Control Formativo - Parte Desarrollo Trazado de Curvas

1. Sea $f(x) = x^4 - 2x^2 + 1$:

Dada la función de manera previa determinamos el dominio, recorrido y su primera y segunda derivada:

Para el Dominio se tiene que $Dom f : \mathbb{R}$ y para el Recorrido, $Recf : \mathbb{R}$

Calculamos ambas derivadas:

$$f'(x) = (x^{4} - 2x^{2} + 1)'$$

$$= 4x^{3} - 4x$$

$$= 4x(x^{2} - 1)$$

$$= 4x(x + 1)(x - 1)$$

$$f''(x) = (4x^{3} - 4x)'$$

$$= 12x^{2} - 4$$

$$= 4(3x^{2} - 1)$$

$$= 4\left(x + \frac{1}{\sqrt{3}}\right)\left(x - \frac{1}{\sqrt{3}}\right)$$

a) Valores críticos.

$$f'(x) = 0 \Rightarrow 4x(x+1)(x-1) = 0$$

 $\Rightarrow x = -1, x = 0, x = 1$

Los valores críticos son x = -1, x = 0 y x = 1.

b) Coordenadas de puntos máximos y/o mínimos

Construimos la tabla de los signos para la primera derivada:

Factores	$-\infty$ -	-1 () [1 ∞
4x	_	_	+	+
(x-1)	_	_	_	+
(x+1)	_	+	+	+
f'(x)	_	+	_	+
f(x)				1

Hay un punto mínimo cuando x = -1 y x = 1, además, f(-1) = 0 y f(1) = 0 por lo tanto, las coordenadas de los puntos mínimos son: (-1,0) y (1,0)

Hay un punto máximo cuando x = 0, además, f(0) = 1, por lo tanto, la coordenada del punto máximo es (0, 1).

c) Intervalos de crecimiento y/o decrecimiento.

De la tabla anterio se puede obtener dichos intervalos:

Crecimiento: $]-1,0[\cup]-1,\infty[$ Decrecimiento:] $-\infty$, $-1[\cup]0,1[$

d) Coordenadas de puntos de inflexión.

$$f''(x) = 0 \Rightarrow 4\left(x + \frac{1}{\sqrt{3}}\right)\left(x - \frac{1}{\sqrt{3}}\right) = 0$$
$$\Rightarrow x = -\frac{1}{\sqrt{3}}, \ x = \frac{1}{\sqrt{3}}$$

Los valores de x para determinar los posibles puntos de inflexión son $x=-\frac{1}{\sqrt{3}}$ y $x=-\frac{1}{\sqrt{3}}$ Construimos la tabla de signos para la segunda derivada:

Factores	$-\infty$	_	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	∞
$\left(x + \frac{1}{\sqrt{3}}\right)$		_	+		+
$\left(x - \frac{1}{\sqrt{3}}\right)$		_	_	•	+
f''(x)		+ •	_	•	+

Por lo que podemos determinar dos puntos de inflexión, uno en $x=-\frac{1}{\sqrt{3}}$ y otro en $x=\frac{1}{\sqrt{3}}$, además, $f\left(-\frac{1}{\sqrt{3}}\right)\approx 0.44$ y $f\left(\frac{1}{\sqrt{3}}\right)\approx 0.44$. Por lo tanto, las coordenadas de los puntos de inflexión son:

$$\left(-\frac{1}{\sqrt{3}},0,44\right) \qquad \left(\frac{1}{\sqrt{3}},0,44\right)$$

Intervalos de concavidad positiva y negativa

De la tabla anterior se pueden obtener dichos intervalos:

Concavidad Positiva:
$$\left]-\infty, -\frac{1}{\sqrt{3}}\right[\ \cup \ \left]\frac{1}{\sqrt{3}}, \infty\right[$$

Concavidad Negativa:
$$\left] -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right[$$

La gráfica de la función coincide con los datos encontrados:

