el agua (0,6-0,8 g/mL)




# Alcanos – propiedades físicas

• Los lípidos celulares contienen estructuras hidrocarbonadas (alcanos, cicloalcanos, alquenos).




 Constituyen reserva energética y membranas celulares.

Thiam AR, Beller M. J Cell Sci. 2017 Jan 15;130(2):315-324.



# **Lípidos - TAG**



# Alcanos

# A. Alcanos de cadena contínua ( $C_n H_{2n+2}$ )

| Molecular<br>formula                   | Full structural formula              | Molecular<br>formula                      | Full structural formula                               |
|----------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------------------|
| CH₄<br>Metano                          | н — с — н<br> <br> <br>              | C <sub>5</sub> H <sub>12</sub><br>Pentano | H H H H<br>H-C-C-C-C-C-H<br>                          |
| C <sub>2</sub> H <sub>6</sub><br>Etano | H H H H H H                          | C <sub>e</sub> H <sub>14</sub><br>Hexano  | H H H H H<br>                                         |
| C₃H <sub>8</sub><br>Propano            | H H H<br>                            | C <sub>7</sub> H <sub>16</sub><br>Heptano | H H H H H H<br>                                       |
| C₄H₁₀<br>Butano                        | H H H H<br>H - C - C - C - C - H<br> | C <sub>s</sub> H <sub>1s</sub><br>Octano  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### Alcanos

# B. Alcanos de cadena ramificada: Un hidrógeno unido a un carbono "interno" de la cadena, es reemplazado por un carbono o una cadena corta de carbonos

$$H_{3}C$$
 $H_{2}$ 
 $H_{4}C$ 
 $H_{2}$ 
 $H_{4}C$ 
 $H_{4}C$ 
 $H_{5}C$ 
 $H_{$ 


| # C | formula                                                          | nombre |
|-----|------------------------------------------------------------------|--------|
| 1   | -CH <sub>3</sub>                                                 | metil  |
| 2   | -CH <sub>2</sub> CH <sub>3</sub>                                 | etil   |
| 3   | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | propil |
| 4   | -CH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub> | butil  |
| 5   | -CH <sub>2</sub> (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> | pentil |

