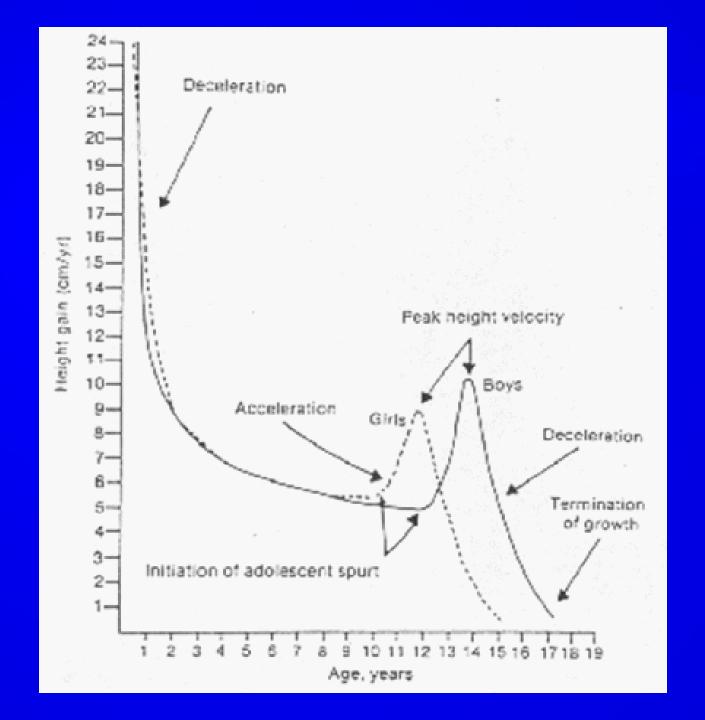
Klgo. Edgardo Opazo D. Gimnasia Medica 2012


EFECTOS DEL EJERCICIO EN NIÑOS Y ADULTOS MAYORES

Crecimiento



Peso y talla

- Aumenta muy rápidamente en los 2 primeros años
- Baja su tasa hasta el comienzo de la pubertad donde sube otra vez
- Llega a su máxima tasa a los 12 en niñas y 14 en niños
- Termina alrededor de los 18 en niños y 16 en niñas
- El peso se comporta de manera similar

Peso y talla

Figura 34.2. Cambios con la edad en el aumento del peso corporal.



Figura 34.1. Cambios con la edad en la tasa de crecimiento.

Tejido óseo

- Se completa la osificación alrededor de los 20 años en varones y 4 o 5 años antes en las damas
- Al parecer el ejercicio físico no tendría influencia sobre la longitud del hueso, aunque si sobre su ancho y densidad.
- CUIDADO: Las presiones excesivas sobre las metáfisis originan daño en el crecimiento y condicionan una menor talla.

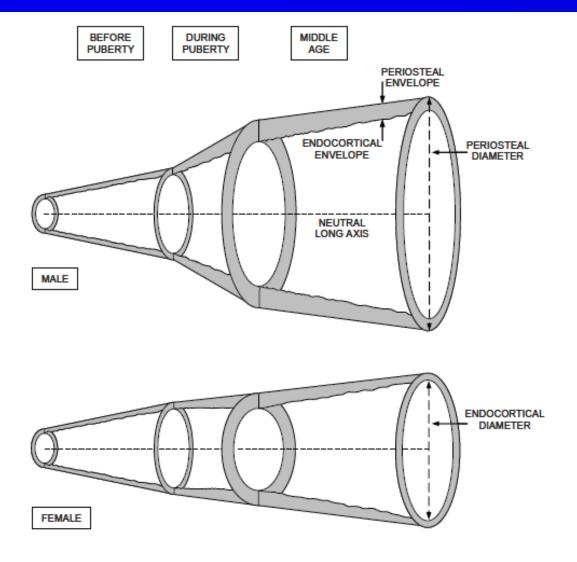
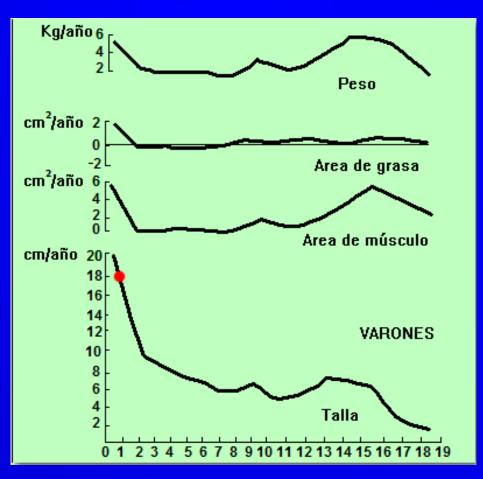
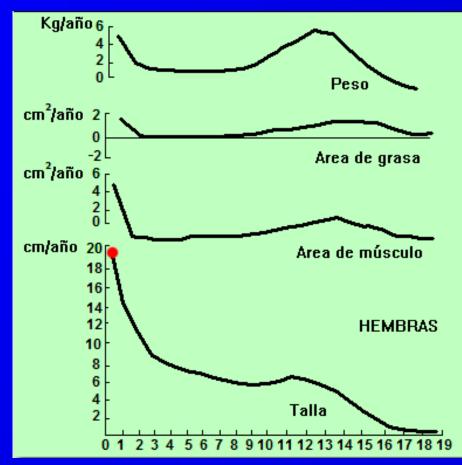


FIGURE 1 Schematic illustration of the behaviour of the periosteal and endocortical surfaces in males and females before puberty, during puberty, and in middle age. The inset shows the greater displacement of a cortex of similar thickness in young adult males than young females. This displacement is greater in middle age. The cortices are the same thickness in males and females in middle age but reduced relative to young age. Adapted from Duan et al.

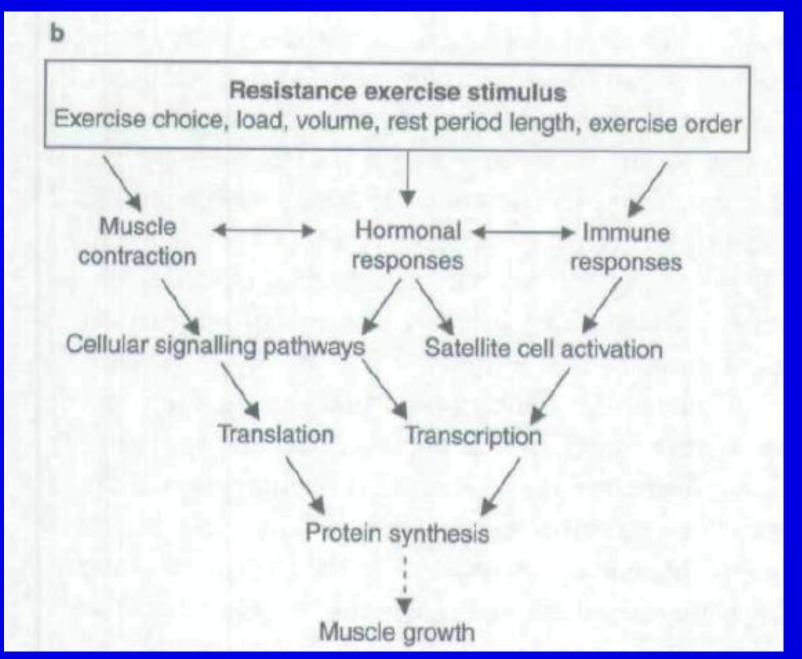
Tejido Muscular


- Existe un aumento por hipertrofia
- La diferenciación de fibras (maduración) queda relativamente establecido a los 2 o 3 años de vida
- No existen diferencias en los elementos contráctiles


 Varones de 25% al nacer pasa al 50% en la edad adulta

 Coincide el aumento con las mayores concentraciones de testosterona hasta de 10 veces el basal

 En el caso de los mujeres no existe este desarrollo abrupto y su desarrollo llega al 40%


Comparación

Hormonas y crecimiento

- La hormona del crecimiento
- La insulina
- Además factores mecánicos (tensión y presión)
- Mayor masa muscular se alcanza entre 16 y 20 años en mujeres y en hombres 18 y 25 años

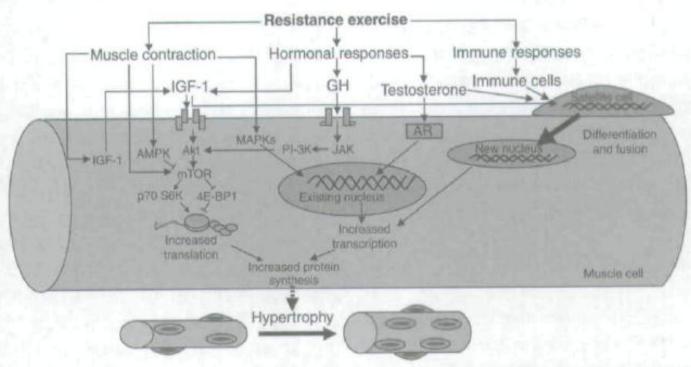


Fig. 3. Summary of the signalling responses to resistance exercise. Resistance exercise stimulates muscle fibre contraction and evokes endocrine and immune responses. These various signals stimulate transcription and translation and, over time, muscle hypertrophy. Corresponding increases in satellite cell-derived myonuclei accompany muscle fibre hypertrophy. 4E-BP1 = eukaryotic initiation factor 4E binding protein-1; Akt = protein kinase B; AMPK = adenosine monophosphate-activated protein kinase; AR = androgen receptor; GH = growth hormone; IGF-1 = insulin-like growth factor-1; JAK = janus kinase; MAPKs = mitogen-activated protein kinases; mTOR = mammalian target of rapamycin; PI-3K = phosphatidylinositol-3 kinase; p70 S6K = 70 kDa ribosomal protein S6 kinase.

