

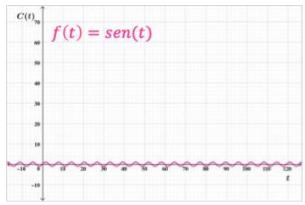
PAUTA DE EVALUACION

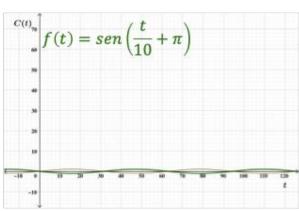
Datos:

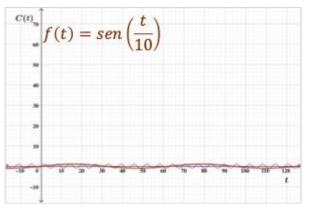
- Función $C(t) = 35 5 \operatorname{sen}\left(\frac{1}{10}t + \pi\right)$.
- Intervalo en el que se hace la medición de las temperaturas: $0 \le t \le 120$.

¿Qué me piden?

- Realizar la gráfica de la función C(t)=35-5 $sen(\frac{1}{10}t+\pi)$, con $0\leq t\leq 120$.
- Calcular C(30).
- Identificar la amplitud y el periodo de la función y calcular $\mathcal{C}(120)$.

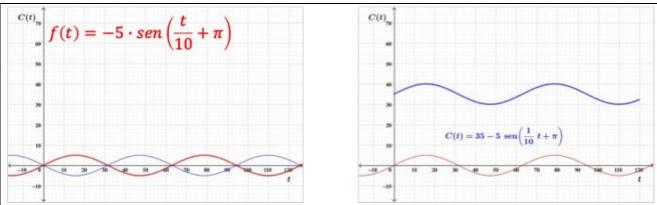

¿Qué debo realizar?

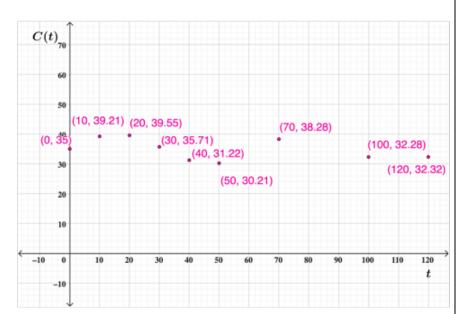

- A partir de la función f(t) = sen(t) se pueden aplicar las transformaciones correspondientes para encontrar C(t). También se puede utilizar una tabla de valores para ubicar algunos puntos y trazar la gráfica correspondiente.
- Identificar los valores que permiten hacer el cálculo de la amplitud y del periodo en la función $\mathcal{C}(t)$.
- Evaluar la función en t = 30 y t = 120.

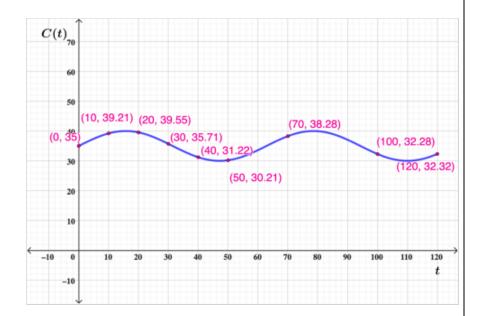

Solución

Para la gráfica de C(t):

Alternativa 1: A partir de la función f(t) = sen(t) se pueden aplicar las transformaciones correspondientes para encontrar C(t).







Alternativa 2: utilizar una tabla de valores para ubicar algunos puntos y trazar la gráfica correspondiente.

t	C(t)
0	35
10	39.2
20	39.5
30	35.7
40	31.2
50	30.2
70	38.2
100	32.2
120	32.3

Para calcular la amplitud de C(t): Amplitud = |-5|=5. Por lo tanto, la amplitud de la función C(t)=35-5 $sen\left(\frac{1}{10}t+\pi\right)$ es 5.

Para calcular el periodo de C(t): Periodo $=\frac{2\pi}{\frac{1}{10}}=20\pi$. Por lo tanto, el periodo de C(t) es 20π .

A partir de lo anterior, se tienen las sigientes respuestas:

A B C D 2 OOO 3 OOO 4 OOO