# C. Alcanos lineales y ramificados: formula estructural condensada

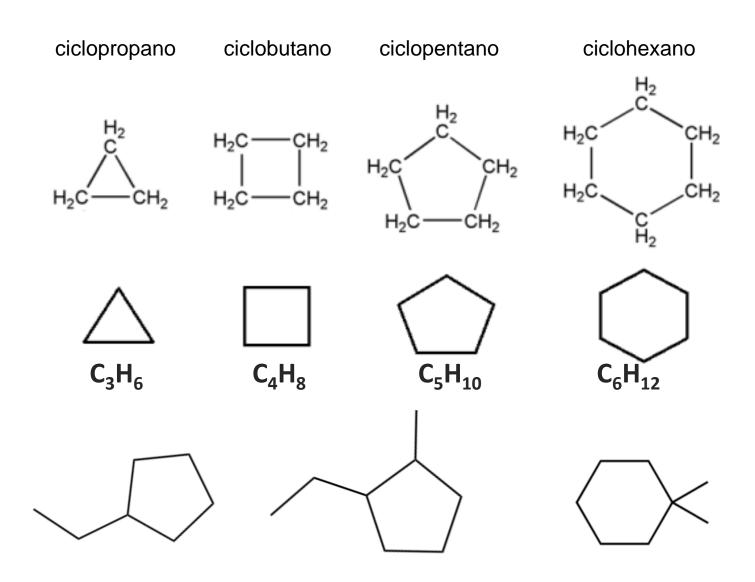

#### Alcanos

#### C. Alcanos ramificados: nociones de nomenclatura

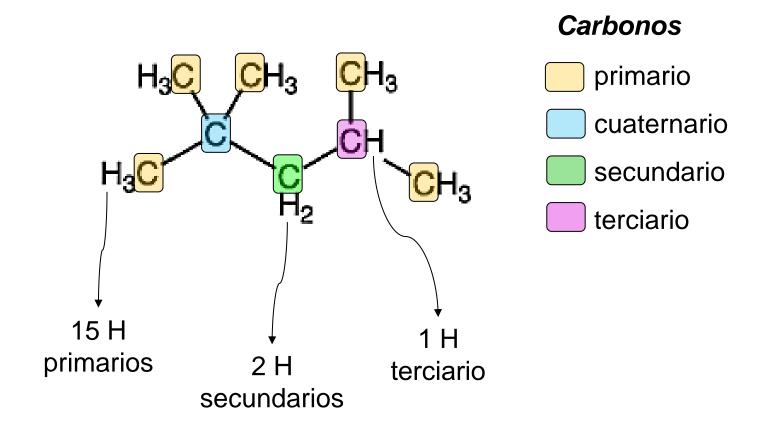
- a) Identificar cadena hidrocarbonada de mayor longitud
- b) Identificar grupos alquilo sustituyentes
- c) Asignar posiciones de grupos alquilo de tal forma que <u>la suma de</u> <u>ellas sea la menor posible</u> – considerar prioridad alfabética



2,2,3,3-tetrametilpentano no 3,3,4,4-tetrametil

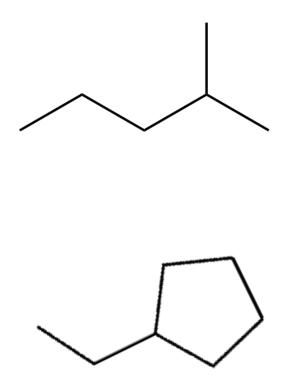



3-etil-2-metilhexano


#### C. Alcanos ramificados: nociones de nomenclatura (cont)

- a) Identificar cadena hidrocarbonada de mayor longitud
- b) Identificar grupos alquilo sustituyentes
- c) Asignar posiciones de grupos alquilo de tal forma que <u>la suma</u> <u>de ellas sea la menor posible</u> considerar prioridad alfabética

4-etil-3,6-dimetiloctano no 5-etil-3,6-dimetil




## Tipos de carbonos e hidrógenos



Hidrógenos

Ejercicio 1: Identifique los tipos y numero de carbonos e hidrógenos en las siguientes moléculas.



# Alcanos – propiedades físicas

# B.1 Alcanos de cadena contínua – T° fusión y ebullición

| Compuesto | # C | Formula         | T fusión (°C) | T ebullición (°C) | T° amb   |
|-----------|-----|-----------------|---------------|-------------------|----------|
| Metano    | 1   | CH <sub>4</sub> | -182.5        | -161.5            | E prince |
| Etano     | 2   | $C_2H_6$        | -183.2        | -88.6             | -        |
| Propano   | 3   | $C_3H_8$        | -187.7        | -42.1             | Gas      |
| Butano    | 4   | $C_4H_{10}$     | -138.3        | -0.5              | J        |
| Pentano   | 5   | $C_5H_{12}$     | -129.7        | 36.1              |          |
| Hexano    | 6   | $C_6H_{14}$     | -95.3         | 68.7              |          |
| Heptano   | 7   | $C_7H_{16}$     | -90.6         | 98.4              |          |
| Octano    | 8   | $C_8H_{18}$     | -56.8         | 125.7             |          |
| Nonano    | 9   | $C_9H_{20}$     | -53.6         | 150.8             | Líquido  |
| Decano    | 10  | $C_{10}H_{22}$  | -29.7         | 174.0             | J        |

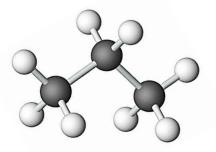
Ejercicio 2: Grafique PM versus T fusión y versus T ebullición

