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Brain signals recorded from the primary motor cortex (M1) are known to serve a significant
role in coding the information brain–machine interfaces (BMIs) need to perform real and
imagined movements, and also to form several functional networks with motor association
areas. However, whether functional networks between M1 and other brain regions, such
as these motor association areas, are related to the performance of BMIs is unclear. To
examine the relationship between functional connectivity and performance of BMIs, we
analyzed the correlation coefficient between performance of neural decoding and functional
connectivity over the whole brain using magnetoencephalography.Ten healthy participants
were instructed to execute or imagine three simple right upper limb movements. To
decode the movement type, we extracted 40 virtual channels in the left M1 via the beam
forming approach, and used them as a decoding feature. In addition, seed-based functional
connectivities of activities in the alpha band during real and imagined movements were
calculated using imaginary coherence. Seed voxels were set as the same virtual channels
in M1. After calculating the imaginary coherence in individuals, the correlation coefficient
between decoding accuracy and strength of imaginary coherence was calculated over
the whole brain. The significant correlations were distributed mainly to motor association
areas for both real and imagined movements. These regions largely overlapped with brain
regions that had significant connectivity to M1. Our results suggest that use of the strength
of functional connectivity between M1 and motor association areas has the potential to
improve the performance of BMIs to perform real and imagined movements.
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INTRODUCTION
The brain signals recorded from the primary motor cortex (M1)
are known to serve a significant role in providing the information
necessary for brain–machine interfaces (BMIs). This technology
is expected to offer patients who have lost control of voluntary
movements, including those with amyotrophic lateral sclero-
sis (ALS) and spinal cord injury, greater independence, and a
higher quality of life by enabling them to control external devices
to communicate with others and to manipulate their environ-
ment at will (Wolpaw et al., 2002; Birbaumer, 2006; Hirata et al.,
2012; Hochberg et al., 2012; Collinger et al., 2013). Recently,
many studies reported the importance of M1 signals in provid-
ing the information necessary for BMIs using various types of
signal platforms to execute real and imagined movements; for
example, electroencephalography (EEG; Bradberry et al., 2010;
Shindo et al., 2011), magnetoencephalography (MEG; Mellinger
et al., 2007; Buch et al., 2008; Waldert et al., 2008; Wang et al.,
2010; Sugata et al., 2012a), and electrocorticography (ECoG;
Leuthardt et al., 2004; Schalk et al., 2007; Yanagisawa et al., 2011,
2012a).

In electrophysiological studies, particular ranges of neural
oscillations, which are usually classified into alpha (8–13 Hz), beta
(14–25 Hz) and gamma (30–90 Hz), were shown to be associated
with motor control (Lopes da Silva, 2013), and their applications
to BMIs have been investigated (Wolpaw and McFarland, 2004;
Birbaumer, 2006; Yanagisawa et al., 2011). Rhythmic activity in
the alpha range observed over the region of the Rolandic fissure is
typically not in the form of a sinusoidal curve (Pfurtscheller and
Neuper, 1997) and variably referred to as mu rhythm (Gastaut,
1952). It can be observed along with beta band activity during
movement (Pfurtscheller and Aranibar, 1977; Cheyne, 2013) and
tactile stimulation (Gaetz and Cheyne, 2006). Since modeling of
non-sinusoidal waveforms requires the use of higher frequency
harmonic components in addition to a fundamental frequency,
beta rhythm activity associated with mu rhythm might result
from the non-sinusoidal nature of mu rhythms, rather than an
independent physiological processes (Jurgens et al., 1995). In addi-
tion, the gamma band has been shown to correlate with the firing
activities of neurons representing neural information (Ray et al.,
2008; Quian Quiroga and Panzeri, 2009). These frequency bands
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compose task-specific spatial connectivity patterns in movement
related neural networks such as those involving the M1, premo-
tor cortex (PMC), and supplementary motor area (SMA; Herz
et al., 2012). Among these frequency bands, recently, functional
connectivity within the range of alpha band between the sensori-
motor area and motor association area was shown to be relevant
to post-stroke recovery potential (Westlake et al., 2012). In this
study, neural oscillations of the alpha band were used to calcu-
late functional connectivity because of the higher signal-to-noise
ratio compared to oscillations in other frequency bands (e.g.,
theta, beta) and because they play an important role in control-
ling cortical excitability. In addition, alpha oscillations are also
relevant in the controlling of motor execution through the mod-
ulation of gamma-band activity (Yanagisawa et al., 2012b). This
alpha oscillation in the sensorimotor cortex, i.e., mu rhythm, has
been observed in relation to not only motor execution (Salmelin
and Hari, 1994; Leocani et al., 2001) but also motor prepara-
tion (Pfurtscheller et al., 1997; Pineda, 2005) and motor imagery
(Pfurtscheller et al., 2006; Llanos et al., 2013) as well as beta oscil-
lations, and is considered a mechanism for improving information
processing during these tasks (Basar et al., 2001; Palva and Palva,
2007; Sabate et al., 2012). Furthermore, functional connectivities
within the range of alpha band activity are suggested to be related
to physical and mental fitness (Douw et al., 2014). Such neuro-
physiological aspects have also been proposed as useful markers of
impaired brain states, such as schizophrenia (Hinkley et al., 2011),
Alzheimer’s disease (Canuet et al., 2012), and multiple sclerosis
(Cover et al., 2006). However, in the field of BMIs, there have
been few studies focusing on the relationship between functional
connectivity within the range of alpha band activities and the
performance of BMIs. Based on the above findings, we hypothe-
sized that alpha band activity is a key component to revealing the
relationship between the functional connectivity of M1 and per-
formance of BMIs in decoding real and imagined movements. We
further hypothesized that brain regions possessing strong alpha
functional connectivity with M1 contribute to the performance of
BMIs.

The aim of this study was to clarify the relationship between
alpha functional connectivity and the performance of BMIs.
For this purpose, we used MEG to examine the relationship
between the performance of neural decoding, which has been
also termed “decoding accuracy” in several studies (Waldert et al.,
2008; Bradberry et al., 2010; Yanagisawa et al., 2011), and func-
tional connectivity of activities within the alpha band (8–13 Hz).
MEG has several advantages for analyzing functional connectiv-
ity compared with EEG and fMRI. MEG has a higher spatial
resolution than EEG, and can record a direct correlate of neu-
ral activity with high temporal resolution compared with fMRI.
We extracted 40 virtual channels in the left M1 using a beam
forming approach and used them as a decoding feature. In
addition, we calculated seed-based functional connectivity over
the whole brain using alpha band activity. Seed voxels corre-
sponded to the same locations as the 40 virtual channels set in
the left M1. We then computed the task-related functional con-
nectivity instead of that during the resting state because previous
studies using MEG (Bardouille and Boe, 2012) and fMRI (New-
ton et al., 2007; Treserras et al., 2009) showed that functional

connectivity during motor tasks is greater than that in the resting
state. After calculating the task-related functional connectiv-
ity, the correlation coefficients between decoding accuracy and
strength of functional connectivity were calculated over the whole
brain.

MATERIALS AND METHODS
PARTICIPANTS
Ten healthy volunteers participated in this study (five males and
five females; mean age 29.8 ± 13.2 years). All participants were
confirmed to be right-handed using the Edinburgh Handedness
Inventory (Oldfield, 1971; all participants had a score of 100),
had no history of neurological or psychiatric diseases, and had
normal vision. The protocol of this study was approved by the
ethics committee of Osaka University Hospital and all participants
provided informed, written consent.

TASKS
The experimental paradigm is shown in Figure 1A. We prepared
two tasks: a real movement task and an imagined movement task.
We have previously shown the contribution of M1 signals in clas-
sifying movement types using these motor tasks based on ECoG
(Yanagisawa et al., 2009) and MEG (Sugata et al., 2012b). An epoch
started with a 4-s rest phase, and a black fixation cross (+) was pre-
sented to fix the participant’s eyes on the screen. Then, a Japanese
word representing one of the three right upper limb movements
(grasping, pinching, or elbow flexion) was presented for 1 s to
instruct the participant which movement to perform or imag-
ine after the appearance of the execution cue. Two timing cues,
“> <” and “> <,” were then sequentially presented for 1 s each to
enable the participants to prepare the execution of the real or imag-
ined movements. In the real movement task, the participants were
instructed to perform the instructed movement presented on the
display immediately after the appearance of the execution cue (×).
In the imagined movement task, the participants were instructed to
imagine performing the movement immediately after the appear-
ance of the execution cue. Each of the three types of movements
was performed 60 times during the real movement trials, and the
movement in any given epoch was selected randomly. Then the
imagined movement trials were conducted in the same manner.

MEG MEASUREMENTS
Neuromagnetic activity was recorded in a magnetically shielded
room using a 160-channel whole-head MEG system equipped
with coaxial type gradiometers (MEG vision NEO; Yokogawa Elec-
tric Corporation, Kanazawa, Japan). The participant lay on a
bed in the supine position with their head centered. The head
position was measured before and after recording using five coils
placed on the face (the external meatus of each ear and three
points on the forehead). Visual stimuli were displayed on a pro-
jection screen positioned 325 mm from the participant’s eyes
using a visual presentation system (Presentation; Neurobehavioral
Systems, Albany, CA, USA) and a liquid crystal projector (LVP-
HC6800; Mitsubishi Electric, Tokyo, Japan). Data were sampled
at a rate of 1000 Hz with an online low-pass filter at 200 Hz. To
reduce contamination from muscle activity and eye movements,
we instructed the participants to rest their elbows on a cushion to
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FIGURE 1 |Task design and analysis procedure. (A) Task design.
Participants performed a real movement task and an imagined movement
task following the same task paradigm. Each trial consisted of four
phases: a rest phase, an instruction phase, a preparation phase, and an
execution phase. In the rest phase, participants fixed their eyes on a
black fixation cross “+” presented for 4 s. A Japanese word representing
one of three movements was then presented for 1 s during the
instruction phase. Then, two timing cues, “> <” and “> <,” were
presented during the preparation phase to enable the participants to
prepare the execution of real or imagined movements. Finally, the

participants performed the movement or imagined performing the
movement presented during the instruction phase. Each of the three
movements was performed 60 times. (B) Analysis procedure. The beam
forming approach was used to extract 40 virtual channels from the left
M1, and decoding accuracy was calculated using these channels.
Seed-based functional connectivity of activities within the alpha band
between M1 virtual channels and target voxels over the rest of the whole
brain was calculated using imaginary coherence (IC) in individual
participants. Then, the correlation coefficient between decoding accuracy
and IC was calculated over the participants.

avoid shoulder movements, and to watch the center of the display
without ocular movements and blinking. In addition, to moni-
tor unwanted muscular artifacts, electromyograms (EMG) were
simultaneously recorded with electrodes on the flexor pollicis bre-
vis, flexor digitorum superficialis, and biceps brachii muscles during
the tasks.

After data acquisition, a 60-Hz notch filter was applied to
eliminate the AC line noise, and eye blink artifacts were rejected
applying the signal-space projection (SSP), one of the approaches
implanted in Brainstorm1 to reject external disturbances (Tadel

1http://neuroimage.usc.edu/brainstorm
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et al., 2011). In addition, to align the MEG data with individual
MRI data, three-dimensional data of facial surfaces obtained by
laser scanning were superimposed on the anatomical facial surface
provided by the individual MRI data with an anatomical accuracy
<1 mm.

VIRTUAL CHANNELS AND PREPROCESSING
To extract M1 signals from the MEG sensor, we used an adaptive,
spatial filtering beamforming technique (Sekihara et al., 2002).
This approach is used to estimate the temporal course of neural
activity at a particular site in the brain marked by an imaging voxel,
such as that derived from MRI. The output of such a spatial filter
is termed a virtual channel or virtual sensor (Robinson and Vrba,
1999). The beamformer is constructed to project signals exclu-
sively from the targeted voxels, while removing residual noise to
suppress signals from other parts of the brain. Thus, virtual chan-
nels provide data concerning neural activity at target voxels with
a considerably higher signal-to-noise ratio than that of raw MEG
data (Robinson and Vrba, 1999).

The target location of the virtual channels for the present study
was the left M1 gyrus. Forty virtual channels were selected in the
M1 with an approximately 2.5 mm inter-sensor spacing using the
Montreal Neurological Institute (MNI) coordinates (Figure 1B).
Then, the virtual channel location coordinates on individual MRIs
were extracted utilizing MNI coordinates and warping parameters
calculated by Statistical Parametric Mapping 8 (SPM8; Wellcome
Department of Imaging Neuroscience, London, UK) using an
MRI-T1 template and individual MRI-T1 images. A tomographic
reconstruction of the data was created by generating a single-
sphere head model based on the head shape obtained from the
structural MRIs of each individual participant.

Presentation of the execution cue was defined as the onset of
real and imagined movements (0 ms), and all time windows were
relative to this time. Epochs from –4000 to 500 ms were analyzed.
The baseline was set from –4000 to –3500 ms, during the resting
phase. Data from each epoch were normalized by subtracting the
mean and then dividing by the SD of the baseline values.

FUNCTIONAL CONNECTIVITY ANALYSIS
The MEG sensor data were reconstructed in source space with
the same beamformer approach described above with 5-mm
voxel spacing over the whole brain. The frequency component
of the alpha band was chosen to calculate source-space, and
seed-based functional connectivity. The functional connectivity
at 0–500 ms was calculated with imaginary coherence (IC), one of
the connectivity analysis approaches that can reduce overestima-
tion biases in EEG/MEG data generated from common references,
cross-talk, and volume conduction (Nolte et al., 2004; Guggis-
berg et al., 2008; Hinkley et al., 2011). IC rules out real parts of
coherence containing similarities with zero time lag, and uses
imaginary parts of coherence which contains similarities with a
certain time lag, because phase similarities with zero time delay
among time series are likely to be caused by crosstalk or vol-
ume conduction. Using this method, we can evaluate the “true”
interactions between brain areas occurring with a certain time
lag. Seed voxels were set at the 40 virtual channels in the left
M1 at the same locations described above, and the targets were

set as voxels over the remaining whole brain (i.e., except the
left M1). The connectivity at each voxel was estimated by aver-
aging across all its Fisher’s Z-transformed connections (Nolte
et al., 2004; Guggisberg et al., 2008; Hinkley et al., 2011). All ICs
calculated from 40 seed voxels were averaged and used as the
strength of functional connectivity between M1 and the target
voxel.