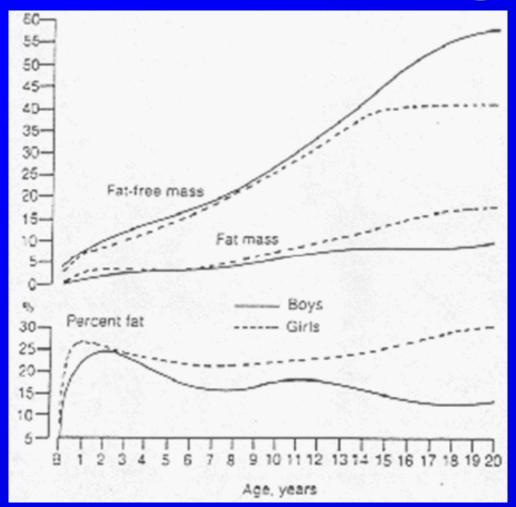
Tejido Graso

Los adipocitos se forman en el periodo fetal

Al nacer existe entre un 10 y 12% de grasa

En la edad adulta 15% hombres y 25% mujeres

Desarrollo adiposidad


- Presenta hiperplasia en:
 - Ultimo trimestre del embarazo
 - Primer año de vida
 - Durante el pick de crecimiento en altura

Después de la pubertad primarían la hipertrofia

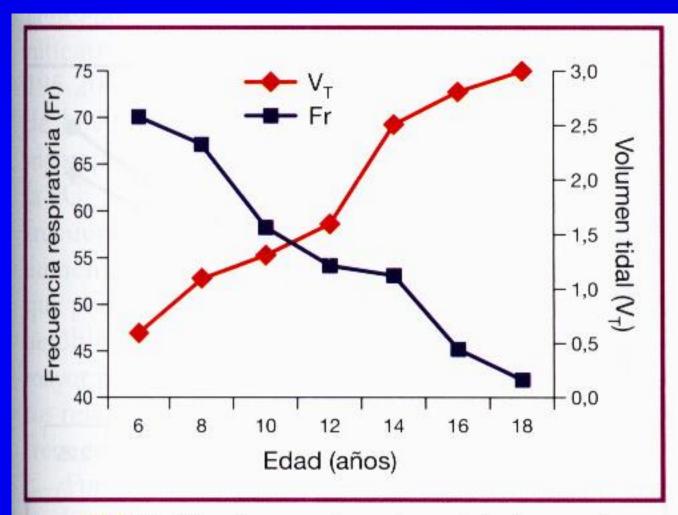
del tejido

	Nro. Adipocitos	Diametro	Tejido Adiposo (Kg)
Nacimiento	5.000 millones	30/40 micras	0.5 Kg
Adulto Joven	50.000 millones	80/90 micras	10-14 Kg

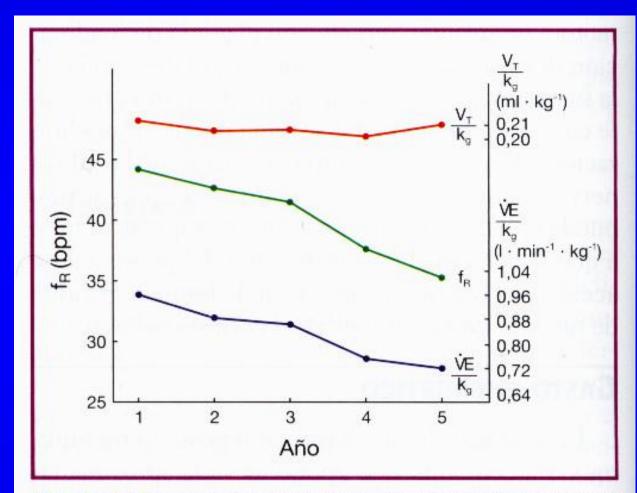
Grasa v/s masa libre de grasa

Sistema respiratorio

Peso de los pulmones se triplica


 Numero de alvéolos y vías aéreas aumenta 10 veces

Aumentan todos los volúmenes y capacidades


El volumen corriente en relación al peso disminuye

También disminuye la frecuencia respiratoria

A los 6 años 24 rpm a 17 años 13 rpm

Figura 34.6. Modificaciones en los valores de la frecuencia respiratoria (Fr) y volumen tidal (V_{τ}) máximo durante el crecimiento.

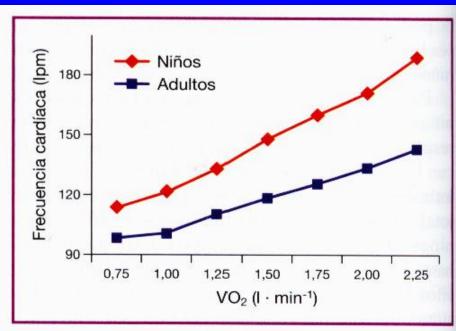


Figura 34.5. Frecuencia respiratoria (f_R) , ventilación por kg (VE · kg^{-1}) y volumen tidal por kg ($V_T \cdot kg^{-1}$) en la misma intensidad submáxima de ejercicio en 20 niños estudiados anualmente durante 5 años. (Modificada de Rowland TW. Developmental Exercise Physiology. Ed. Human Kinetics, 1996.)

Sistema Cardiovascular

- La contractibilidad del ventrículo izquierdo es independiente de la edad
- El tamaño del ventrículo izquierdo es proporcional a la superficie corporal
- La FC disminuye entre 10 y 20 lpm desde los 5 a los 15 años

Respuesta al ejercicio

Figura 34.8. Valores medios de la frecuencia cardíaca en niños y adultos, en relación al VO_2 .

- Presentan menor gasto cardiaco.
- Existe una diferencia av O2 mayor
- La PA es menor, debido a menores resistencias periféricas

Volumen sistólico y GC

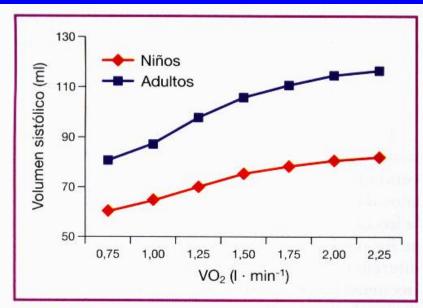
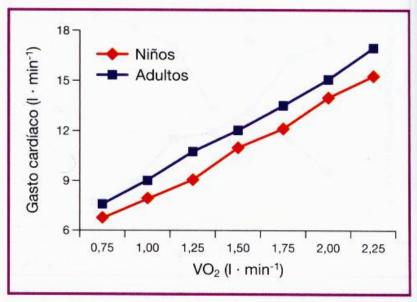
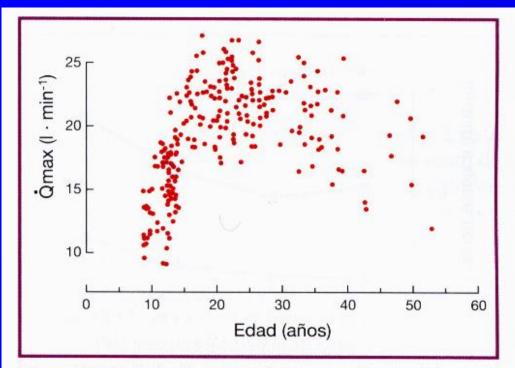
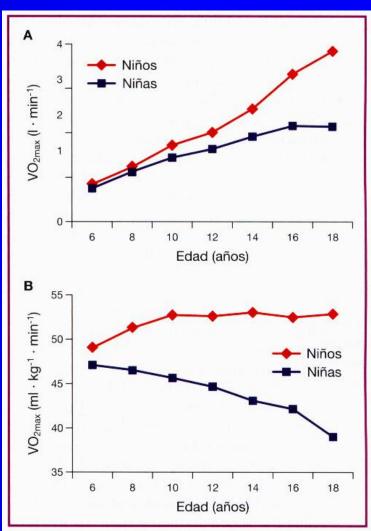




Figura 34.7. Valores medios del volumen sistólico en niños y adultos, en relación al VO₂.

Figura 34.9. Valores medios del gasto cardíaco en niños y adultos, en relación al VO₂.

Gasto cardiaco


Figura 34.11. Relación entre el gasto cardíaco máximo y la edad. (Modificada de Miyamura M, Honda Y. Maximum cardiac output related to sex and age. Jap J Physiol, 1973; 23:645-656.)

Frecuencia cardiaca máxima

 La frecuencia cardiaca disminuye 0,5 latidos por año (Wilmore & Costill, 1999)

 Alcanza los 210 lpm en niños de 10 años y en un adulto de 20 años 195

Vo2max niños v/s niñas

Figura 34.13. Cambios en los valores de VO_{2max} con la edad, expresados como $l \cdot min^{-1}$ (A) y como $ml \cdot kg^{-1} \cdot min^{-1}$ (B).

 Diferencias dadas por composición corporal

 Aumento por maduración y desarrollo de órganos ligados al transporte

De niño a anciano

Adulto Mayor

- Cambios en
 - Capacidad Funcional
 - Fuerza Muscular
 - Equilibrio

Sobrevida y ejercicio

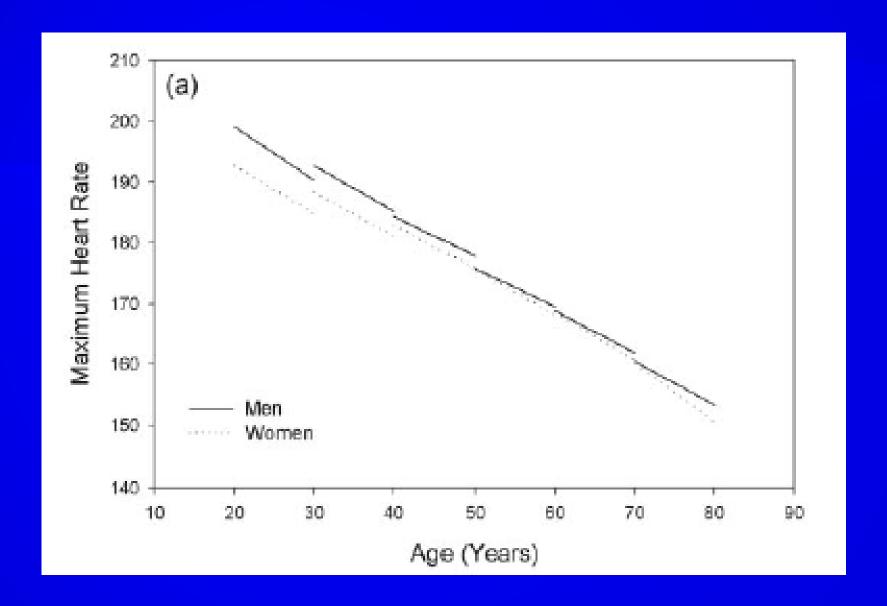
- Galeno fue uno de los primeros en expresar los riesgos que el ejercicio podía entrañar para el corazón:
 - * "Los atletas llevan una vida contraria a los preceptos de la higiene, y según mi entender más favorable a la enfermedad que a la salud. Si ya mientras se mantienen activos su organismo se encuentra en peligro, el deterioro es aún mayor tras abandonar su vida profesional; de hecho si no fallecen al poco tiempo, nunca llegan a alcanzar una edad avanzada".

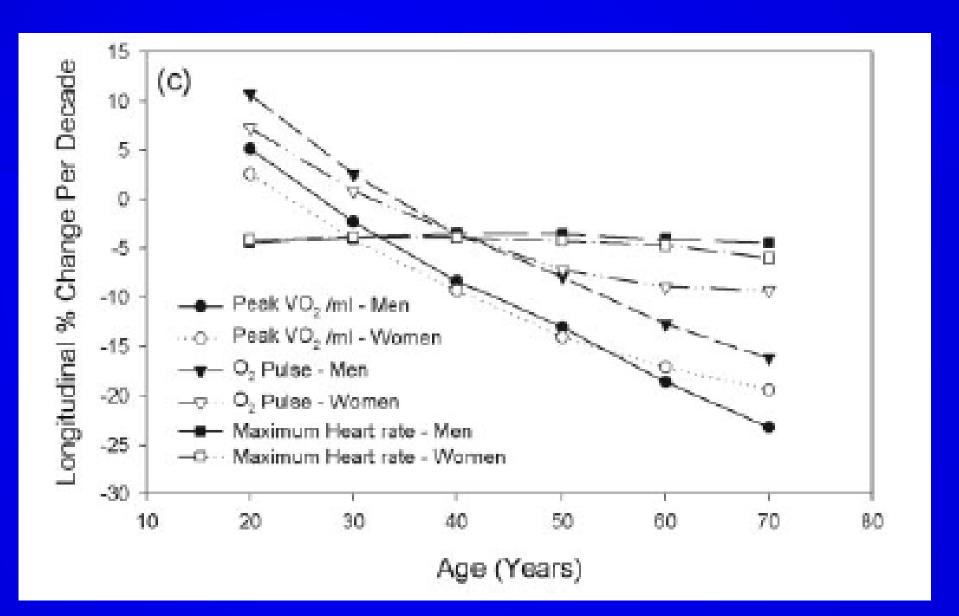
Sobrevida y ejercicio

- En un estudio sobre una población de 2613 deportistas finlandeses que habían representado a su país en los Juegos Olímpicos, Campeonatos de Europa y del mundo, y otras competiciones internacionales entre 1920 y 1965, los autores observaron:
 - Que la edad media de supervivencia era de 75,6 años en los deportistas de resistencia
 - 71,5 de los de especialidades de potencia
 - 69,9 de una muestra de 1712 adultos sedentarios.

 La mayor esperanza de vida estaba sobre todo relacionada con una menor mortalidad cardiovascular.

- Consideraciones de variables desconcertantes:
 - Los hábitos de vida
 - Tabaquismo
 - Tiempo que los deportistas permanecieron en activo tras el abandono de la competición.


Vo2 y calidad de vida


- El VO2max es un excelente indicador de la capacidad funcional de cada individuo
- Altos valores de VO2max, dan desde una menor sensación de fatiga hasta un menor incremento en la tensión arterial durante el ejercicio.
- En los individuos de mayor edad, en los que la progresiva disminución del VO2max lleva a que el individuo sedentario de avanzada edad se fatigue con cualquier actividad cotidiana, y que pase los últimos años de su vida en un estado de gran dependencia

VO2 y calidad de vida

- Según Shephard, si agrupamos a los sujetos por su VO2, las diferencias pueden ser de entre 10 y 20 años menos a favor del deportista de resistencia.
- Como la influencia de la práctica continuada de ejercicio es menor sobre la esperanza que sobre la calidad de vida de los individuos de edad avanzada, es más probable que el deportista de resistencia acabe sus días sin que el deterioro físico le haya llevado a precisar ayuda de las instituciones.

Paffenbarger RS, Hyde RT, Wing AL, Lee I-M, Kampert JB. Some interrelations of physical activity, physiological fitness, health and longevity. En: Bouchard C, Shephard RJ, Stephens T, eds. Physical activity, fitness and health. International proceedings and consensus statement. Champaign, IL: Human Kinetics Publishers, 1994: 119-33

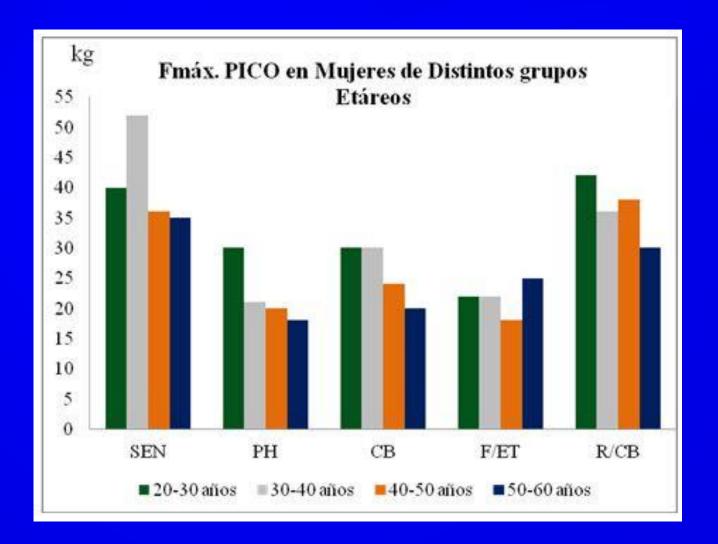


Tabla 1 Efectos fisiológicos del envejecimiento

Efectos	Afectación funcional	
Sistema cardiovascular: ↓ relación capilar/fibra muscular ↓ músculo cardíaco y volumen del corazón ↓ elasticidad vasos sanguíneos ↓ miosina-ATPasa miocárdica ↓ estimulación simpática del nodo SA	Disminución flujo sanguíneo muscular Disminución volumen sistólico y gasto cardíaco Aumento de las resistencias periféricas, presión arterial y poscarga Disminución contractilidad miocardio Disminución frecuencia cardíaca máxima	
Sistema respiratorio: ↓ elasticidad estructuras pulmonares ↑ tamaño de los alvéolos ↓ número de capilares pulmonares	Aumento del trabajo respiratorio Disminución de la capacidad de difusión y aumento del espacio muerto Disminución relación ventilación/perfusión	
Músculos y articulaciones: ↓ masa muscular ↓ número de fibras II ↓ tamaño de las unidades motoras ↓ umbral de potencial de acción ↓ (Ca²+, miosina)-ATPasa ↓ contenido proteico total ↓ tamaño y número de mitocondrias ↓ enzimas oxidativas musculares ↓ lactato deshidrogenasa Degeneración tejido conjuntivo articular ↑ estrés mecánico en articulaciones ↓ hidratación cartílago intervertebral	Disminución de fuerza y potencia muscular Disminución capacidad respiratoria muscular Disminución capacidad respiratoria muscular Enlentecimiento de la glucólisis Disminución de la estabilidad y movilidad articular Pérdida de flexibilidad y osteoartritis Disminución de la talla y aumento de riesgo de fracturas vertebrales de compresión	
Sistema óseo: ↓ contenido mineral óseo	Osteoporosis, aumento riesgo de fractura	
Composición corporal: ↑ grasa corporal	Disminución de la movilidad y aumento del riesgo de enfermedad	

- Disminución capacidad muscular y deterioro de sistema neuromuscular
- Disminución fuerza máxima a nivel de la 6º década con valores del orden de un 40%, a partir de ese momento el descenso se vuelve constante hasta la 8º década donde se acelera aun mas.
- Con la fuerza explosiva esto ocurre aun mas dando que la disminución es de 3,5% por año entre los 65 y los 84 años.

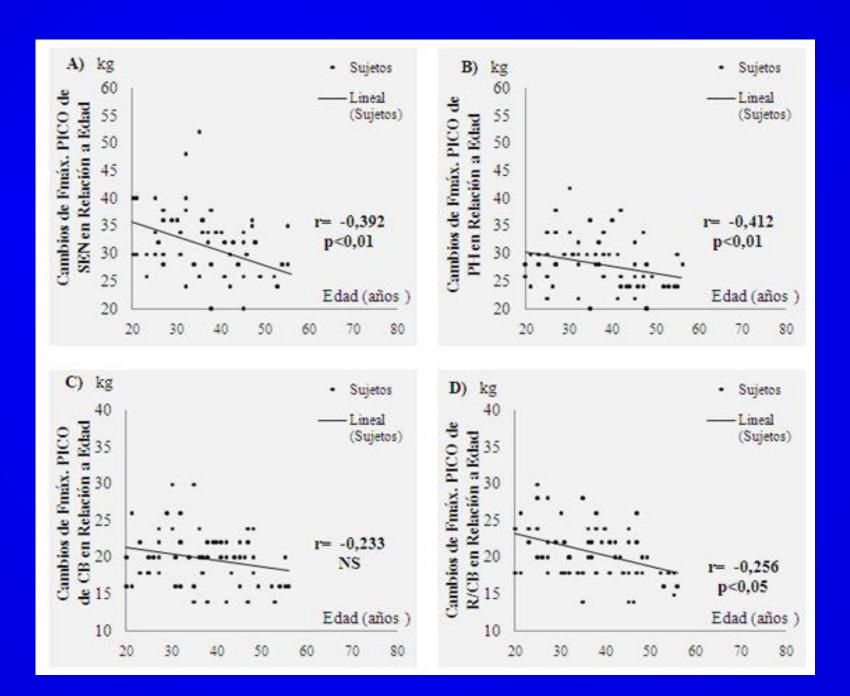
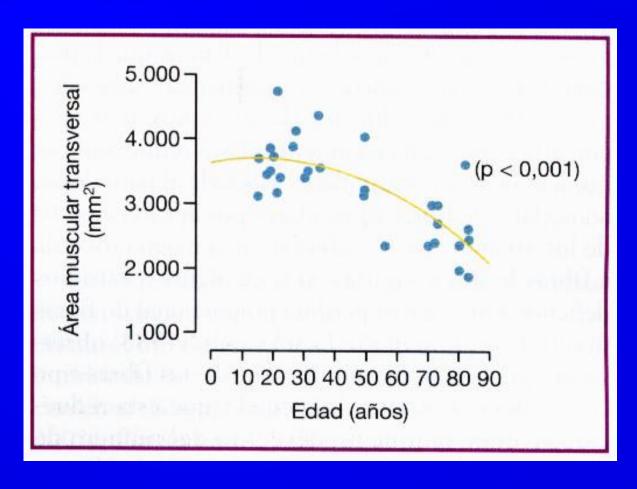



Table 1. Age-related changes in knee extensor strength

Study	Gender	Age, decade	Testing Condition	% of Young Adult Strength
Larsson et al. (71)	M	7th	Isometric	75
Murray et al. (94)	M	8-9th	Isometric	55
Murray et al. (93)	\mathbf{F}	8-9th	Isometric	63
Young et al. (140)	\mathbf{F}	8th	Isometric	65
Young et al. (141)	M	7th	Isometric	61
Overend et al. (97)	M	7-8th	Isometric	76
Ivey et al. (59)	M	7-8th	Isometric	76
	\mathbf{F}	7-8th	Isometric	75
Poulin et al. (104)	M	7-8th	Isokinetic (90°/s)	
			Concentric	68
			Eccentric	81
			Isokinetic (180°/s)	
			Concentric	69
			Eccentric	98
Vandervoort et al. (130)	\mathbf{F}	7-8th	Isokinetic (90°/s)	
			Concentric	50
			Eccentric	64
Lynch et al. (77)	M	8th	Isokinetic (30°/s)	
			Concentric	65
			Eccentric	67
	\mathbf{F}		Concentric	69
			Eccentric	73

Percentage of young adult strength refers to the percentage of strength remaining in the older group compared with the younger group. M, male; F, female.

Área muscular

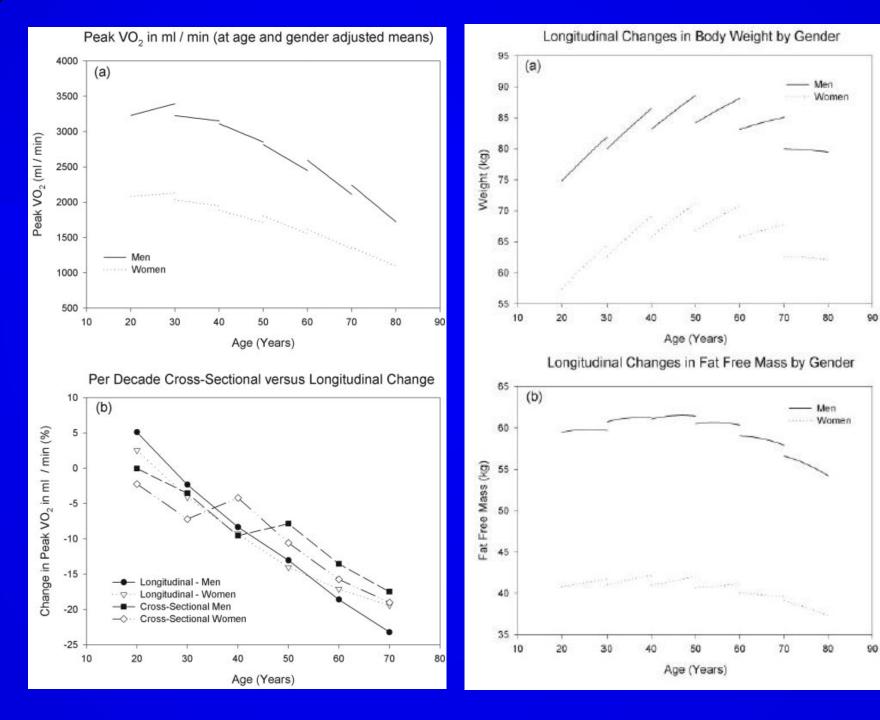
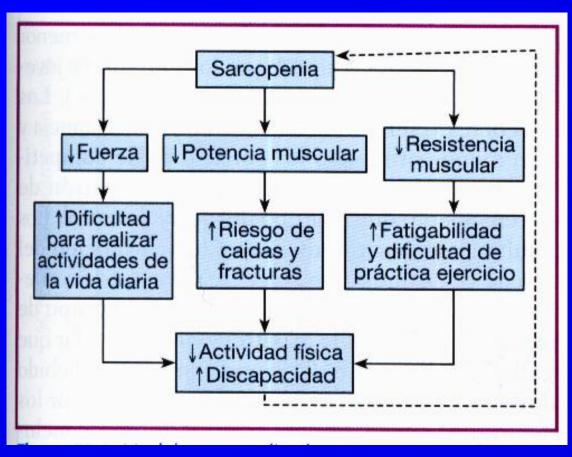



Table 2. Strength gains of the knee extensors after resistance training interventions in older adults

Study	Gender	Age, yr	Duration, wk	Strength Gain,
Frontera et al. (46)	M	60-72	12	1 RM: 107
				MVC: 7
Charette et al. (24)	\mathbf{F}	64 - 86	12	1 RM: 28
Grimby et al. (50)	\mathbf{M}	74 - 84	8	Con: 10
_				Ecc: 19
Fiaterone et al. (42)	M + F	72 - 98	10	1 RM: 113
Lexell et al. (75)	M + F	70 - 77	11	1 RM: 152
McCartney et al. (79)	M + F	60 - 80	84	1 RM: 32
Hakkinen et al. (53)	M + F	X = 70	26	1 RM: 26
Hunter et al. (57)	M + F	64 - 79	12	1 RM: 39
Tracy et al. (126)	M + F	65 - 75	9	1 RM: 28
Yarasheski et al. (137)	M + F	76 - 92	12	1 RM: 41
Hagerman et al. (52)	\mathbf{M}	X = 64	16	1 RM: 50
Hortobagyi et al. (55)	M + F	66 - 83	10	1 RM: 35
Brose et al. (12)	M + F	X = 68	14	1 RM: 49
Ferrir et al. (41)	M	65 - 81	16	1 RM: 30

1 RM, maximum weight that could be lifted once; MVC, maximal voluntary contraction; con, concentric contraction; ecc, eccentric contraction, X, mean.

Envejecimiento y Ejercicio

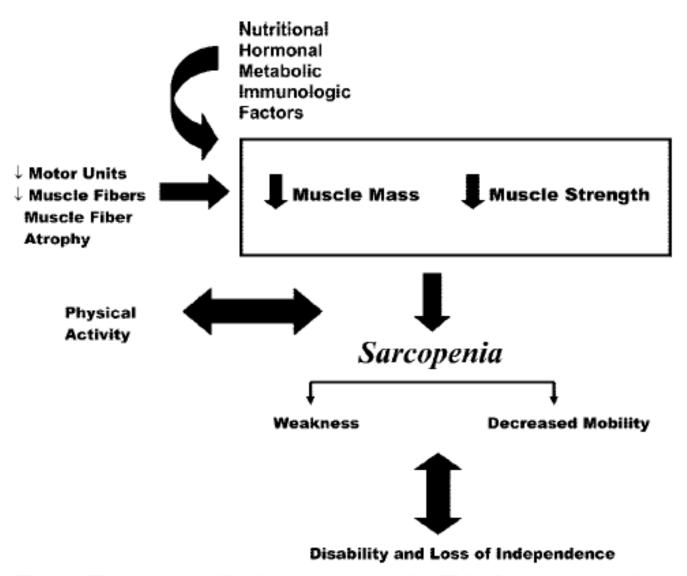
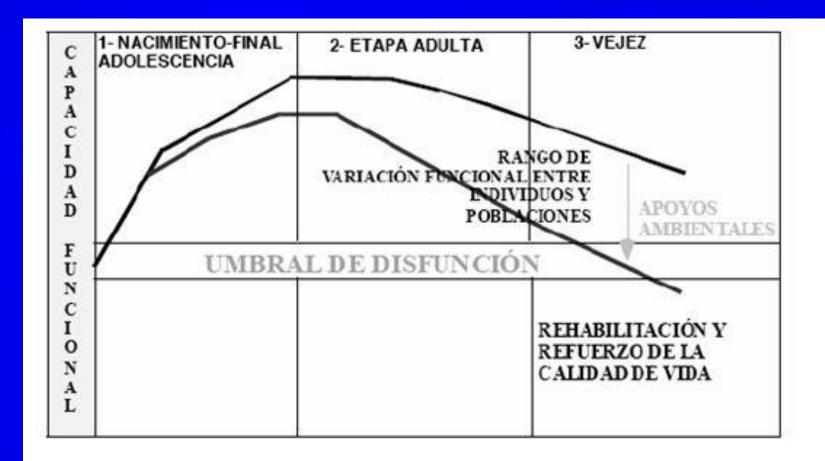



Fig. 1. Factors contributing to sarcopenia. This figure summarizes the influence of multiple factors that lead to age-associated declines in muscle mass and strength and the subsequent impact on disability and loss of independence.

Gráfica 1: Representación de la pérdida de capacidad funcional a lo largo del ciclo vital. El nivel de máxima funcionalidad alcanzado en etapas tempranas, y la edad cronológica a la que se alcanza, determina respectivamente la capacidad funcional en la vejez, y su velocidad de pérdida. (Bernis).

ADAPTACIÓNY CAPACIDADES FÍSICAS

Ciencias

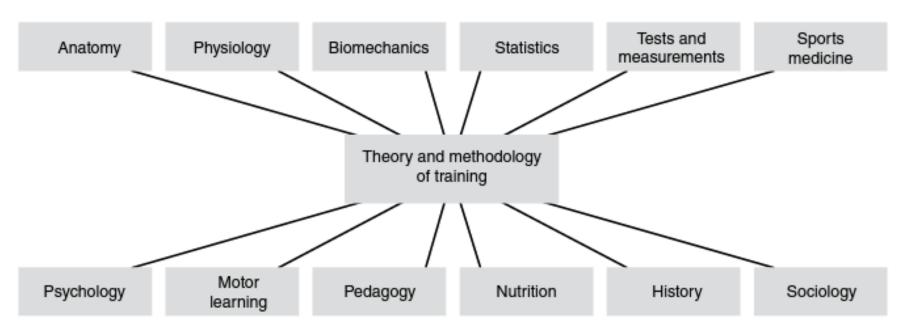
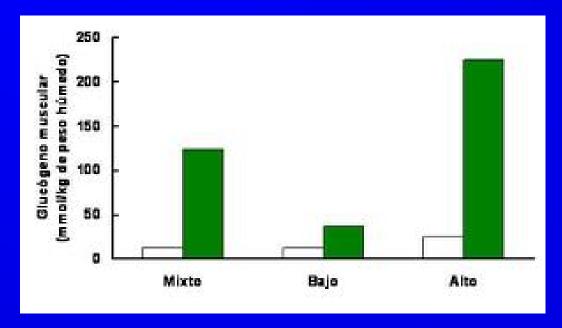


Figure 1.1 Auxiliary sciences.

Efectos del entrenamiento

- Inmediatos (agudos)
- Tardíos
- Acumulativos

Inmediato (agudo)


Durante y después de la sesión

Tardío

- Aparecen una vez recuperado de la sesión de entrenamiento
- Mejora producto del ejercicio

Acumulativo

 Resultado de muchas sesiones o fases de entrenamiento

Tipos de entrenamiento

- Neuromuscular
- Metabólico
- Cardiorrespiratorio

Principio del entrenamiento

Principios

- Adaptación
- Progresión
- Sobrecarga
- Alternancia
- Especificidad
- Reversibilidad
- Continuidad
- Individualización

Adaptación

EVERY MORNING

IN AFRICA A GAZELLE WAKES UP.

IT KNOWS IT MUST RUN FASTER THAN THE FASTEST LION OR IT WILL BE KILLED.

EVERY MORNING A LION WAKES UP.

IT KNOWS IT MUST OUTRUN THE SLOWEST GAZELLE OR IT WILL STARVE TO DEATH.

IT DOESN'T MATTER WHETHER YOU ARE A LION OR A GAZELLE

WHEN THE SUN COMES UP, YOU HAD BETTER

BE RUNNING

Figure 1.7 Illustration of Selye's general adaptation syndrome theory. A = typical training; B = overtraining; C = overreaching or supercompensation.

Adapted, by permission, from A.C. Fry, 1998, The role of training intensity in resistance exercise overtraining and overreaching. In Overtraining in sport, edited by R.B. Kreider, A.C. Fry, and M.L. O'Toole (Champaign, IL: Human Kinetics), 114.

