FÓRMULAS DE APOYO Vectores

Notación de un Vector

Par ordenado	Combinación lineal	Matriz
$\vec{u} = (u_1, u_2)$	$\vec{u} = u_1 \cdot \hat{\imath} + u_2 \cdot \hat{\jmath}$	$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$

Módulo, Norma o Longitud de un Vector Se
a $\vec{u} = (u_1, u_2)$ entonces $|\vec{u}| = \sqrt{u_1^2 + u_2^2}$

Dirección de un vector

Sea $\vec{u} = (u_1, u_2)$ en el primer cuadrante, entonces la tangente que el vector tiene con respecto a la horizontal está dada por:

$$\tan(\alpha) = \frac{u_2}{u_1}$$

Por lo tanto, el ángulo estará dado por: $\alpha = \arctan\left(\frac{u_2}{u_1}\right)$

Dependiendo de en qué cuadrante se encuentre el vector, se calculará de diferentes maneras.

Seminarios Matemática

Coseno entre dos vectores

$$\cos\left(\alpha\right) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$$

Vector Unitario

Un vector unitario, es un vector con módulo igual a uno. Los vectores cartesianos unitarios están determinados *en dos dimensiones* de la siguiente manera.

$$\hat{\iota} = (1,0)$$

 $\hat{j} = (0,1)$

Normalización de un Vector

Sea \vec{v} un vector cualquiera, entonces el vector unitario \vec{u} en la misma dirección de \vec{v} , se calcula:

$$\vec{u} = \frac{\vec{v}}{|\vec{v}|}$$

Producto Escalar o Punto

Sean $\vec{u} = (u_1, u_2)$ y $\vec{v} = (v_1, v_2)$ entonces:

 $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\alpha)$ $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2$

Vectores Ortogonales (\bot)

Dos vectores son ortogonales (perpendiculares) si:

 $\vec{u} \cdot \vec{v} = 0$

Vectores Paralelos (||)

Dos vectores son paralelos si:

$$\vec{u} = \mathbf{k} \cdot \vec{v}$$

Proyección Ortogonal

La proyección ortogonal del vector \vec{u} sobre el vector \vec{v} , es otro vector \vec{w} calculado de la forma:

$$\vec{w} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \cdot \vec{v}$$