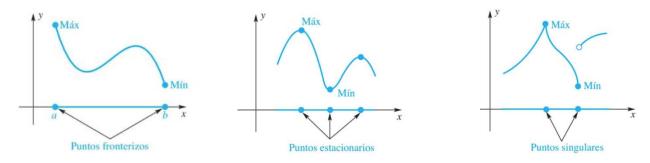


FÓRMULAS DE APOYO

Aplicación de la derivada al Trazado de Curvas

Puntos Críticos: Sea f definida en un intervalo I que contiene al punto c. Si f(c) es un valor extremo, entonces c debe ser un punto crítico, es decir, c es alguno de los siguientes

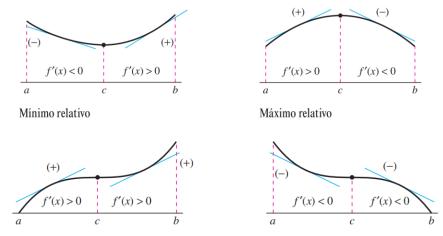
- i. un punto fronterizo de I
- ii. un punto estacionario de f; es decir, un punto donde f'(x) = 0
- iii. un punto singular de f; esto es, un punto donde f'(c) no exista



Criterio de la primera derivada para Extremos Relativos

Sea f derivable en un intervalo abierto (a,b)que contiene a c, y supóngase que f'(c)=0 entonces:

- a) Si f'(x) cambia de positiva a negativa en c, entonces f tiene un máximo relativo en (c.f(c))
- b) Si f'(x) cambia de negativa a positiva en c, entonces f tiene un mínimo relativo en (c.f(c))
- c) Si f'(x) es positiva o negativa en ambos lados de c, entonces f(c) no es ni mínimo ni máximo relativo.

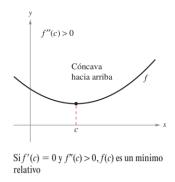


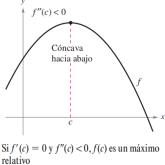
Ni mínimo relativo ni máximo relativo

Criterio de la segunda derivada para Extremos Relativos

Suponga que f'y f'' existen en todo punto de un intervalo abierto (a,b)que contiene a c, y supóngase que f'(c) = 0 entonces:

- 1. Si f''(c) < 0, entonces f tiene un máximo relativo en (c.f(c))
- 2. Si f''(c) > 0, entonces f tiene un mínimo relativo en (c.f(c))





Criterio de la segunda derivada para Puntos de Inflexión

Suponga que f'y f'' existen en todo punto de un intervalo abierto (a,b) que contiene a c, y supóngase que f''(c) = 0

- 1. Si f''(x) cambia de positiva a negativa en c, entonces f tiene un punto de inflexión (c.f(c))
- 2. Si f''(x) cambia de negativa a positiva en c, entonces f tiene un punto de inflexión (c.f(c))