Adaptación

- Relación concepto de homeostasis
- Proceso de adaptación fue explicado en 1905 por Wilhem Roux en "Entwicklungmechanik der Organismen"

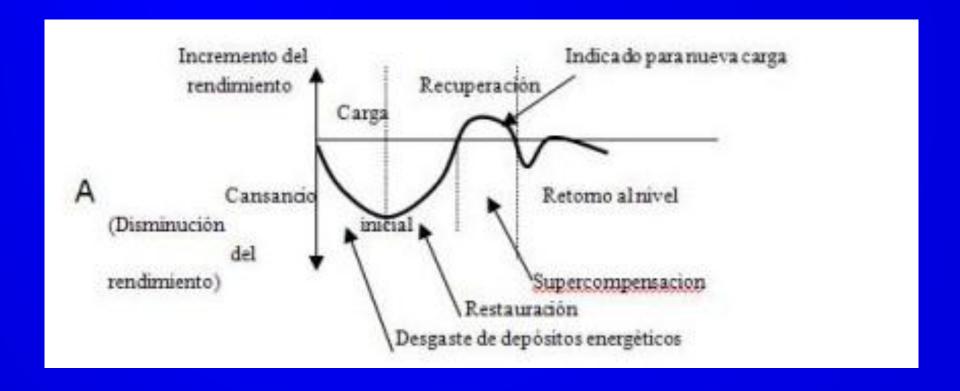
(Mecanismo del desarrollo de los organismos)

Teoría de la supercompensación

Sd. General de adaptación

- Conocido también como Ley de Selye
- Hans Selye, endocrinólogo, señaló que frente a cualquier agente agresor al organismo, se producen simultáneamente
 - Una serie de reacciones típicas, en función del estímulo agresor,
 - Otras reacciones atípicas (siempre las mismas), independientemente de la naturaleza de los estímulos

Sd. General de adaptación


- Proceso en tres etapas:
- alarma de reacción, cuando el cuerpo detecta el estímulo externo;
- adaptación, cuando el cuerpo toma contramedidas defensivas hacia el agresor;
- agotamiento, cuando comienzan a agotarse las defensas del cuerpo

Time

Estrés

- Distrés: la respuesta del sujeto al estrés no favorece o dificulta la adaptación al factor estresante
- Eustrés cuando la respuesta del sujeto al estrés favorece la adaptación al factor estresante.

Progresión

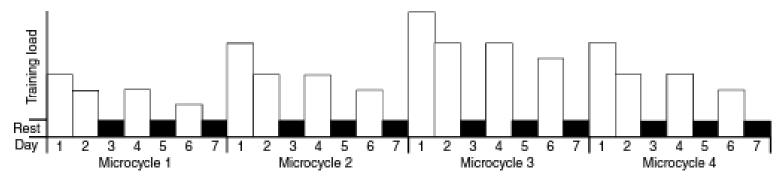


Figure 2.8 An example of intermicrocycle variation across a block of training.

White Bars = training load; Black Bars = rest Based on Nádori and Granek 1989 (69) and Plisk and Stone 2003 (72).

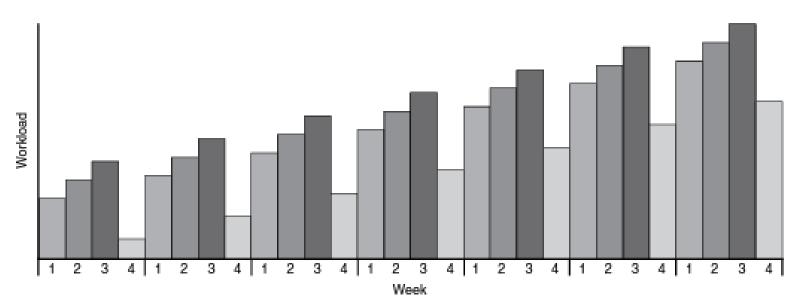
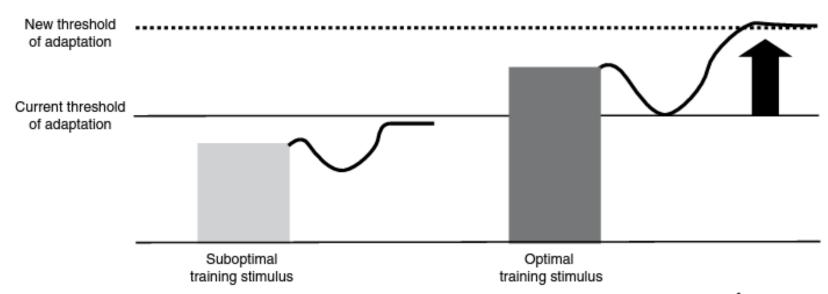



Figure 2.9 Loading paradigm for a summated microcycle model.

This depiction of a summated microcycle utilizes a 3:1 loading paradigm, with the highest level of fatigue in week 3. There is a pattern of loading, with week 1 representing strength-endurance, week 2 representing maximum strength, week 3 representing speed strength, and week 4 representing restoration training. The training stimuli are reintroduced in a cyclic pattern, allowing a specific stimulus to be reintroduced at regular intervals.

Based on Plisk and Stone 2003 (72) and Stone, Stone and Sands 2007 (91).

Sobrecarga

Figure 1.6 Breaking the threshold of adaptation should improve performance. \uparrow = increase in the threshold of adaptation.

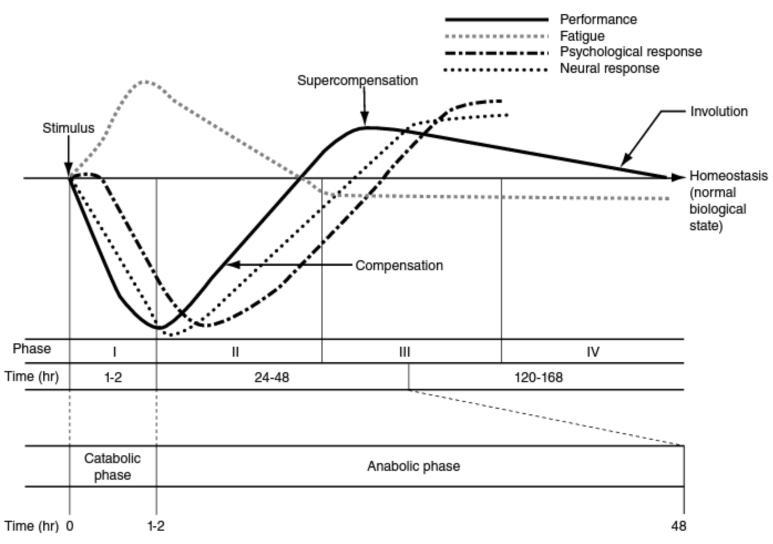
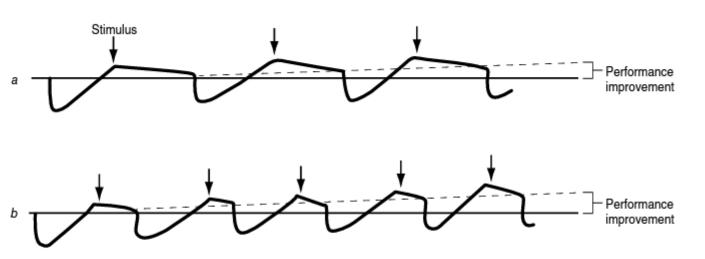


Figure 1.9 Supercompensation cycle response to a training session.


- Fases 1
 - Fatiga central y periferica
 - 1 0 2h
 - Depleción de sustrato
 - Aumento en absorción de glucosa
 - DOMS

- Fase 2
- 24 a 48h
- Compensación
 - Reposición de sustratos energéticos (3min-24h)
 - Actividad contráctil
 - EPOC (excess postexercise oxygen consumption) (24-38h)
 - Gasto energético basal (15-48h)
 - Síntesis proteica 4h 50%, 24h 109%, 36h vuelve a basal

- Fase 3
- 36-72h
- Rebote
- Capacidad de generar fuerza y dolor muscular (72h)
- Sicológico
- Reservas glucógeno

- Fase 4
- 3 a 7 días
- Involución
- Aparición depende de la intensidad del estimulo

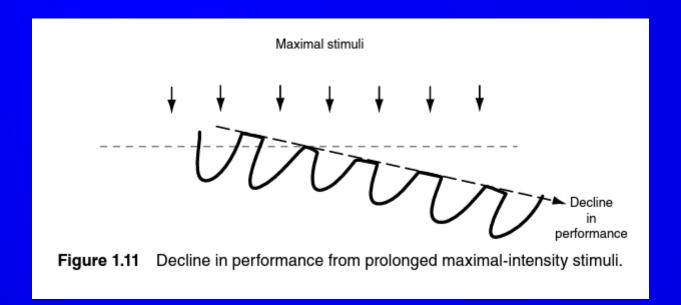

Sumación estímulos

Figure 1.10 The sum of training effect. (a) Long intervals between training sessions and (b) short intervals between training sessions.