#### Combustión de hidrocarburos

$$2 C_n H_{2n+2} + (3n+1) O_2 \rightarrow 2n CO_2 + (2n+2) H_2O + calor$$
  
 $C_3 H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O + calor$ 

#### ENTALPIAS DE COMBUSTION [kcal(kJ)/mol], 25°C

| Compound (state)                                                         | Name                 | $\Delta H^\circ_{comb}$           |
|--------------------------------------------------------------------------|----------------------|-----------------------------------|
| CH <sub>4</sub> (gas)                                                    | Methane              | -212.8 (-890.4)                   |
| C <sub>2</sub> H <sub>6</sub> (gas)                                      | Ethane               | <b>-372.8 (-1559.8)</b>           |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> (gas)                    | Propane              | <b>-530.6 (-2220.0)</b>           |
| $CH_3(CH_2)_2CH_3$ (gas)                                                 | Butane               | <b>-687.4</b> ( <b>-2876.1</b> )  |
| (CH <sub>3</sub> ) <sub>3</sub> CH (gas)                                 | 2-Methylpropane      | <b>-685.4 (-2867.7)</b>           |
| $CH_3(CH_2)_3CH_3$ (gas)                                                 | Pentane              | <b>-845.2</b> ( <b>-3536.3</b> )  |
| CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> (liquid) | Pentane              | <b>-838.8</b> ( <b>-3509.5</b> )  |
| CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>3</sub> (liquid) | Hexane               | <b>-995.0 (-4163.1)</b>           |
| (liquid)                                                                 | Cyclohexane          | <b>-936.9 (-3920.0)</b>           |
| CH <sub>3</sub> CH <sub>2</sub> OH (gas)                                 | Ethanol              | -336.4 ( <b>-1407.5</b> )         |
| CH <sub>3</sub> CH <sub>2</sub> OH (liquid)                              | Ethanol              | <b>-326.7 (-1366.9)</b>           |
| C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> (solid)                  | Cane sugar (sucrose) | <b>-1348.2</b> ( <b>-5640.9</b> ) |

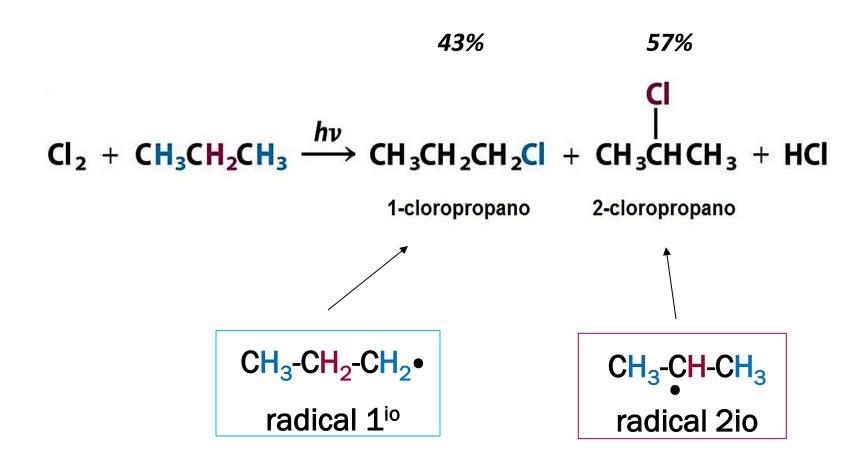

# Combustión de hidrocarburos – ejercicios

Ejercicio 3: Considere la reacción de combustión del propano:

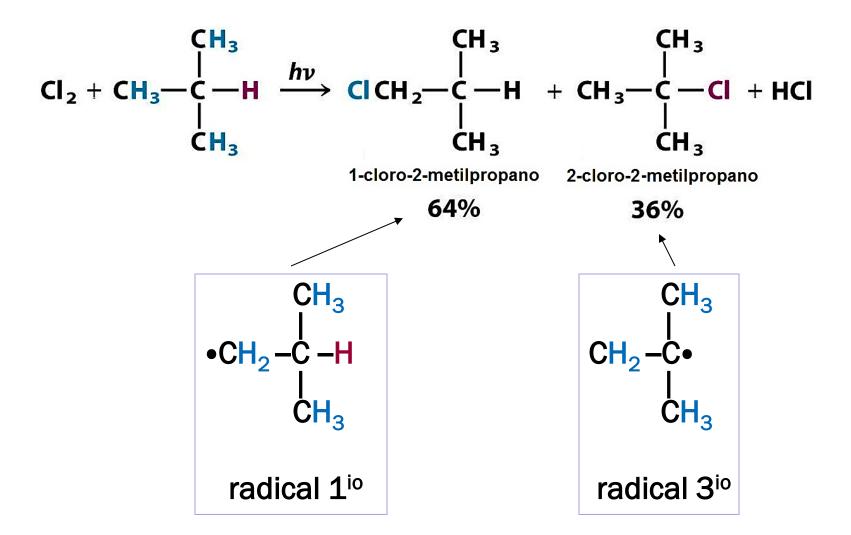
$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O + calor$$

Determine los *estados de oxidación* de los C del propano y del C del CO<sub>2</sub>

Ejercicio 4: De la tabla anterior, observamos que los  $\Delta H_{\text{COMB}}$  del propano (PM=44) y del etanol (PM=46) son **-530,6** y **-336,4** kcal/mol, respectivamente. Proponga una explicación para esta diferencia.







## Alcanos - Halogenación

#### Alcanos - Halogenación

# Halogenación – más de un producto



# Halogenación – más de un producto

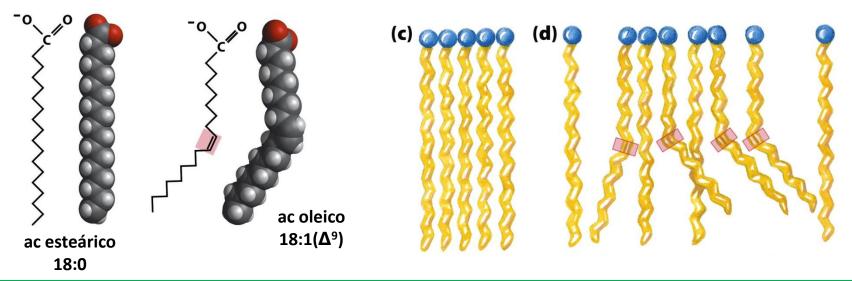


# Halogenación – estabilidad de radicales

$$\frac{\text{CI}}{\text{HV}} + \frac{hv}{\text{CI}_2} \xrightarrow{hv} + \frac{\text{HCI}}{\text{Ciclopentano}} + \frac{hv}{\text{Clorociclopentano}} + \frac{hv}{\text{Clorociclopentan$$

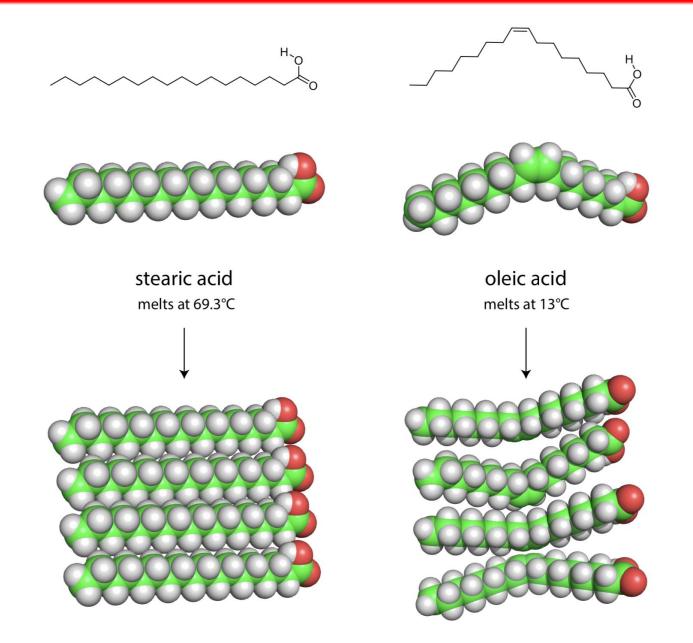
## Sustitución nucleofílica (SN)

- Reacción en la que un nucleófilo reemplaza a un "grupo saliente"
   (X), por ej. en un haloalcano.
- Cuando X sale, se "lleva" ambos electrones del enlace R–X.
- Ej: es posible la síntesis de un alcohol a partir de un haloalcano.