Group statistical maps were generated to reveal the brain
regions with significant ICs during real and imagined movements.
The statistical significance of IC across participants was tested
with SPM8. The functional images were normalized using the
MNI template in SPM8. A one-sample t-test at the voxel level was
performed using a t-statistic incorporating variance smoothing
with an 8-mm Gaussian kernel. Voxels with differences at p < 0.01
(familywise error rate, FWER) were considered statistically sig-
nificant, and were superimposed on the template of the inflated
cortical surface brain extracted by FreeSurfer2.

DECODING ANALYSES
Several studies reported that the amplitudes of brain waveforms
yield higher performances for BMIs than their power spectrums,
such as alpha, beta, and gamma bands (Schalk et al., 2007; Waldert
et al., 2008; Yanagisawa et al., 2009). In addition, although the high
gamma band activity of ECoG signals is also known to provide
high BMI performance (Leuthardt et al., 2004; Yanagisawa et al.,
2011), it is difficult for MEG to record high gamma band activity
and to obtain high BMI performances. With this in mind, we chose
a low frequency component to decode the movement types. The
normalized amplitude of the signal recorded at each M1 virtual
channel from 0 to 500 ms was resampled over an average 100-ms
time window, sliding by 50 ms (9 time points) and then used as
a decoding feature. In our preliminary analysis, we also examined
other features based on the power spectra of the 40 virtual channels
(theta; 4–8 Hz, alpha; 8–13 Hz, beta; 13–25 Hz, low-gamma;
25–50 Hz), but such features did not outperform the normalized
amplitudes. Thus, we focused on the decoding results obtained
from the low frequency component of the normalized amplitudes.

To examine decoding accuracy, we used a support vector
machine (SVM) operating on MATLAB 2013a software (Math-
Works, Natick, MA, USA), which was extended to discriminate
multiple movements (Kamitani and Tong, 2005; Figure 1B).
Decoding accuracy was evaluated using 10-fold cross-validation.
Each dataset was divided into 10 parts; the classifiers were deter-
mined from 90% of the dataset (training set) and tested on the
remaining 10% so that the testing dataset was independent from
the training dataset for each time point. This procedure was then
repeated 10 times. The averaged decoding accuracy over all runs
was used as a measure of decoder performance. The binomial test
was used to confirm that the decoding performance significantly
exceeded chance levels.

CORRELATION BETWEEN IC AND DECODING ACCURACY
To examine whether functional connectivity is associated with
decoding accuracy, we calculated the correlation coefficient

2http://freesurfer.net/
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between the IC and the decoding accuracy among the ten partic-
ipants using the Spearman’s rank correlation test over the whole
brain (Figure 1B). All correlation analyses were corrected for mul-
tiple comparisons with a false discovery rate (FDR). Voxels with
differences at p < 0.05 were considered statistically significant, and
were superimposed on the template of the inflated cortical surface
brain extracted by FreeSurfer.

RESULTS
FUNCTIONAL CONNECTIVITY DURING REAL AND IMAGINED
MOVEMENTS
During real movements, statistically significant ICs were observed
in the bilateral superior and middle frontal gyri, including the
SMA and PMC, in the left parietal lobe and the temporal lobe, and
in the right sensorimotor area (Figure 2 left and Table 1). During
imagined movements, statistically significant ICs were localized
only in the left hemisphere, including the left inferior and superior
parietal lobules (IPL, SPL), the superior and middle frontal gyri,
and the postcentral gyrus (Figure 2 right and Table 2).

DECODING ACCURACY FOR REAL AND IMAGINED MOVEMENTS
For the real movements, the averaged decoding accuracy among
all participants was 67.1 ± 12.5% (mean ± SD), which was signifi-
cantly higher than chance level (binomial test, p < 0.05; Figure 3).
For the imagined movements, decoding accuracy was also sig-
nificantly higher than chance level (48.7 ± 8.7%; binomial test,
p < 0.05), although it was lower than that for the real movements.

CORRELATION OF IC AND DECODING ACCURACY FOR REAL AND
IMAGINED MOVEMENTS
After calculating the ICs in individuals, we examined the correla-
tion coefficient between strength of IC and decoding accuracy
among all participants during real and imagined movements.