Adapted from Harre 1982 (59).

Estímulo máximo

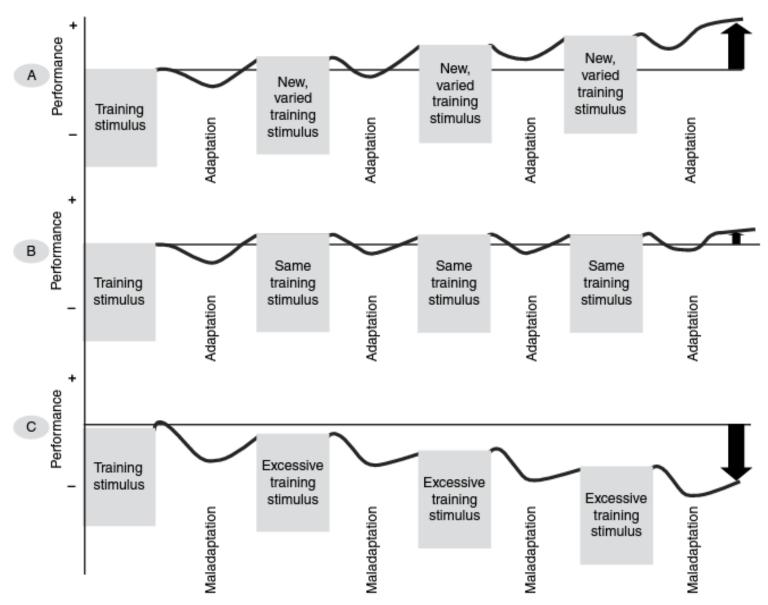
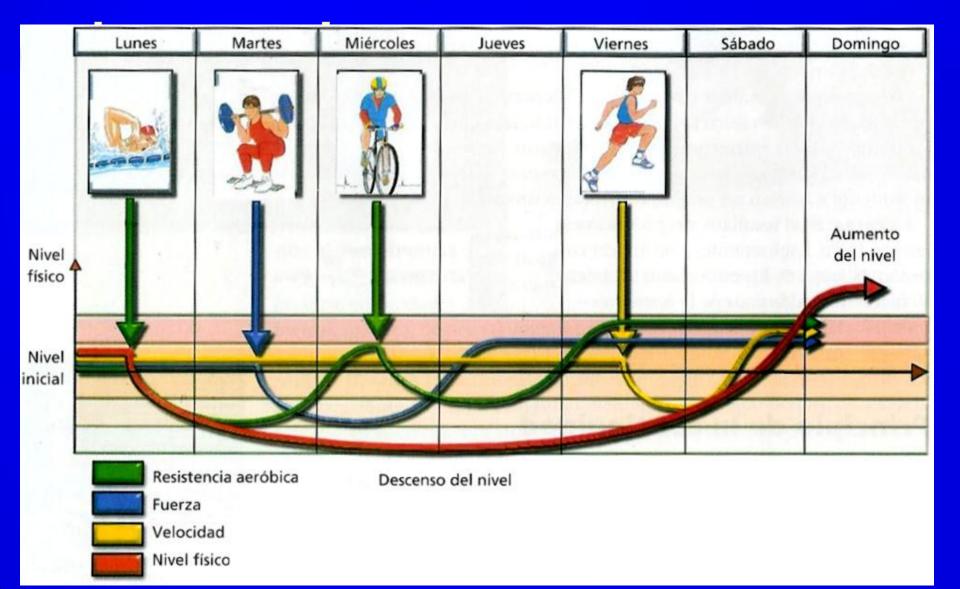



Figure 1.5 Training stimulus and adaptation.

(a) Increasing stimulus (load) \Rightarrow adaptation \Rightarrow performance improvement. (b) Lack of stimulus \Rightarrow plateau \Rightarrow lack of improvement. (c) Excessive stimulus \Rightarrow maladaptation \Rightarrow decrease in performance. \uparrow = increased performance; \downarrow = decreased performance.

Alta-baja intensidad

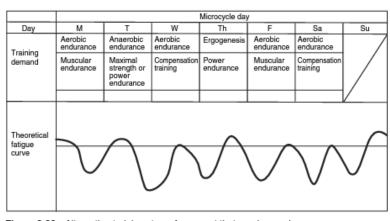


Figure 8.29 Alternating training stress for a sport that requires endurance.

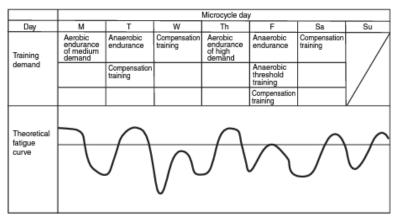
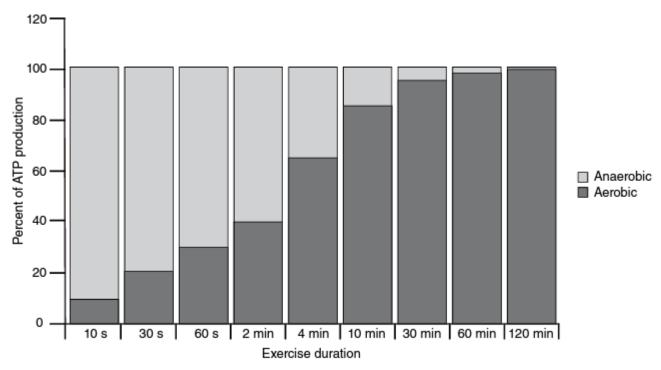
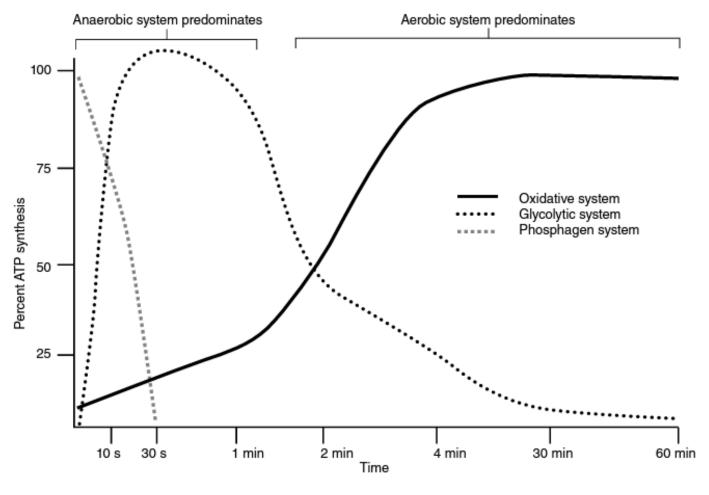



Figure 8.30 Alternating training stress for a sport that requires endurance for 4 to 6 min.


Especificidad

«uno entrena como compite»

Figure 1.17 Relationship between time and anaerobic and aerobic energy supply. Adapted, by permission, from S.K. Powers and E.T. Howley, 2004, *Exercise physiology: Theory and application to fitness and performance* 5th ed. (New York, NY: McGraw Hill), 519. © McGraw-Hill Companies, Inc.

		naerobio ATP su predomi	ipply	Aerobic energy ATP supply predominates						
	Time (s)			Time (min)						
	10	30	60	2	4	10	30	60		
Aerobic ATP supply (%)	10	20	30	50	65	85	95	98		
Anaerobic ATP supply (%)	90	80	70	50	35	15	5	2		

Otros

- Reversibilidad
- Individualización
- Continuidad

Prescripción de Ejercicio

 x_3 , number of sets

x₄, rest in-between sets ([s] or [min])

x₅, number of exercise interventions (per [d] or week)

x₆, duration of the experimental period ([d] or weeks)

x₇, fractional and temporal distribution of the contraction modes per repetition and duration [s] of one repetition

x_s, rest in-between repetitions ([s] or [min])

 x_9 , time under tension ([s] or [min])

x,, volitional muscular failure

 x_{11} , range of motion

 x_{12} , recovery time in-between exercise sessions ([h] or [d])

 x_{12} , anatomical definition of the exercise (exercise form)

Classical set of descriptors

New set of descriptors

Complete set of mechano-biological descriptors

b													
	<i>X</i> ₁	X2	<i>X</i> ₃	X ₄	X ₅	<i>X</i> ₆	X ₇	X ₈	X ₉	X ₁₀	X ₁₁	X ₁₂	X ₁₃
A	75% 1RM	6	1	-	2 per week	10 weeks	2 s shortening 0 s isometric 2 s lengthening	% = .	24+5 s	no	60%	24 h	no
В	75% 1RM	6	1	-	2 per week	10 weeks	10 s shortening 2 s isometric 4 s lengthening	-	96+10 s	yes	100%	72 h	yes

Conceptos

Intensidad

- Interna
- Externa

GARMIN

Conceptos

Intensidad

Table 4.2 Intensity Zones Based on Bioenergetics

Intensity	Event	Level of	Primary	BIOENERGETIC CONTRIBUTIONS		
zone	duration	intensity	energy system	Anaerobic	Aerobic	
1	<6 s	Maximum	ATP-PC	100-95	0-5	
2	6-30 s	High	ATP-PC and fast glycolysis	95-80	5-20	
3	30 s to 2 min	Moderately high	Fast and slow glycolysis	80-50	20-50	
4	2-3 min	Moderate	Slow glycolysis and oxidative	50-40	50-60	
5	3-30 min	Moderately low	Oxidative	40-5	60-95	
6	>30 min	Low	Oxidative	5-2	95-98	

Note: ATP-PC = Phosphagen system.

