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Werner Held�, Jérôme D Coudert and Jacques Zimmer

The identification of NK cell receptors specific for MHC class I

molecules has greatly improved our knowledge of NK cell

reactivity and specificity. Inhibitory receptors prevent NK cell

activation directed against cells expressing self-MHC class I

molecules. Consequently, diseased cells that do not express

self-MHC class I molecules become susceptible to NK cell-

mediated attack. Because of the specificity and distribution of

inhibitory NK cell receptors, cells that express non-self

(allogeneic) MHC class I molecules are also susceptible to NK

cell reactions. This feature has been exploited in a clinical setting

to treat leukemia patients.

Addresses
Ludwig Institute for Cancer Research, Lausanne Branch and University

of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
�e-mail: wheld@isrec.unil.ch

Current Opinion in Immunology 2003, 15:233–237

This review comes from a themed issue on

Lymphocyte development

Edited by Ellen Robey and Mark Schlissel

0952-7915/03/$ – see front matter

� 2003 Elsevier Science Ltd. All rights reserved.

DOI 10.1016/S0952-7915(02)00031-6

Abbreviations
GvHD graft versus host disease

ITAM immunoreceptor tyrosine-based activation motif

ITIM immunoreceptor tyrosine-based inhibition motif

KIR killer cell immunoglobulin-like receptor

MCMV mouse cytomegalovirus

NK natural killer

NKG NK group

NKR NK cell receptor specific for MHC class I molecules

SH2 src homology 2

SHIP SH2-containing inositol phosphatase

TCR T-cell receptor

Introduction
Natural killer (NK) cell function is controlled by opposing

activating and inhibitory signals generated during the

interaction with a target cell. Target cells are killed when

NK cells receive an excess of activation signals, which can

occur in two (non-exclusive) ways. When target cells lack

self-MHC class I molecules, NK cells no longer receive

inhibitory signals via MHC class I-specific inhibitory

receptors (‘missing self’ recognition; [1]). As the interac-

tion with a target cell is often sufficient to result in

significant NK cell activation, lysis is induced. Alterna-

tively, MHC class I-dependent inhibition may be over-

ridden by de novo expression of ligands on target cells,

which are recognized by constitutively expressed NK cell

activation receptors (‘induced self’ recognition; [2]).

In this review, we will consider NK cell receptors specific

for MHC class I molecules (NKRs). Their hallmark is

differential, subset-restricted expression. This type of

expression pattern is not unique to MHC class I receptors

and may mark different NK cell subtypes or lineages (as

proposed for CD56; [3]). Other cell-surface receptors may

delineate developmental stages (for example, CD11b;

[4�]) or are currently of unknown importance (for exam-

ple, killer cell lectin-like receptor G1 [KLRG1]; [5]).

Even though some of these latter receptors probably

influence the functional repertoire of NK cells signif-

icantly, they are not within the scope of this review and

will not be discussed further. In this review, we will

summarize recent advances in our understanding of the

formation of a repertoire of NK cell receptors specific for

MHC class I molecules, alterations in this repertoire

imposed by self-MHC class I molecules and other factors,

and emerging clinical applications of this knowledge.

MHC class I-specific NK cell receptors
NK cells express either killer cell immunoglobulin-like

receptors (KIRs, human) or C-type lectin-like Ly49

receptors (mouse) [6,7]. MHC class I receptor heterodi-

mers of CD94 and NK group 2A (NKG2A), NKG2C or

NKG2E are expressed by both species [8,9]. Each type of

receptor family (KIR, Ly49 and CD94–NKG2 heterodi-

mers) includes activating and inhibitory forms of recep-

tors. Inhibitory receptors are characterized by the

presence of one or more immunoreceptor tyrosine-based

inhibition motifs (ITIMs; V/IxYxxL in amino acid one-

letter codes, where x represents any amino acid), whereas

activating receptors lack ITIMs and instead associate

with the immunoreceptor tyrosine-based activation motif

(ITAM)-containing adaptor molecule, DAP-12 (also

called KARAP; [10]). Therefore, MHC class I expression

on target cells can also activate NK cells. This may play a

role when target cells express increased amounts of MHC

class I.

