FÓRMULAS DE APOYO Función Exponencial y Logarítmica

Propiedades de Logaritmos

1) $\quad \log _{\mathrm{b}}(\mathrm{b})=1$
2) $\quad \log _{\mathrm{b}}(\mathrm{a} \cdot \mathrm{c})=\log _{\mathrm{b}}(\mathrm{a})+\log _{\mathrm{b}}(\mathrm{c})$
3) $\quad \log _{\mathrm{b}} \mathrm{a}^{\mathrm{p}}=\mathrm{p} \cdot \log _{\mathrm{b}}(\mathrm{a}), \quad \mathrm{p} \in \mathbb{R}$
4) $\quad \log _{\mathrm{b}}\left(\frac{a}{\mathrm{c}}\right)=\log _{\mathrm{b}}(\mathrm{a})-\log _{\mathrm{b}}(\mathrm{c})$
5) $\quad \log _{b} b^{p}=p$
6) $\quad b^{\log _{\mathrm{b}}(\mathrm{c})}=\mathrm{c}$
7) $\quad \log _{\mathrm{b}}(\mathrm{x})=\log _{\mathrm{b}}(\mathrm{y}) \Leftrightarrow \mathrm{x}=\mathrm{y}$
8) $\quad \log _{b}(a)=\frac{\log _{c}(a)}{\log _{c}(b)}$, donde c es la nueva base

Propiedades de los Exponentes

1) $a^{m} \cdot a^{n}=a^{m+n}$
2) $a^{m} \cdot b^{m}=(a \cdot b)^{m}$
3) $\frac{a^{n}}{a^{m}}=a^{n-m}, a \neq 0$
4) $\frac{a^{n}}{b^{n}}=\left(\frac{a}{b}\right)^{n}, b \neq 0$
5) $\left(a^{m}\right)^{n}=(a)^{m \cdot n}$
6) $a^{0}=1, a \neq 0$
7) $a^{-n}=\frac{1}{a^{n}}$
8) $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}, a, b \neq 0$

Modelo de crecimiento y decaimiento exponencial.

$$
N(t)=N_{0} e^{k t}
$$

- N_{0} Cantidad Inicial
- k Constante de Crecimiento
- $N(t)$ Cantidad en cualquier instante t

$$
Q(t)=Q_{0} e^{-k t}
$$

- Q_{0} Cantidad Inicial
- k Constante de Decrecimiento
- $Q(t)$ Cantidad en cualquier instantet

Uso de la calculadora

Límites:

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e \quad \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\ln (a), \text { con } a>0 \text { y } a \neq 1
$$

Derivadas:

Suponiendo que u y v son funciones diferenciables en x, se cumple que:

1) $\frac{d}{d x}\left(e^{u}\right)=e^{u} \cdot \frac{d u}{d x}$
2) $\frac{d}{d x}\left(u^{v}\right)=v \cdot u^{v-1} \cdot \frac{d u}{d x}+(\ln (u)) \cdot u^{v} \cdot \frac{d v}{d x}$
3) $\frac{d}{d x}(\log (u))=\frac{\log (e)}{u} \cdot \frac{d u}{d x}$
4) $\frac{d}{d x}(\ln (u))=\frac{1}{u} \cdot \frac{d u}{d x}$