Figure 4 depicts the distribution of significant correlations
between IC and decoding accuracy over the whole brain during
real movements (p < 0.05, FDR-corrected). Significant correla-
tions were localized mainly to the left PMC, postcentral gyrus, and
right sensorimotor area (Figure 4 upper panel and Table 3). On
the other hand, significant correlations between IC and decoding
accuracy for imagined movements were more widely distributed
than those of the real movements (Figure 4 lower panel). In par-
ticular, large clusters were observed in the left IPL and SPL and the
right inferior frontal gyrus (IFG). Other significant correlations
were observed in the left prefrontal cortex (including dorsolateral
prefrontal cortex; DLPFC) and right sensorimotor area (Figure 4
lower panel and Table 4).

Figure 5 depicts the overlay map of the distribution of
significant correlations between strength of IC and decoding
accuracy and significant IC during real and imagined move-
ments. The significant correlations were mainly distributed in
or around the brain regions that exhibited significant IC during
real and imagined movements. No overlap between correlations
and IC was observed in the right hemisphere during imagined
movements.

DISCUSSION
To explore the contribution of functional connectivity to the
performance of BMIs, we examined the relationship between neu-
ral decoding and alpha band IC with the left M1 during real
and imagined movements. The brain regions with significant
functional connectivity with M1 during both real and imag-
ined movements were distributed mainly in motor association
areas, including the SMA, PMC, and parietal area. In addition,
the significant correlations between decoding accuracy and IC
strength were distributed in or around the brain regions with
significant IC. These results indicate that functional connectivity

FIGURE 2 | Cortical connectivity maps during real and imagined

movements. Group (N = 10 participants) results of anatomically
constrained imaginary coherence (IC) visualized on the inflated cortical

surface during real and imagined movements. The brain regions with
significant IC with the left M1 are represented in blue (p < 0.01,
FWER-corrected).
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Table 1 | Brain regions showing significant IC with the left M1 during

real movements.

Brain region Hemisphere MNI coordinates t -value

x y z

Superior frontal gyrus Right 6 −2 70 21.5

Precentral gyrus Right 24 −19 77 20.5

Cingulate gyrus Left −4 −20 42 19.4

Medial frontal gyrus Left −2 −6 58 19.2

Precentral gyrus Right 14 −28 82 18.5

Superior parietal lobule Left −36 −70 52 17.6

Middle temporal gyrus Left −58 −68 6 17.1

Middle occipital gyrus Left −28 −88 16 17.1

Superior temporal gyrus Left −50 −30 12 16.0

Superior frontal gyrus Left −20 40 40 15.5

Inferior parietal lobule Left −38 −56 40 15.5

Angular gyrus Left −32 −62 34 15.5

Precuneus Left −30 −74 40 15.2

Middle frontal gyrus Left −36 30 40 14.5

Superior frontal gyrus Left −34 28 50 13.7

Postcentral gyrus Left −51 −29 50 11.8

IC, imaginary coherence; M1, primary motor cortex; MNI, Montreal Neurological
Institute template.

Table 2 | Brain regions showing significant IC with the left M1 during

imagined movements.

Brain region Hemisphere MNI coordinates t -value

x y z

Supramarginal gyrus Left −54 −50 28 20.8

Superior temporal gyrus Left −52 −32 12 20.3

Inferior parietal lobule Left −60 −40 26 18.6

Superior frontal gyrus Left −26 56 26 20.6

Superior parietal lobule Left −26 −72 64 19.1

Middle frontal gyrus Left −44 50 24 17.7

Inferior frontal gyrus Left −44 40 16 16.0

Postcentral gyrus Left −40 −30 54 10.9

IC, imaginary coherence; M1, primary motor cortex; MNI, Montreal Neurological
Institute template.

of alpha band activity between M1 and the motor associa-
tion area is involved in neural decoding of real and imagined
movements.

FUNCTIONAL CONNECTIVITY IN THE ALPHA BAND DURING REAL AND
IMAGINED MOVEMENTS
Recent studies have suggested that fluctuations in alpha band
oscillations facilitate processing in task-relevant cortical regions
or suppress processing distracting input in task-irrelevant regions

FIGURE 3 | Averaged decoding accuracies over participants for real and

imagined movements. Significantly high decoding accuracies were
obtained for both real and imagined movements (error bar = SD, N = 10).
The two horizontal lines indicate decoding accuracy at chance level (33.3%,
solid line), and at p = 0.05 (dashed line, binomial test).