# Alquenos

| Molecular<br>formula                         | Full structural formula                                                                                                                   |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>2</sub> H <sub>4</sub><br>Eteno       | H H C = C                                                                                                                                 |
| C <sub>3</sub> H <sub>6</sub> Propeno        | $\begin{array}{c cccc} H & H & H \\ \hline &   &   &   \\ H & C & C & C \\ \hline &   & &   \\ H & & H & H \end{array}$                   |
| C <sub>4</sub> H <sub>8</sub> 1-buteno       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                     |
| C <sub>5</sub> H <sub>10</sub><br>1-pentence | H - C - C - C - C = C $H + H + H + H$ $H + H$ $H$ |

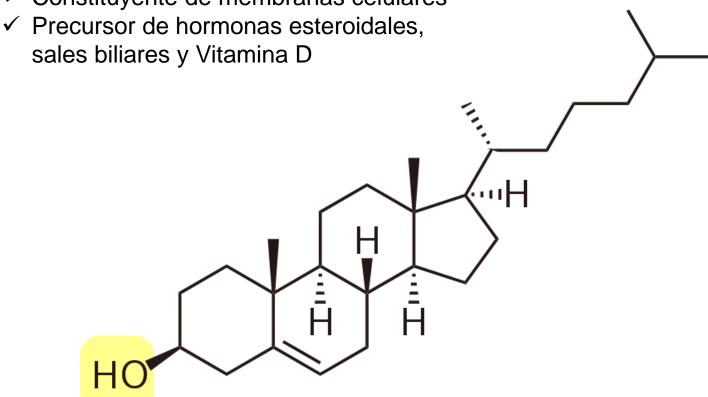
| Molecular<br>formula                        | Full structural formula                                       |
|---------------------------------------------|---------------------------------------------------------------|
| C <sub>6</sub> H <sub>12</sub><br>1-hexeno  | H - C - C - C - C - C = C $H + H + H + H$ $H + H + H + H$     |
| C <sub>7</sub> H <sub>14</sub><br>1-hepteno | H - C - C - C - C - C - C = C $H H H H H H H$ $H H H H H$ $H$ |
| C <sub>8</sub> H <sub>16</sub> 1-octeno     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$         |


# Alquenos – isómeros de posición y geométricos

# Ácidos grasos – propiedades físicas

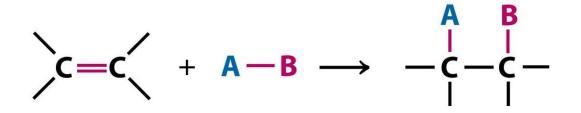


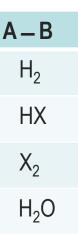
| C: (=)                      | Formula                                                                                                                     | Nombres                                            |                     | T fusion (°C) |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------|---------------|
| 18:0                        | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>16</sub> COOH                                                                       | n-Octadecanoic acid                                | Stearic acid        | 69.6          |
| 18:1(Δ <sup>9</sup> )       | $CH_3(CH_2)_7CH = $ $CH(CH_2)_7COOH$                                                                                        | cis-9-Octadecenoic acid                            | Oleic acid          | 13.4          |
| 18:2(Δ <sup>9,12</sup> )    | $CH_3(CH_2)_4CH =$ $CHCH_2CH =$ $CH(CH_2)_7COOH$                                                                            | cis-,cis-9,12-<br>Octadecadienoic<br>acid          | Linoleic acid       | 1–5           |
| 18:3(Δ <sup>9,12,15</sup> ) | CH <sub>3</sub> CH <sub>2</sub> CH=CHCH <sub>2</sub> CH=<br>CHCH <sub>2</sub> CH=<br>CH(CH <sub>2</sub> ) <sub>7</sub> COOH | cis-,cis-,cis-9,12,15-<br>Octadecatrienoic<br>acid | lpha-Linolenic acid | -11           |