Specificity of NK cell receptors
Certain KIRs and Ly49 receptors are specific for allelic

determinants on classical MHC class I molecules. As the

MHC and the KIR or Ly49 clusters are inherited inde-

pendently, humans and mice may in fact express NKRs

for which they have no MHC ligand. At the other end of

the spectrum, human immunoglobulin-like transcript-2

(ILT2, an additional Ig-like receptor) displays rather

broad MHC class I reactivity, and CD94–NKG2 receptors
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recognize non-polymorphic HLA-E in humans or Qa1b in

mice (for recent reviews see [11,12]).

Recent work has identified ligands for NKRs in addition

to the MHC class I molecules of the respective species.

The activating murine Ly49D receptor, which was initi-

ally shown to be H-2Dd-specific, also recognizes xeno-

geneic MHC-encoded ligands on rat lymphoblasts [13]

and Chinese hamster ovary cells [13,14,15�]. Thus, acti-

vating NKRs may play a role in xenotransplant rejection.

Furthermore, the activating Ly49H receptor, for which a

class I ligand has not yet been described, was recently

shown to bind to the mouse cytomegalovirus (MCMV)-

encoded MHC class I-like protein, m157 [16��,17��]. In

addition, the protein m157 was also found to bind to an

allelic variant of the inhibitory Ly49I receptor [16��]. As

viruses subvert host genes rather than ‘invent’ them,

these latter findings raise the possibility that functional

m157 homologs exist in the murine and human genomes

and that the specificity of KIRs or Ly49 receptors extends

to MHC class I-independent self-molecules.

The NK cell receptor repertoire
The number of KIR and Ly49 genes varies considerably

between different individuals or mouse strains, respec-

tively [18,19]; approximately ten receptors are actually

expressed in each. Single NK cells can express more than

one NKR, and the usual figure is between one and five

[20,21]. Indeed, individual NK cells express different

combinations of KIR or Ly49 and CD94–NKG2 receptors

(for a detailed recent review, see [11]). The term ‘NKR

repertoire’ thus refers to the NKRs used by an individual

or a mouse strain, as well as the combinations of NKRs

expressed by single NK cells.

The signals that induce NKR expression during NK cell

development, and the molecular basis for the combina-

torial NKR distribution, are not well understood. Cyto-

kines may play a role in the induction of CD94–NKG2

expression [22,23]. By contrast, bone marrow stromal cell-

derived factors seem to be required for inducing KIR or

Ly49 expression [24–26,27�]. In vitro differentiation

experiments indicate that Ly49 receptors or KIRs are

acquired in a non-random order during NK cell develop-

ment [25,26,27�]; for example, in murine NK cells, Ly49A

appears before Ly49G, which appears before Ly49I [26].

Staged Ly49 acquisition may be comparable to the suc-

cessive generation and expression of T cell receptor

(TCR) a chains during T-cell development [28,29].

The difference between NKR expression and TCR

expression is that in NK cells the primary receptor choice

is not extinguished by subsequent receptor choices. Con-

sequently, NK cells can accumulate several NKRs.

An additional process seems to act as the actual driving

force for diverse receptor expression. Only a fraction of

NK cells acquire an NKR at the permissive stage of NK

cell development. The restricted acquisition of Ly49

receptors, which is evident at the level of the NK cell

population, may find its correlate at the single cell level as a

predominant mono-allelic expression of Ly49 receptors

[30,31]. Thus, receptor distribution may be based on an

inefficient activation of individual Ly49 genes. Compatible

with this idea, the transcription factor T-cell factor (TCF)-

1 is limiting for the acquisition of the Ly49A receptor

[32,33]. Maintenance of the expression patterns of KIRs

is ensured epigenetically through DNA methylation [34��].

It may be asked why NK cells need such a fine receptor

specificity and an elaborate receptor distribution system,

if all they have to recognize is self-MHC class I mole-

cules? Consider what would happen if each NK cell

expressed all the available inhibitory NKRs; complete

loss of MHC class I from target cells would be required for

NK cells to react. Receptor selectivity and clonal distri-

bution can generate NK cell clones that express a single

inhibitory NKR specific for a single self-MHC class I

allele. For such a clone the loss of a single class I allele

from a target cell will be sufficient for an NK cell reaction

to occur. Loss or downregulation of a single class I allele is

indeed a relatively frequent event during transformation

[35] or infection with certain viruses [36,37].