to improve task performance (Palva and Palva, 2007; Mazaheri
and Jensen, 2010; Gould et al., 2011; Haegens et al., 2011a,b).
By holding and releasing high gamma activity during a move-
ment task, we previously demonstrated a functional role of alpha
band activity in movement that modulates motor representation
in the sensorimotor cortex (Yanagisawa et al., 2012b). Because the
main body of alpha band activity recorded over the sensorimo-
tor area is thought to be due to the mu rhythm (Salmelin and
Hari, 1994; Leocani et al., 2001), fluctuations in the mu rhythm
may play a significant role in controlling the cortical excitability
in M1. In fact, it has been demonstrated that data processing
improves when the phase of the mu rhythm is modified, and
data processing is inhibited when its phase is unlocked (Sabate
et al., 2012). Furthermore, the power of the mu rhythm in the
sensorimotor area was recently demonstrated to play an impor-
tant role in cortico-cortical connectivity (Ronnqvist et al., 2013).
In the present study, we calculated seed-based functional con-
nectivity from alpha band activity over the whole brain during
real and imagined movements. Seed voxels were set as 40 vir-
tual channels in M1. The significant functional connectivity was
distributed to the motor association area over frontal and pari-
etal areas during real and imagined movements. The results were
mostly concordant with previous studies using fMRI (Solodkin
et al., 2004; Gao et al., 2011). Given that these motor association
areas have been shown to play important roles in movement plan-
ning (Nachev et al., 2008; Andersen and Cui, 2009), movement
preparation (Desmurget et al., 2009), and movement intention
(Desmurget et al., 2009) by collaborating with M1, the functional
connectivity observed in this study may represent the cortical net-
works of the mu rhythm related to controls of M1 activity during
real and imagined movements.

On the other hand, during imagined movements, no sig-
nificant functional connectivity was observed between the SMA
and M1, whereas previous studies reported functional connec-
tivity between these two regions during both imagined and real
movements (Solodkin et al., 2004; Chen et al., 2009; Gao et al.,
2011). These studies mainly used complex or sequential motor
tasks to calculate functional connectivity, while we used three
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FIGURE 4 | Spatial distributions of significant correlations between

decoding accuracy and connectivity during real and imagined

movements. Correlation coefficients between decoding accuracy and

imaginary coherence with the left M1 during real and imagined movements
were calculated over the whole brain. Brain regions with significant
correlations are represented in orange (p < 0.05, FDR-corrected).

Table 3 | Coordinates of significant correlation coefficients between

decoding accuracy and strength of IC during real movements.

Brain region Hemisphere MNI coordinates r

x y z

Precentral gyrus Right 30 −22 74 0.82

Middle frontal gyrus Left −38 8 57 0.76

Precentral gyrus Left −52 −16 44 0.73

Postcentral gyrus Left −50 −20 42 0.71

Postcentral gyrus Right 24 −30 58 0.69

simple right upper limb movements for both real and imag-
ined movements. Because the SMA has been shown to be more
sensitive to complex and sequential actions than to simple ones
(Nachev et al., 2008), it may be reasonable to expect that we
would not observe significant functional connectivity between
the SMA and M1 during imagined movements. Furthermore,
several studies suggested that the network involved in real move-
ments has a positive influence from SMA on M1, and during
imagined movements, the SMA exerts a suppressive influence on
M1 (Solodkin et al., 2004; Kasess et al., 2008). These results indi-
cate that the functional connectivity between the SMA and M1
has different characteristics for information processing of real and
imagined movements.

RELATIONSHIP BETWEEN DECODING ACCURACY AND FUNCTIONAL
CONNECTIVITY
As described above, the importance of M1 signals for decod-
ing movement types or movement directions has been previ-
ously demonstrated using amplitude of waveforms or low fre-
quency components (Waldert et al., 2008; Yanagisawa et al., 2009),

Table 4 | Coordinates of significant correlations between decoding

accuracy and strength of IC during imagined movements.

Brain region Hemisphere MNI coordinates r

x y z

Postcentral gyrus Left −66 −18 30 0.9

Supra marginal gyrus Left −66 −22 34 0.9

Inferior parietal lobule Left −50 −28 46 0.87

Middle cingulate gyrus Right 14 −26 46 0.86

Middle frontal gyrus Right 52 46 8 0.82

Precentral gyrus Right 26 −22 64 0.81

Inferior frontal gyrus Right 54 42 8 0.81

Postcentral gyrus Right 30 −27 70 0.77

Insula Right 32 24 12 0.76

Middle frontal gyrus Left −46 30 34 0.75

Angular gyrus Left −40 −58 48 0.75

Superior Parietal lobule Left −30 −62 68 0.73

sensorimotor rhythm (Mellinger et al., 2007), and high gamma
power (Yanagisawa et al., 2012a). An MEG study by Waldert et al.
(2008) showed that the low frequency components of neuromag-
netic signals are more important for obtaining high decoding
accuracy than either alpha-beta or gamma power. We also showed
that the fluctuations in the amplitude of low frequency MEG sig-
nals carry enough information about hand and arm movements to
decode movement kinematics (Sugata et al., 2012b). In the present
study, we obtained significantly high decoding accuracy for both
real and imagined movements using smoothed M1 signals from
40 virtual channels. Given that the amplitudes of waveforms or
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FIGURE 5 | Overlay of imaginary coherence (IC) and correlation

coefficient results for real and imagined movements. Most of the
significant correlations (orange) were located in or around brain regions
(white dotted circles) with significant IC (blue). For imagined movements,
there was no co-localization between significant correlations and

significant IC in the right hemisphere due to the lack of significant IC
there. The lower panels indicate magnified figures with brain regions
shown using white dotted lines and with corresponding letters on the
upper panels. Black dotted lines in the lower panel indicate the central
sulcus.

the low frequency components of the signals have higher signal-
to-noise ratios than the high frequency components, the decoding
feature used in this study may be suited for classifying unilateral
upper limb movements with single trial MEG signals, even though
MEG is inferior to invasive cortical recordings with respect to the
sensitivity in weak signals in the high frequency band.