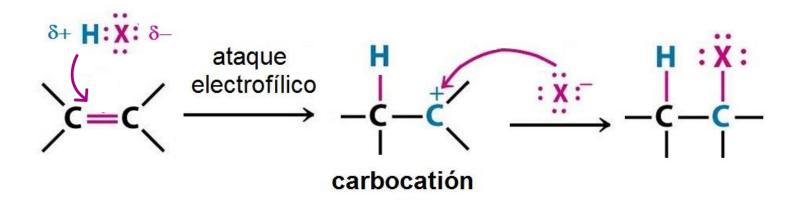

# Ácidos grasos – propiedades físicas



# Carotenos – Vitamina A


## Colesterol


- ✓ Molécula anfipática
- ✓ Constituyente de membranas celulares




## Alquenos – Reacciones

#### Adición electrofílica al doble enlace







## Alquenos – Reacciones

- Hidrogenación

$$CH_2 = CH_2 + H - H \longrightarrow CH_2 - CH_2 - 33$$

- Halogenación

$$CH_2 = CH_2 + : \ddot{B}r - \ddot{B}r: \longrightarrow H - C - C - H - 29$$

$$H - H - H$$

- Hidrohalogenación

ción
$$CH_2 = CH_2 + H - \overset{\overset{}{\text{Cl}}}{\overset{}{\text{Cl}}} \longrightarrow H - \overset{\overset{}{\text{Cl}}}{\overset{}{\text{Cl}}} \longrightarrow H - H$$

- Hidratación

$$CH_2 = CH_2 + H = OH \longrightarrow H = C - C - H = -11$$
 $H = H$ 

 $\Delta H^{\circ}$ 

# Alquenos – Catalizador

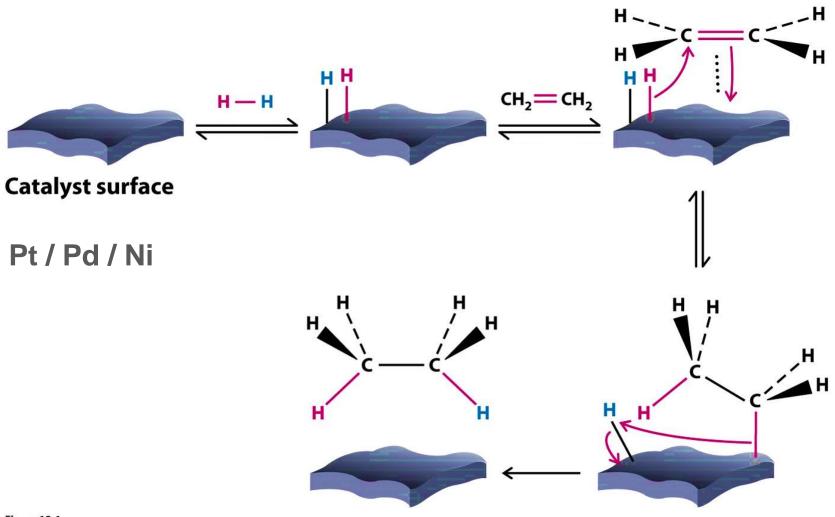
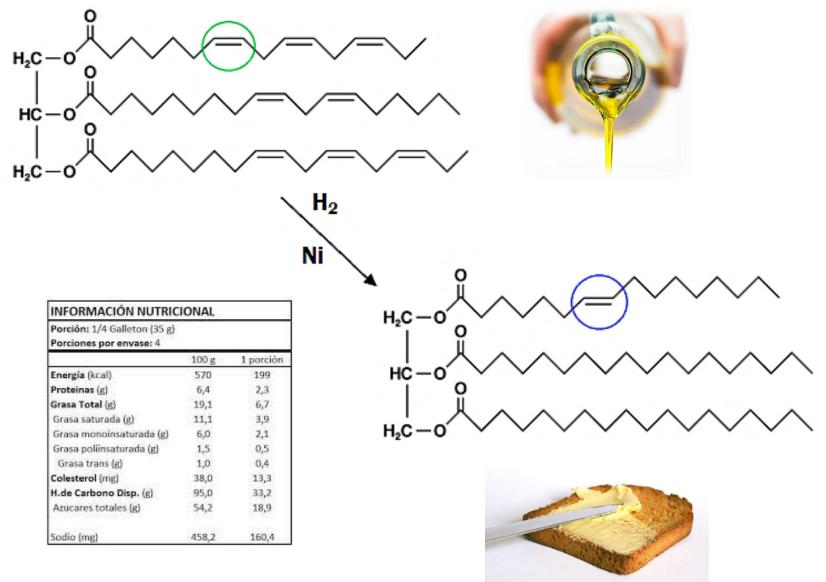
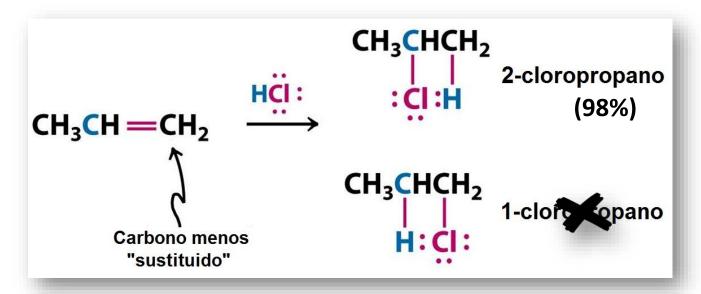




