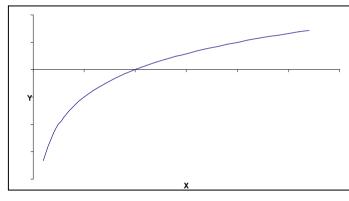
Modelo logarítmico

Forma básica:

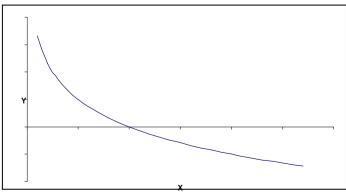
$$y = \log_b x$$
 $b>0, b \ne 1$

Se distinguen dos casos:

1)
$$b > 1$$



2)
$$0 < b < 1$$



Dom = R +

Rec = R

Si $b > 1 \rightarrow$ creciente

Si $0 < b < 1 \rightarrow$ decreciente

Forma general:
$$y = k_0 + k_1 \log_b (k_2 x + k_3)$$

k₀: parámetro libre; indica corrimiento en eje Y

 k_1 : ($\neq 0$) parámetro amplificador.

 $k_1 < 0$ \Rightarrow gráfica se invierte con respecto a eje X

 k_2 : (\neq 0) indica cuán rápido (k_2 > 1) o lento (k_2 < 1) se avanza. si k_2 < 0 la curva se invierte con respecto a su asíntota.

La solución de la ecuación k_2 $x + k_3 = 0$ determina la asíntota vertical que es: $x = -k_3 / k_2$

Ejemplos:

1)
$$y = \log_{\frac{1}{2}}(x-2)$$

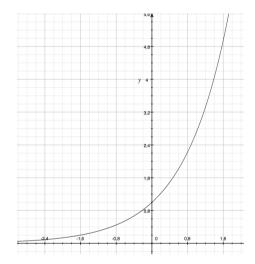
2)
$$y = \log x + 1/2$$

3)
$$y = \log_{\frac{1}{2}}(x+2) + 1$$

4)
$$y = -\log(2x - 1)$$

MODELO DE CRECIMIENTO LOGÍSTICO

• El modelo exponencial $N(t) = N_0 e^{kt}$ para crecimiento de poblaciones no siempre representa situaciones que o curren en la realidad ya que proyecta un crecimiento cada vez más rápido e indefinido en el futuro.



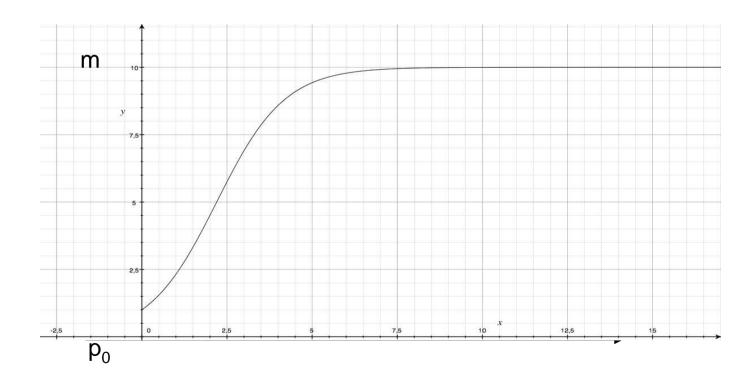
• En la mayoría de los casos (incluyendo el de la población mundial) la cantidad de espacio y recursos limitados forzarán eventualmente a disminuir la razón de crecimiento. Esto sugiere otro modelo para el crecimiento de la población llamado modelo logístico.

La expresión que representa este modelo es: $N(t) = \frac{m}{1 + \left(\frac{m}{p_0} - 1\right)}e^{-mkt}$

Donde:

p₀: población inicial,

m: población máxima



Aplicación

1. El número de individuos en una población de cierta especie en un ambiente limitado, se puede modelar por:

$$P(t) = \frac{100.000}{100 + 900 e^{-t}}$$
, donde t se mide en años.

- a) Determine el número inicial y el número máximo de individuos en esta población.
- b) Dibuje la porción del gráfico de acuerdo al contexto.
- c) Estime en cuánto tiempo la población tendrá 900 individuos.

Modelo potencial

Forma básica:

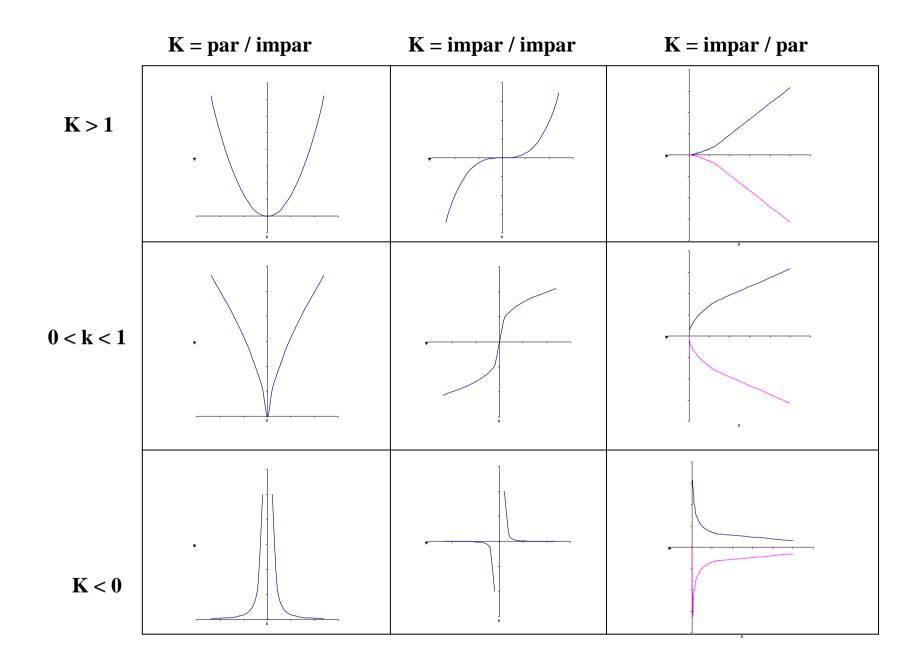
$$y = x^k$$

$$k = p/q$$
; $k \neq 0$, $k \neq 1$

Se distinguen nueve casos:

$$\left\{ \begin{array}{l} k > 1 \\ 0 < k < 1 \\ k < 0 \end{array} \right\} \qquad \left\{ \begin{array}{l} k = par / impar \\ k = impar / impar \\ k = impar / par \end{array} \right\}$$

Para cada caso se tiene un tipo de gráfica diferente.



Forma general:

$$y = k_0 + k_1 (k_2 x + k_3)^{k4}$$

 $\mathbf{k_0}$: parámetro libre, indica el corrimiento que tiene el gráfico, respecto al eje Y; corrimiento del eje horizontal, si $\mathbf{k_0} \neq \mathbf{0}$

 $\mathbf{k_1}$: ($\neq 0$) parámetro amplificador; si $\mathbf{k_1} < 0$ se invierte con respecto a eje X

 $\mathbf{k}_2: (\neq 0)$ párametro de compresión horizontal

Si $k_2 > 0$, se pinta de acuerdo a el signo de k_1

Si $k_2 < 0$ y $k_4 = par / impar$, se pinta de acuerdo a el signo de k_1

Si $k_2>0$ y k_4 = impar/impar, se pinta cambiando el signo de k_1

Si $k_2 < 0$ y $k_4 = \text{impar/par}$, para pintar se invierte el gráfico respecto a eje Y.

 $\mathbf{x} = -\mathbf{k_3}/\mathbf{k_2}$: indica corrimiento del gráfico respecto al eje X; lo que resulta de resolver la ecuación: $\mathbf{k_2} \mathbf{x} + \mathbf{k_3} = \mathbf{0}$

 $\mathbf{k_4}$: indica el tipo de curva, según los 9 casos posibles.

Ejemplos.

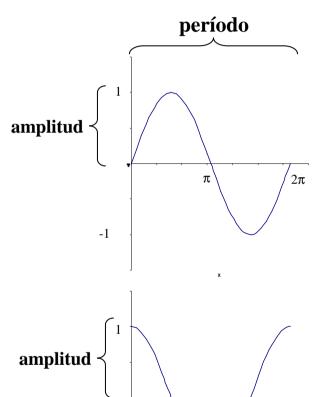
1)
$$y = 5 - (1 - 3x)^{1/2}$$
 $y = (2 - x) - \frac{1}{2} + 3$

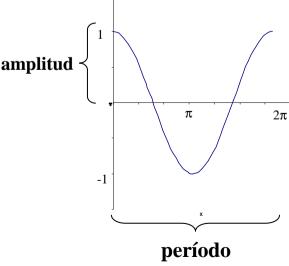
Modelo trigonométrico

Modelo básico:

$$y = sen x$$

$$y = \cos x$$





Forma general:

$$y = k_0 + k_1 \text{ sen } (k_2 x + k_3)$$

$$y = k_0 + k_1 \cos(k_2 x + k_3)$$

 k_0 : indica el eje donde se desenvuelve la onda ($y = k_0$)

 k_1 : indica la amplitud (valor absoluto) \rightarrow $A = |k_1|$

 $k_1 < 0$ invierte con respecto a eje horizontal

 k_2 : indica el período $\rightarrow P = |2\pi/k_2|$

(depende de la unidad en que se mida el ángulo)

 k_2 y k3 : determinan el desfase \rightarrow D = - k_3 / k_2

Ejemplos.

(Pág. 103)

- 1. n(x) = 3 + 2 sen(2x)
- 2. $m(s) = 1 \cos(\pi/3 s)$

Fórmulas:

Teorema del seno: considere el triángulo \triangle ABC, con ángulos A, B y C y lados opuestos a, b y c, respectivamente, tenemos:

$$\frac{a}{sen A} = \frac{b}{sen B} = \frac{c}{sen C}$$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$$

- Teorema del coseno: considere el triángulo ∆ ABC, con ángulos
 A, B y C y lados
 opuestos a, b y c,
 respectivamente,
 tenemos:
- Otras fórmulas:

$$sen^2x + \cos^2 x = 1$$
,

$$a^{2} = b^{2} + c^{2} - 2bc \cos A,$$

$$b^{2} = c^{2} + a^{2} - 2ca \cos B,$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C.$$

$$\tan x = \frac{senx}{\cos x}$$

$$\tan 2x = \frac{2\tan x}{1-\tan^2 x}.$$