Significant correlations between strength of functional con-
nectivity and decoding accuracy during real movements were
observed in motor association areas, such as the left postcentral
gyrus and PMC, and the right sensorimotor area. These regions
largely overlapped with or were located close to the brain regions
with significant IC. Several previous studies reported that the
activities of such motor association areas modulate M1 activ-
ity by integrating sensory-motor information and transforming
the sensory information into motor representation (Luppino and
Rizzolatti, 2000; Solodkin et al., 2004; Hoshi and Tanji, 2007;
Kantak et al., 2012; Xu et al., 2014). In addition, activity of the
PMC during real movement was shown to resemble the activity of
M1 neurons, suggesting that the PMC is directly relevant to motor
execution (Lee and van Donkelaar, 2006). Thus, the representation
of motor information in M1 during real movement may depend

on the intensity of sensory-motor integration and activity of the
PMC. Furthermore, regarding the correlation in the right senso-
rimotor area, it is possible that interhemispheric communication
between the bilateral M1s, which contribute to controlling the
cortico-spinal output from M1 (Avanzino et al., 2007; Lee et al.,
2007), was relevant to the representation of motor information
in M1.

Significant correlations between functional connectivity and
decoding accuracy were observed at the left prefrontal cortex
(including DLPFC), IPL, SPL, right IFG, and sensorimotor area
during imagined movements. In the left hemisphere, signifi-
cant correlations around the DLPFC and parietal area overlapped
with the brain regions with significant functional connectivity
observed in the group analysis. Previous studies showed that
the DLPFC and parietal areas were more activated during imag-
ined movement than during real movement (Vry et al., 2012) and
play an important role in working memory (Smith and Jonides,
1999; Baddeley, 2003). Motor imagery, which involves simulat-
ing movement through the manipulation of visual and kinesthetic
information, is a cognitive process that requires working mem-
ory (Munzert et al., 2009). Thus, these regions are thought to
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play a significant role in generating clear motor imagery using
working memory. Actually, deactivation of DLPFC was shown to
decrease information processing during imagined movement in
Parkinson’s disease (Jahanshahi et al., 1995; Samuel et al., 1997,
2001). Furthermore, previous studies reported that the pari-
etal area is associated with accuracy of the imagined movement
(Hanakawa et al., 2003) and that lesions to this area reduce motor
imagery abilities (Jackson et al., 2001; Lotze and Halsband, 2006;
Mulder, 2007). Considering that our results showed that these
brain regions are functionally connected with M1 and exhibit sig-
nificant correlations between decoding accuracy and strength of
functional connectivity, it is possible that the DLPFC and pari-
etal area modulate the M1 activity related to the representation of
motor information by interacting with the M1 during imagined
movement.

In the right hemisphere, significant correlation between
decoding accuracy and strength of functional connectivity was
observed in the IFG during imagined movement but there
was no spatial overlap with significant functional connectiv-
ity. The right IFG, but not the left, is relevant to the sup-
pression of movement (Aron et al., 2004; Coxon et al., 2009),
and impairment in this region resulted in a loss of suppres-
sion of movements in the inhibitory control task (Aron et al.,
2004). In addition, a recent study suggested that activation
of the right IFG during imagined movement may be rele-
vant to an active inhibition process in the prevention of actual
movement (Fleming et al., 2010). Furthermore, the right IFG
was reported to be more activated in good imagers than in
poor imagers for imagined sequential finger movements (Guil-
lot et al., 2008). More recently, Gaetz et al. (2013) successfully
demonstrated that gamma-band activity from the right IFG is
observed for tasks involving response interference. Because our
results showed that participants with strong functional connec-
tivity between left M1 and right IFG exhibited high decoding
accuracy, such inhibition processes in the IFG may work to gen-
erate the clear imagery of the movement necessary to decode
the imagined movements. Nevertheless, no significant func-
tional connectivity was observed between M1 and IFC in the
group analysis, suggesting that connectivity between the two
regions is not necessarily required for imagined movement and
that the strategy for imagined movement may vary between
individuals.