Figure 12-1

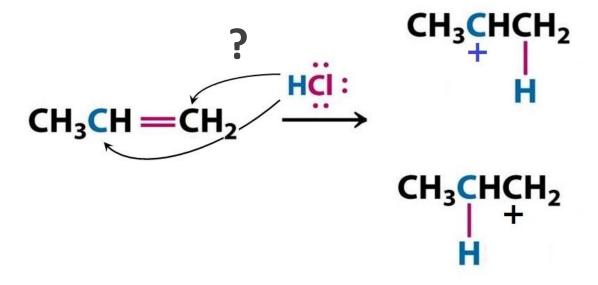
Organic Chemistry, Fifth Edition


© 2007 W. H. Freeman and Company

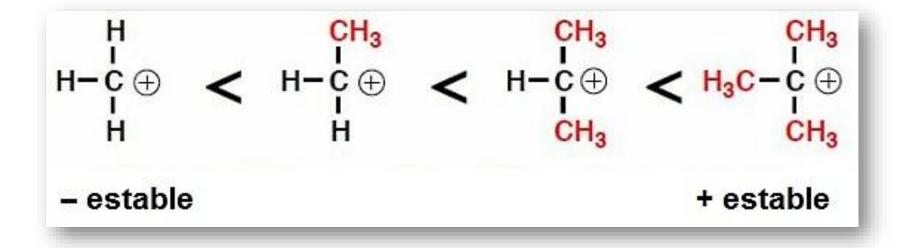
# Hidrogenación – Acs grasos insaturados






¿Cómo ocurre la adición de un electrófilo asimétrico a un alqueno asimétrico?




#### Regla de Markovnikov

El ataque electrofílico inicial del H+, ocurre preferentemente sobre <u>el carbono menos sustituido</u> (*el que está enlazado a más Hs*).

El ataque del H<sup>+</sup> sobre el carbono menos sustituido genera un carbocatión más estable



Un carbocatión es más estable cuando tiene más carbonos unidos al carbono (+). Así, se estabiliza mejor la carga positiva



$$H_{3}C$$

$$C = CH_{2}$$

$$H_{3}C$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}H$$

$$CH_{3}$$

$$CH_{3$$

## Alquenos – otras reacciones

- Epoxidación
$$C = C + RC - O - O - H \longrightarrow C - C + RCO +$$

- Oxidación

$$C = C + KMnO_4 \rightarrow C - C + MnO_2$$

- Ozonolísis

$$CH_{3}CH_{2} \longrightarrow CH_{3}$$

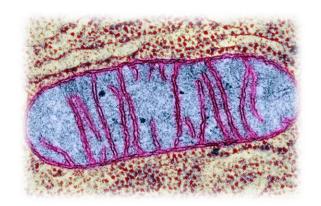
$$CH_{3}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CCH_{3}$$