Adapted from McArdle, Katch, and Katch 2007 (54), Brooks, Fahey, White, and Baldwin 2000 (17), Stone, Stone, and Sands 2007 (79), and Conley 2000 (20).

Cómo aumentamos la intensidad?

- Velocidad de movimiento
- Peso de trabajo
- Intervalos de pausa
- % de trabajo

Conceptos

- Volumen
 - El tiempo de duración del entrenamiento
 - La distancia recorrida
 - El total de kilos desplazados
 - Cantidad de calorías consumidas
 - Número de repeticiones de gesto

Volumen

- Distancia m, km
- Peso kg, Ton
- Repeticiones
- Tiempo
 - Volumen relativo
 - Volumen absoluto

Cómo aumentar el volumen?

- Duración de la sesión
- Frecuencia diaria, semanal
- Número de repeticiones
- Distancia recorrida

Densidad

• $Densidad = \frac{Volumen \ absoluto \times 100}{Volumen \ relativo}$

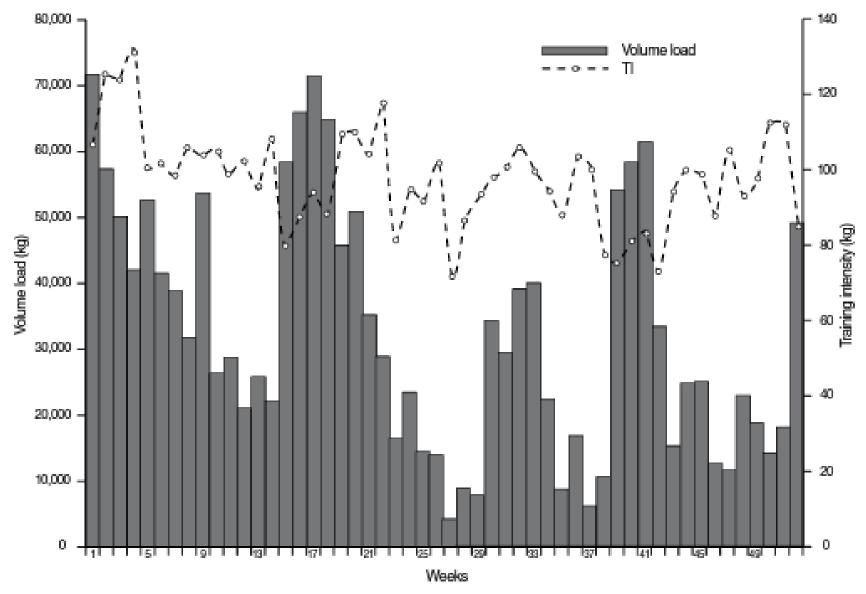
Table 4.7 Work-to-Rest Intervals and Bioenergetic Specificity

Targeted energy system	Average work time (s)	Work-to-rest ratio
ATP-PC	5-10	1:12-1:20
Fast glycolysis	15-30	1:3-1:5
Fast and slow glycolysis and oxidative metabolism	60-180	1:3-1:4
Oxidative metabolism	>180	2:1-1:3

Adapted, by permission, from NSCA, 2000, Bioenergetics of Exercise Training, by M. Conley. In Essentials of strength training and conditioning, edited by T.R. Baechle and R.W. Earle (Champaign, IL: Human Kinetics) 78.

Complejidad

- Agregar dificultad técnica o táctica
- Aumenta la intensidad



Conceptos

Carga

Carga = (Volumen × Intensidad) +Complejidad

Figure 4.2 Example of fluctuations in training volume and intensity for a master's weightlifter. Note: Volume is represented as the volume load (repetitions × sets × resistance in kg) and TI represents the average training intensity in kilograms.

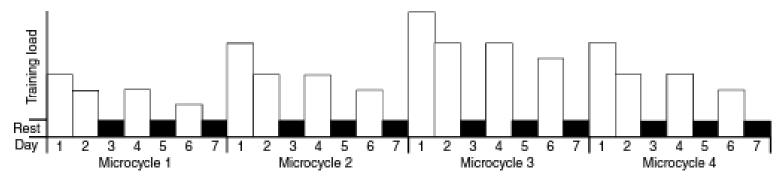


Figure 2.8 An example of intermicrocycle variation across a block of training.

White Bars = training load; Black Bars = rest Based on Nádori and Granek 1989 (69) and Plisk and Stone 2003 (72).

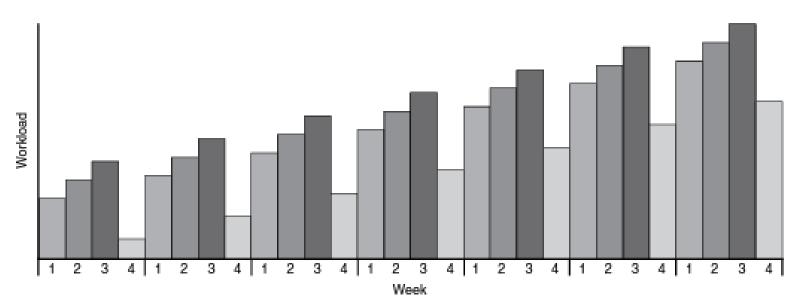


Figure 2.9 Loading paradigm for a summated microcycle model.

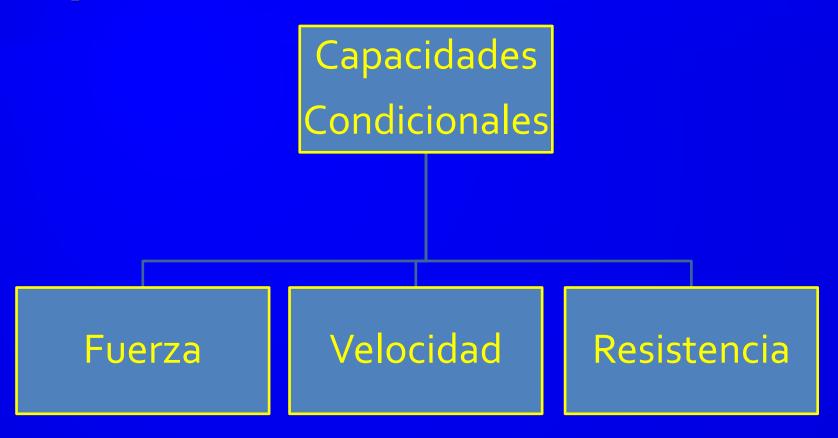
This depiction of a summated microcycle utilizes a 3:1 loading paradigm, with the highest level of fatigue in week 3. There is a pattern of loading, with week 1 representing strength-endurance, week 2 representing maximum strength, week 3 representing speed strength, and week 4 representing restoration training. The training stimuli are reintroduced in a cyclic pattern, allowing a specific stimulus to be reintroduced at regular intervals.

Based on Plisk and Stone 2003 (72) and Stone, Stone and Sands 2007 (91).

Otros

- Reversibilidad
- Individualización
- Continuidad

Capacidades físicas


- Son condiciones necesarias para la realización de actividades motrices
- Tienen distinta importancia de acuerdo a la actividad
- Se dividen en condicionales y coordinativas

Capacidades condicionales

- Se basan en procesos metabólicos
- Proceso orgánico musculares

- Resistencia
- Fuerza
- Velocidad

Capacidades Motrices

Capacidades coordinativas

- Organización y regulación del movimiento
- Proceso perceptivo cinético

- Coordinación
- Flexibilidad

Capacidades Coordinativas

Coordinación

Flexibilidad

PRÓXIMA CLASE

FUERZA