The significant correlation between decoding accuracy and
strength of functional connectivity during imagined movement
was also distributed to the right sensorimotor area, although
there was no spatial overlap with significant functional con-
nectivity. Previous studies reported that the sensorimotor area
was activated on not only the contralateral side, but also the
ipsilateral side during imagined movement (Kim et al., 1993;
Porro et al., 2000). In addition, interhemispheric communi-
cation between the bilateral M1s was recently shown during
imagined movement as well as real movement, suggesting that
bilateral interactions of M1 play a crucial role in the modu-
lation of the motor system during imagined movement (Liang
et al., 2014). On the basis of these findings, our results suggest
that the strength of functional connectivity between bilateral sen-
sorimotor areas observed in this study may contribute to the

modulation of interhemispheric communication between the two
regions, and that the subjects with strong connectivity may cre-
ate more vivid motor imagery related to motor information than
the subjects with low connectivity. However, as there was no
significant functional connectivity between the bilateral senso-
rimotor areas in the group analysis, that connectivity may be
not an essential component of imagined movement, but rather
may be an additive one to generate the M1 activity similar to real
movement.

Several studies reported anatomical and functional connec-
tivities between the SMA and M1 (Muakkassa and Strick, 1979;
Solodkin et al., 2004; Matsumoto et al., 2007; Nachev et al., 2008).
This region was shown to play an important role in move-
ment preparation and movement intention (Lau et al., 2004;
Nachev et al., 2008). However, our results showed that there is no
significant correlation between decoding accuracy and functional
connectivity over the SMA for either real or imagined movements.
As described above, the SMA is more sensitive to complex and
sequential actions, while the task used in this study was a sim-
ple, unilateral, upper limb movement, so that the strength of
functional connectivity between M1 and SMA may not have con-
tributed to the decoding performance. It is possible that we can
observe the contribution of functional connectivity between M1
and SMA to decoding performance if a more complex task is used.
Further studies are needed to clarify this speculation.

IMPLICATIONS FOR CLINICAL NON-INVASIVE BMIs
To date, many researchers have tried to apply BMIs to patients
with severe motor dysfunction using invasive methods, such
as ECoG and local field potentials. When we put these inva-
sive BMIs into clinical use, it is indispensable to perform a
pre-operative, non-invasive evaluation to determine whether an
invasive BMI would be effective. In addition, considering that
BMIs are likely to be practically applied to patients with severe
motor dysfunction, it is important to improve the performance
of decoding accuracy for imagined movements. Recently, several
studies reported predictors for the performance of BMIs using
sensorimotor rhythm (Blankertz et al., 2010; Hammer et al., 2012),
near-infrared spectroscopy activity (Fazli et al., 2012), high theta
and low alpha powers (Ahn et al., 2013b), and gamma band activ-
ity (Ahn et al., 2013a) during real and imagined movements. In
the present study, we focused on the relationship between alpha
band functional connectivity and the decoding accuracy of real
and imagined movements. As a result, significant correlations
between these two aspects were mainly obtained in motor associ-
ation areas, such as the PMC, sensorimotor areas, and the parietal
area. This result suggests that we may be able to predict and
improve decoding accuracy by evaluating and enhancing the func-
tional connectivity between M1 and these brain regions, perhaps
using neurofeedback methods as previously reported (Shibata
et al., 2011; Koush et al., 2013). In particular, for imagined move-
ment, because the strength of functional connectivity observed in
this study may be relevant to generation of a vivid imagined move-
ment for decoding movement types, enhancing these networks are
important for improving the performance of imagery-based BMIs.
Although we used brain signals extracted from the M1 gyrus in the
present study, M1 signals from the central sulcus provides a rich

Frontiers in Human Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 620 | 9

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Sugata et al. Functional connectivity and decoding accuracy

source of information representing movement types (Yanagisawa
et al., 2009) and have a better signal-to-noise ratio for MEG record-
ings. They may contribute more to performance of imagery-based
BMIs. Also, since the activities of sub-cortical regions as well as
the cerebellum are also associated with the generation of volun-
tary movement (Shibasaki and Hallett, 2006), further investigation
of whether functional connectivity between M1 and sub-cortical
regions or the cerebellum can be detected and if they are related
to the performance of BMIs using this method is thought to be
necessary. Additional investigation may lead to the establishment
a method for pre-operative evaluation or for the application of the
present findings to clinical tools such as neurorehabilitation.

CONCLUSION
In this study, we examined the relationship between decoding
accuracy and alpha functional connectivity during real and imag-
ined movements. The significant correlations between decoding
accuracy and the strength of alpha functional connectivity were
mainly distributed to motor association areas. Our results indi-
cate that alpha functional connectivity between M1 and the motor
association area is important for the improved neural decoding
of real and imagined movements. Further investigation may lead
to the establishment of a method for pre-operative evaluation or
for the application of the present findings to clinical tools such as
neurorehabilitation.
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