$$CH_{3}CH_{2}CCH_{3}$$

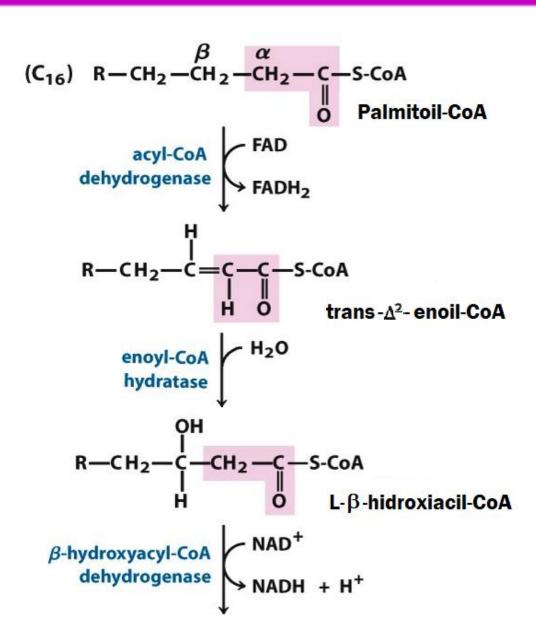
$$CH_{3}CH_{2}CCH_{3}$$

$$CH_{3}CH_{2}CCH_{3}$$


$$O: CH_{3}CH_{2}CCH_{3}$$

$$O: CH_{3}CH_{2}CH_{2}$$

$$O: CH_{3}C$$


# Alquenos - metabolismo

## Ciclo de Krebs | Deshidratación-hidratación



## Alquenos - metabolismo

β-oxidación ác grasos / Oxidación-hidratación



# Alquinos

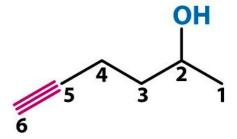
HC 
$$\equiv$$
 CH CH<sub>3</sub>C  $\equiv$  CCH<sub>3</sub>C  $\equiv$  CCHCH<sub>2</sub>CH<sub>3</sub>

CH<sub>3</sub>

4 3 2 1
CH<sub>3</sub>CC ■CH
CH<sub>3</sub>

**Etino** 

2-butino


4-Bromo-2-hexino

3,3-Dimetil-1-butino

Acetileno

$$^{6}_{CH_3CH_2CH} \stackrel{3}{\overset{2}{\overset{2}{\subset}}} \stackrel{1}{\overset{1}{\subset}} \stackrel{1}{\overset{C}{\overset{1}{\subset}}} \stackrel{1}{\overset{1}{\subset}} \stackrel{1}{\overset{1}{\subset}} \stackrel{1}{\overset{1}{\subset}} \stackrel{1}{\overset{1}{\overset{1}{\subset}}} \stackrel{1}{\overset{1}{\subset}} \stackrel{1}{\overset{1}{\smile}} \stackrel{1}{\overset$$

$$CH_2 = CHCH_2C = CH$$



3-Hexen-1-ino

(no 3-hexen-5-ino)

1-Penten-4-ino

(no 4-penten-1-ino)

5-Hexin-2-ol (no 1-hexin-5-ol)

# Alquinos – ácidos grasos acetilenicos

**Ácidos acetilénicos**; se encuentran en algunas plantas, hongos e insectos

## Alquinos - reacciones

$$HC \equiv CH + 2.5 O_2 \rightarrow 2 CO_2 + H_2O \qquad \Delta H^\circ = -1301 \text{ kJ mol}^-$$

$$\Delta H^{\circ} = -1301 \text{ kJ mol}^{\circ}$$



$$CH_3CH_2C \equiv CH + 2H_2 \xrightarrow{Catalyst} CH_3CH_2CH_2CH_3 \quad \Delta H^\circ = -292.5 \text{ kJ mol}^{-1}$$

$$CH_3C \equiv CCH_3 + 2H_2 \xrightarrow{Catalyst} CH_3CH_2CH_2CH_3 \quad \Delta H^\circ = -272.4 \text{ kJ mol}^{-1}$$

$$H_3C-CH_3 < H_2C=CH_2 < HC \equiv CH$$
Hibridacion  $sp^3$   $sp^2$   $sp$ 
 $pK_a$  50 44 25

Bibliografía
Bailey & Bailey, 5a Ed 1998
Vollhardt-Schore, 5a Ed 2007
Schmid, 1a Ed, 1996

Prof. Ulises Urzúa uurzua@uchile.cl 22978-6877 Block E zócalo