rango normal de pH sanguíneo: 7,35 a 7,45

Acidosis metabólica severa (pH < 7.2, bicarbonato < 13 mmol/L) Acidosis respiratoria, los pulmones no pueden eliminar el CO₂

- •Efectos cardiovasculares, respiratorios, sobre el SNC y gastrointestinales.
- •También pudiera observarse trastornos en la contractilidad cardiaca y evolucionar a colapso circulatorio.
- •La respiración puede presentar anormalidades en cuanto profundidad y luego aumentar la frecuencia.
- La depresión del SNC puede progresar hasta el coma. Se han descrito dolor abdominal y nausea.
- •La hipercalemia es una complicación de la acidosis que puede comprometer la vida.

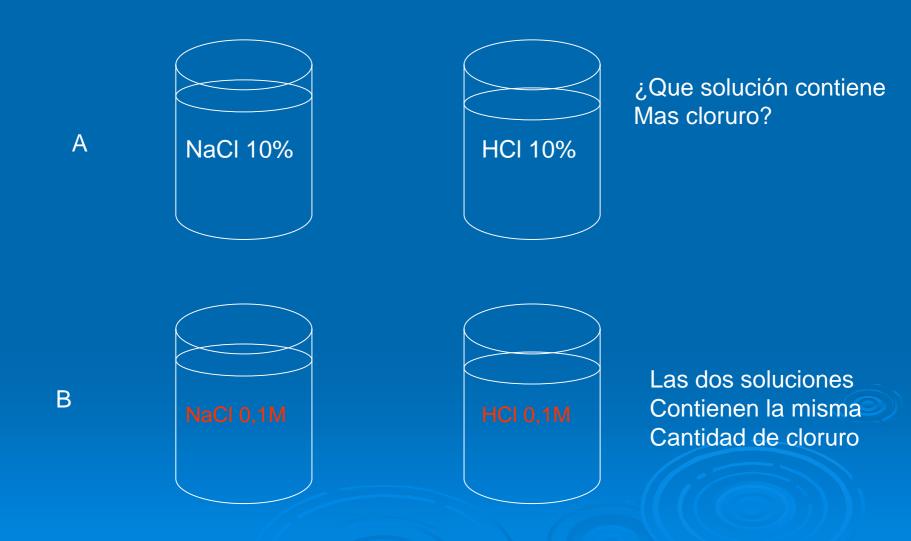
¿Que es el pH?

¿De que depende el pH de una solución?

¿Porque su variación tiene efectos tan importantes en la fisiología?

Solución: Es una mezcla homogénea

Concentración: Cantidad de soluto disuelto en un solvente


p/v g/100 g de solución

p/p g/100 ml de solución

M numero de moles por litro de solución

Moles = peso en gramos/peso molecular

¿Qué ventaja tiene expresar las concentración en molaridad (M)?

¿Cuál de las siguientes soluciones contiene electrolitos?

- 1. Solución acuosa al 2% de sacarosa (azúcar de mesa)
- 2. Solución acuosa de ácido acético al 4% de (Vinagre comercial)
- 3. Agua potable.
- 4. Agua destilada
- 5. Solución acuosa 0.1 M NaCl (sal de mesa).
- 6. Agua ultra pura.
- 7. Solución al 1% de Albúmina.
- 8. Solución acuosa 4 mM de glucosa.

Electrolitos

- Los solutos que se disocian en iones para producir soluciones en las que cationes y aniones están separados.
- Estas soluciones son conductoras de electricidad y las sustancias que producen este fenómeno se conocen como *Electrolitos*.
- >Los electrolitos son las sales, ácidos y bases

Ejemplos de electrolitos

Sales	Ácidos	Bases
NaCl	Fuertes	Fuertes
KCI	HCI	NaOH
NaNO ₃	HNO_3	KOH
NaHPO ₄	H_2SO_4	
	Débiles	Débiles
	H_2CO_3	NH_3
	H ₃ PO ₄	NH ₂ OH
	H_2SO_3	
	CH₃COOH	

Disociación Ácido-Base en Agua

$$HA + H_2O$$
 $H_3O^+ + A^-$
extendida

 $HA + H_2O$
 $H^+ + A^-$
Notación
extendida

 $H^+ + A^-$
Notación
extendida

 $A^+ + A^-$
Notación
extendida

 $A^+ + A^ A^$

Ácido es la especie química que puede donar protones.

Base es la especie química que puede recibir protones.

¿Ácido o base?

 NH_3

CH₃COOH

H₂SO₄

KOH

Ácidos fuertes y débiles

Un ácido o base débil esta parcialmente disociado

Un ácido o base fuerte esta completamente disociado.

Ecuación de disociación de un ácido débil

$$HA + H_2O \longrightarrow H^+ + A^-$$

$$K = \underbrace{[H^+][A^-]}_{HA}$$

$$K_a = \frac{[H^+][A^-]}{HA}$$

Ácido acético Acetato
$$CH_3COOH + H_2O \longrightarrow H^+ + CH_3COO^-$$

$$K_a = [H^+][CH_3COO^-]$$
 CH_3COOH

$$K_{a} = [H^{+}][A^{-}] \qquad ([X] = moles de "X"/Litro (Marine Marine Mari$$

[A-]

$$pH = pK_a + log [A-]$$

$$[HA]$$

Ecuación Henderson-Hasselbach

$$pH = -log[H^+]$$

 $pK_a = -logK_a$

pK_a es el pH al cual el ácido esta disociado en un 50%

La concentración de H⁺ puede variar de 1,0 to 0,00000000000001 moles por litro. Por esto la escala logarítmica (pH) es mas sencilla.

[H+], M	рН	[OH ⁻], M	рОН
10	-1	10 ⁻¹⁵	15
1	0	10 ⁻¹⁴	14
10 ⁻¹	1	10 ⁻¹³	13
10 ⁻²	2	10 ⁻¹²	12
10 ⁻³	3	10 ⁻¹¹	11
10 ⁻⁴	4	10 ⁻¹⁰	10
10 ⁻⁵	5	10 ⁻⁹	9
10 ⁻⁶	6	10 ⁻⁸	8
Neutro 10 ⁻⁷	7	10 ⁻⁷	7
10 ⁻⁸	8	10 ⁻⁶	6
10 ⁻⁹	9	10 ⁻⁵	5
10 ⁻¹⁰	10	10 ⁻⁴	4
10 ⁻¹¹	11	10 ⁻³	3
10 ⁻¹²	12	10 ⁻²	2
10 ⁻¹³	13	10 ⁻¹	1
10 ⁻¹⁴	14	1	0
10 ⁻¹⁵	15	10	-1

¿Por qué se usan buffer de pH (amortiguadores)?

¿Por qué no usar simplemente agua?

Si agregamos 0,1 mM (10⁻³ M) de H+ a una solución neutra (pH 7,0)

Aplicando la defimición (pH = -log[H+])

$$pH = -log (10^{-3})$$

El metabolismo oxidativa de carbohidratos y ácidos grasos produce CO₂

Metabolismo: produce cerca 50-90 mEq/dia de ácido

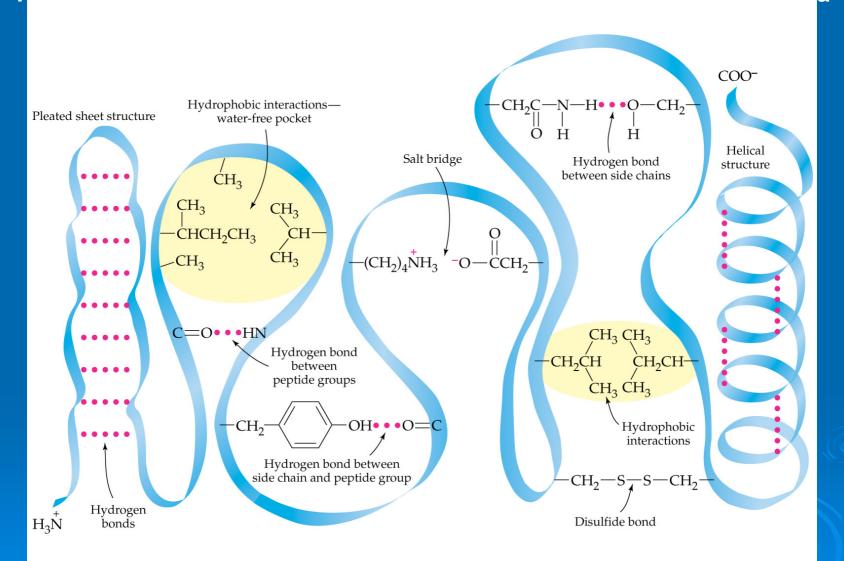
- a. Metabolismo de compuestos neutros a ácidos orgánicos láctico piruvico exceso de actividad metabólica o inadecuado O_2 aceto acético β -hidroxibutirico
- b. Oxidación de compuestos S y P amino ácidos metionina y cisteina H₂SO₄

hidrólisis de fosfoesteres degradación de fosfoproteinas y ácidos nucleicos (especialmente importante en daño de tejido o aumento del catabolismo)

c. Ingesta por dieta o fármacos Ácidos Mineral u orgánicos Sales NH₄CI

$$2NH_4CI + CO_2 ----> 2H^+ + 2CI^- + (NH_2)_2CO + H_2O$$

El sistema HCO₃-/CO₂


$$CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow HCO_3^- + H^+$$

$$pH = 6.1 + log [HCO_3]$$
$$0.03*pCO_2$$

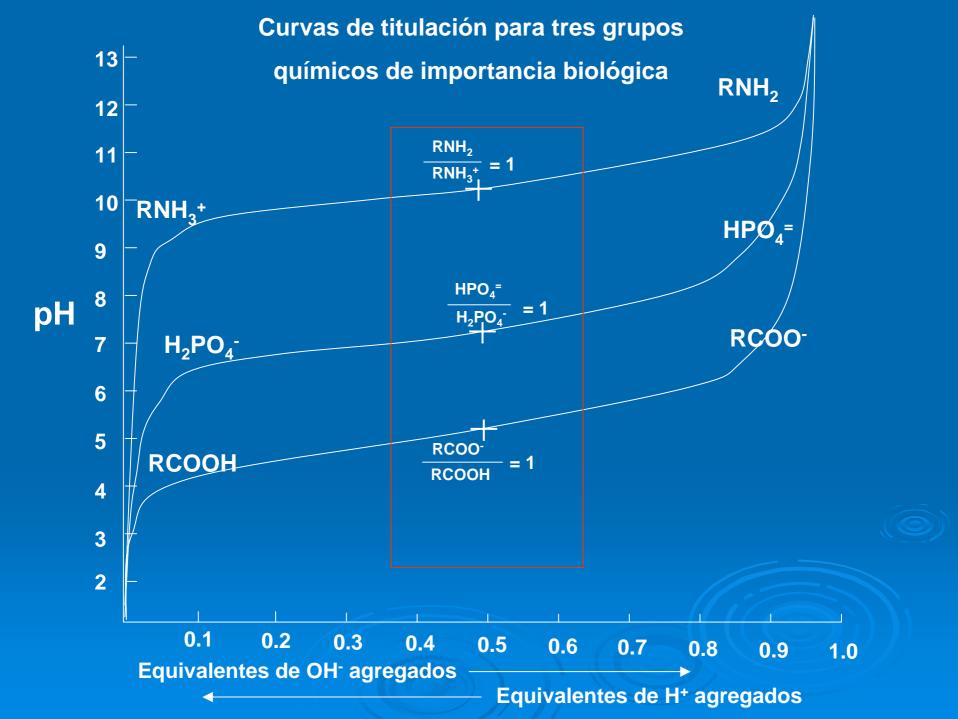
¿Cómo podemos explicar el efecto del pH sobre la fisiología?

Algunas de las interacciones que mantienen la estructura de una

Protoína dependen de la protonación de les cadence leterales de les es

Los cambios de pH afectan la estructura y la función de las proteínas

Acidic Side Chains


(Aspartate)

Basic Side Chains

Histidine, His (7.6)

Buffers o amortiguadores de pH

Amortiguador es una solución que sufre solo un ligero cambio de pH cuando se agregan H+ u OH-

Constantes de disociación de ácidos y bases débiles

Buffer comunes	Formula	pK _a
Acético	CH ₃ COOH	4.74
HEPES	$\begin{array}{c} O \\ N-CH_2CH_2-N \\ N-CH_2CH_2-S-OH \\ O \\ \end{array}$	7.55
TRIS	$\begin{array}{c} CH_2OH \\ I \\ HOCH_2 - C - CH_2OH \\ I \\ NH_2 \end{array}$	8.30
MOPS	$\begin{array}{c} O \\ N \\ CH_2 \ CH_2 \ CH_2 \ CH_2 \\ O \\ O$	7.20

¿Para un buffer a pH 7,6 que buffer usaría?

El ácido acético (CH₃COOH) es el mas económico y fácil de conseguir.

Si usamos 20 mM de CH₃COOH Apliquemos Ecuación *Henderson-Hasselbach.* pH = pK + log[A·] [HA]

 $pH = pK_a + log[CH_3COO^-]/[CH_3COOH]$

 $7,6 = 4,74 + log[CH_3COO^{-}]/[CH_3COOH]$

2,86 = log[CH₃COO⁻]/[CH₃COOH]

 $10^{2,86} = \log[CH_3COO^{-}]/[CH_3COOH]$

 $724 = [CH_3COOH]/[CH_3COO^{-}]$ $1/724 = [CH_3COO^{-}](CH_3COOH)$

$$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]} = 1.8x10^{-5}$$

$$\frac{[H^+]}{724} = 1.8 \times 10^{-5}$$
 $[H^+] = 13 \times 10^{-3}$

pH = 1.88!!!!!

Si probamos con 20 mM HEPES $pK_a = 7,55$

 $pH = pK_a + log[HEPES^-]/[HEPES]$

 $7,6 = 7,55 + log[HEPES^{-}]/[HEPES]$

 $0.05 = \log[HEPES]/[HEPES^{-}]$

 $1,1 = [HEPES]/[HEPES^-]$

Si recordamos pKa es el pH al cual el ácido esta Disociado en un 50% entonces,

[HEPES] ≈ [HEPES⁻] y [HEPES]/[HEPES⁻] ≈ £

HEPES es un buen amortiguador a pH 7,6

Una buena generalización es que el rango útil de pH de un buffer es

$$pK_a \pm 0.5$$

Ejemplo:

pK_a del TRIS es 8.11

Rango util de pH 7.61 a 8.61

Estos valores son los extremos, mientras mas cerca del pK_a, mejor buffer

Nota:

Recordar que el pH es afectado por la fuerza iónica (cantidad de cargas disueltas) y por la temperatura

Uno de los principales reguladores del pH sanguíneo es el ion bicarbonato

$$H^+ + HCO_3^- \longrightarrow H_2CO_3 \longrightarrow CO_2 + H_2O$$

Ecuación
Henderson-Hasselbach
$$pH = 6.1 + log (HCO_3/H_2CO_3)$$

En clínica
$$H_2CO_3 = PCO_2 \times 0.03$$

En clínica se puede medir directamente el nivel de bicarbonato o indirectamente Midiendo la pCO₂ y usando la ecuación de Ecuación Henderson-Hasselbach

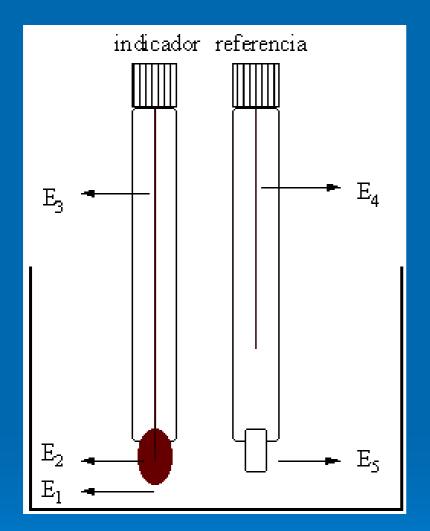
Medición de pH Indicadores colorimericos

Indicador	pKind	Intervalo pH para el cambio de color	Cambio color
Púrpura de metacresol	1,5	1,2-2,8	Rojo o amarillo
Naranjo de metilo	3,4	3,1-4,4	Rojo o naranja
Azul de bromofenol	3,8	3,0-4,6	Amarillo o azul
Rojo de metilo	4,9	4,4-6,2	Rojo o amarillo
Rojo de clorofenol	6,0	5,2-6,8	Amarillo a rojo
Azul de bromotimol	7,1	6,2-7,6	Amarillo a azul
Púrpura de metacresol	8,3	7,6-9,2	Amarillo a púrpura
Fenolftaleína	9,4	8,0-10,0	Incoloro a rojo
Timolftaleína	10,0	9,4-10,6	Incoloro a azul
Amarillo R de alizarina	11,2	10,0-12,0	Amarillo a violeta

Métodos potenciometricos Electrodos de pH

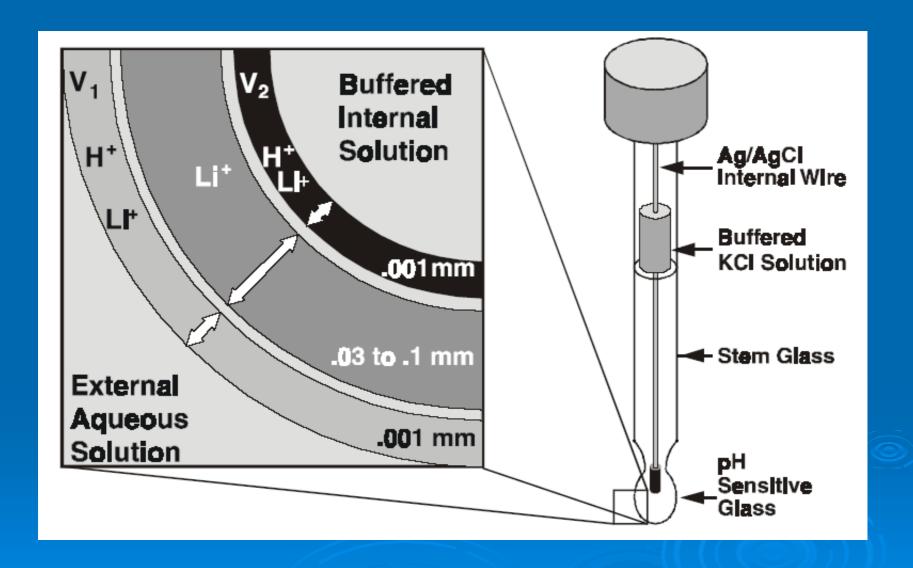
Se basan en la medición del La diferencia de potencial Electroquímico entre la solución y una referencia

Mediante una serie de derivaciones se puede llegar a la siguiente expresión:

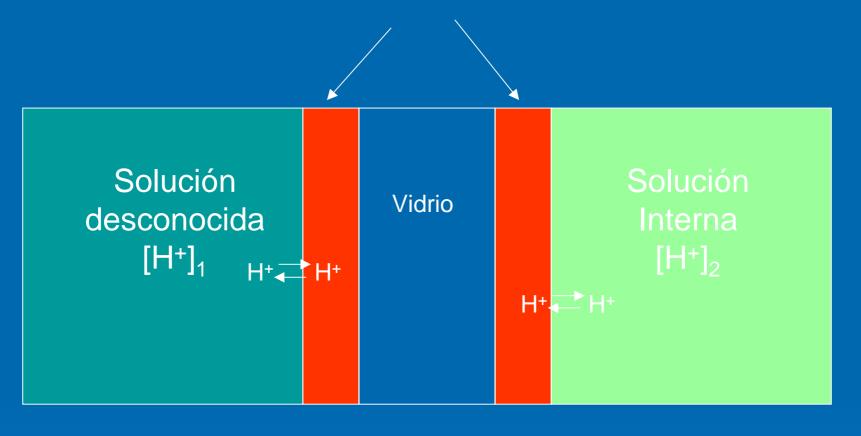

$$pH = E/S - C$$

A 25° C = 0,059 y a 80° C es 0,070.

C = constante que depende del electrodo

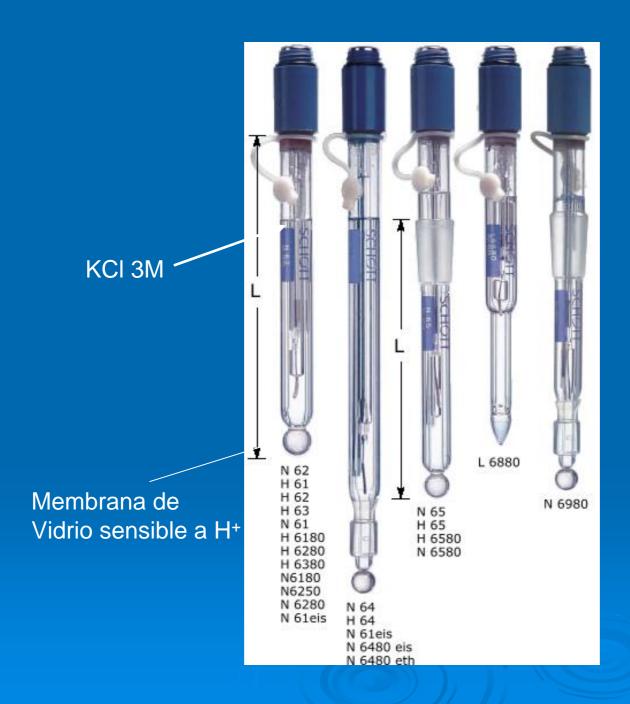

E = diferencia de potencial (ΔV). Es directamente proporcional a la [H+] de la solución

A temperatura ambiente pH = E/0,059- constante



Al introducir el electrodo en una disolución a analizar, hay un intercambio de iones H+ y Na+. Dentro y fuera de la membrana tenemos diferentes concentraciones de H+ y por tanto distinto intercambio, y esto origina la diferencia de potencial referida al electrodo de referencia interno, que a su vez se refiere al electrodo de referencia externo. Se mide el potencial a i = 0 con un voltímetro de alta impedancia (pH-metro).

Detalle de un electrodo de vidrio sensible a pH



Capa gel higroscopica

Puesto que $[H^+]_1 \neq [H^+]_2$

Diferencia de potencial

Experimentalmente para medir pH con un electrodo

Se calibra con dos soluciones de pH conocido a Tº ambiente

Generalmente 4,0 y 7,0 esto genera una curva estándar

Luego se miden las muestras, generalmente a Tº ambiente

Mitocondria y pH

En la mitocondria la mayor parte de las energía produc durante la oxidación se trar En una gradiente de pH

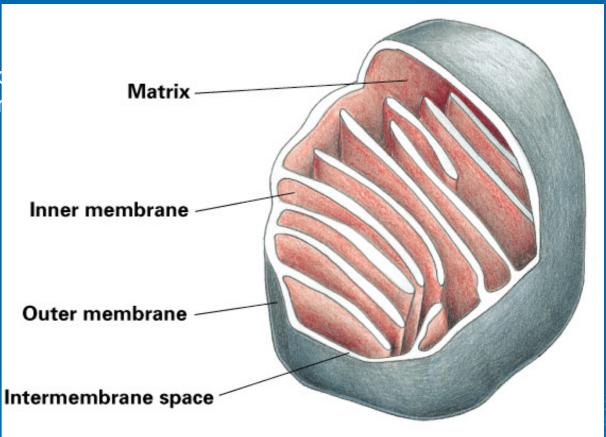
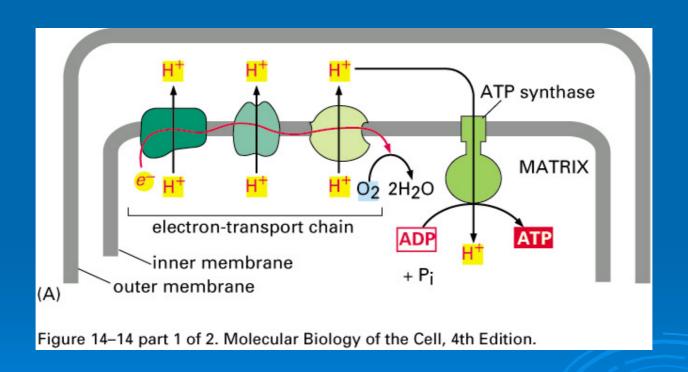
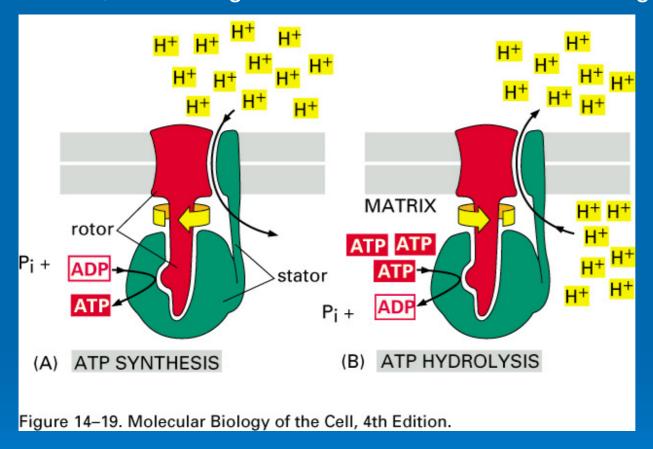



Figure 14–8 part 2 of 3. Molecular Biology of the Cell, 4th Edition.

En la mitocondria la degradación oxidativa se acopla


Al transporte de protones

Gradiente de pH en la mitocondria

El movimiento de protones a través de la ATP sintetasa esta acoplado a la síntesis d ATP. El movimiento de protones produce un movimiento rotatorio, esta energía mecánica es convertida a energía química

El paso de 3 protones a través de la membrana produce una molécula de ATP