FÓRMULAS DE APOYO
 Vectores

Notación de un Vector

Par ordenado	Combinación lineal	Matriz
$\vec{u}=\left(u_{1}, u_{2}\right)$	$\vec{u}=u_{1} \cdot \hat{\imath}+u_{2} \cdot \hat{\jmath}$	$\vec{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$

Módulo, Norma o Longitud de un Vector
Sea $\vec{u}=\left(u_{1}, u_{2}\right)$ entonces $|\vec{u}|=\sqrt{u_{1}^{2}+u_{2}^{2}}$

Dirección de un vector

Sea $\vec{u}=\left(u_{1}, u_{2}\right)$ en el primer cuadrante, entonces la tangente que el vector tiene con respecto a la horizontal está dada por:

$$
\tan (\alpha)=\frac{u_{2}}{u_{1}}
$$

Por lo tanto, el ángulo estará dado por: $\alpha=\arctan \left(\frac{u_{2}}{u_{1}}\right)$
Dependiendo de en qué cuadrante se encuentre el vector, se calculará de diferentes maneras.
En el Cuadrante II, $\mathbf{v}_{\mathrm{x}}<\mathbf{0}$, $\mathrm{v}_{\mathrm{y}}>0 \mathrm{y}$ el arcotangente da un ángulo β negativo.

$$
\alpha=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)+180^{\circ}
$$

En el Cuadrante I, el resultado del arcotangente da el ángulo buscado

En el Cuadrante III, $\mathbf{v}_{\mathrm{x}}<$ $0, v_{y}<0$ y el arcotangente da un ángulo γ positivo.

$$
\alpha=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)+180^{\circ}
$$

En el Cuadrante IV, $\mathbf{v}_{\mathbf{x}}>\mathbf{0}, \mathbf{v}_{\mathbf{y}}$ <0 y el arcotangente da un ángulo ò negativo.

$$
\alpha=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)+360^{\circ}
$$

Coseno entre dos vectores

$$
\cos (\alpha)=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}
$$

Vector Unitario

Un vector unitario, es un vector con módulo igual a uno. Los vectores cartesianos unitarios están determinados en dos dimensiones de la siguiente manera.

$$
\begin{aligned}
& \hat{\imath}=(1,0) \\
& \hat{\jmath}=(0,1)
\end{aligned}
$$

Normalización de un Vector
Sea \vec{v} un vector cualquiera, entonces el vector unitario \vec{u} en la misma dirección de \vec{v}, se calcula:

$$
\vec{u}=\frac{\vec{v}}{|\vec{v}|}
$$

Producto Escalar o Punto

Sean $\vec{u}=\left(u_{1}, u_{2}\right)$ y $\vec{v}=\left(v_{1}, v_{2}\right)$ entonces:

$$
\begin{gathered}
\vec{u} \cdot \vec{v}=|\vec{u} \| \vec{v}| \cos (\alpha) \\
\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}
\end{gathered}
$$

Vectores Ortogonales (\perp)

Dos vectores son ortogonales (perpendiculares) si:

$$
\vec{u} \cdot \vec{v}=0
$$

Vectores Paralelos (II)
Dos vectores son paralelos si:

$$
\vec{u}=\mathrm{k} \cdot \vec{v}
$$

Proyección Ortogonal
La proyección ortogonal del vector \vec{u} sobre el vector \vec{v}, es otro vector \vec{w} calculado de la forma:

$$
\vec{w}=\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^{2}} \cdot \vec{v}
$$