Adaptation of the NK cell receptor repertoire
I: MHC class I
Even though it is clear that NK cells functionally adapt to

their MHC class I environment [38], the expression of

MHC-specific receptors, as we can currently assess it, is

only relatively subtly modified by MHC class I expres-

sion. Changes in expression include reduced cell-surface

levels of inhibitory Ly49 receptors (but not of KIRs) in

the presence of the MHC ligand. This has previously

been attributed to ligand-induced receptor downmodula-

tion, although recent results have raised the possibility

that it may result from reduced receptor accessibility, due

to an interaction of the receptor with its MHC class I

ligand in the plane of the NK cell’s membrane [39,40].

Contrary to what may be expected, the presence of MHC

ligand reduces rather than increases the number of Ly49

receptors expressed per cell. This finding is compatible

with the model in which NKRs are acquired sequentially,

and suggests that engagement with MHC class I limits

further receptor acquisition. This scenario is supported by

the analysis of mice expressing a self-MHC-specific NKR

transgene. Limited acquisition of endogenous Ly49 recep-

tors in transgenic mice is observed when the transgenic

receptor is engaged, irrespective of whether the endogen-

ous receptor is self-MHC specific or not [41�,42�].

The findings described above provide important insights

into the adaptation of the NKR repertoire to the

MHC environment. However, the questions of whether

potentially auto-aggressive NK cells (i.e. NK cells that fail
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to acquire a self-MHC-specific inhibitory receptor) arise,

and how auto-aggression is prevented (NK cell tolerance

induction), are not yet resolved. In cloned human NK cells,

a characteristic of the repertoire is, in fact, that each NK cell

expresses at least one inhibitory NKR with specificity for

self-MHC class I [20]. This suggests that auto-aggressive

clones either do not arise, or they arise but cannot be

cloned. In fact, the failure to engage NKRs during NK

cell development does not represent a death sentence for

NK cells. NK cells develop in normal numbers in the

absence of MHC class I molecules in various mouse strains

and human transporter associated with antigen processing

(TAP)-deficient patients, yet such NK cells display

reduced functional capacities [43,44]. NK cell non-reactiv-

ity (tolerance) towards non-infected, non-transformed self

cells can thus also be ensured independently from the

engagement of NKRs with MHC class I ligands.

Adaptation of the NK cell receptor repertoire
II: NK cell activation
In conjunction with MHC class I molecules, NK cell

activation seems to play a role in the adaptation of the

Ly49 receptor repertoire. The lysis of ‘normal missing-

self’ targets (i.e. non-infected, non-transformed lympho-

blasts, which lack MHC class I molecules) is dependent

in part on the src family kinase Fyn, suggesting a role for

Fyn in NK cell activation. Fyn-deficient NK cells express

fewer inhibitory Ly49 receptors than wild-type cells [45�].
In contrast, mice lacking syk/ZAP-70 (which are unable to

induce NK cell activation via ITAM-associated NK cell

receptors) kill normal missing-self target cells. These NK

cells display a normal Ly49 receptor repertoire [46�].
Collectively, these data raise the possibility that NKRs

are acquired until the inhibitory signals generated by

them are able to match the activation levels provided

by their interaction with normal self cells.

Consistent with this scenario, activating NK cell receptors

appear before (or in the absence of ) KIRs or Ly49 receptors

on developing NK cells [24,47��]. A possible mechanism

for keeping NK cells in check while they try to match their

activation levels with MHC-dependent inhibition has

been recently proposed [47��]. In the presence of the

cytoplasmic molecule SAP (for signaling lymphocyte acti-

vation molecule [SLAM]-associated protein), CD244 (also

called 2B4) acts as a co-receptor for NK cell activation [48].

In the absence of SAP, CD244 associates with src homol-

ogy 2 (SH2)-containing protein tyrosine phosphatase

(SHP)-1 and consequently inhibits NK cells [49]. Intrigu-

ingly, during NK cell development SAP is not expressed,

suggesting that CD244 inhibits NK cells via the interaction

with its ubiquitously expressed ligand CD48 [47��].

An additional factor influencing the Ly49 receptor reper-

toire is SH2-containing inositol phosphatase (SHIP; [50�]).
Certain Ly49 receptors recruit SHIP to their cytoplasmic

tail. In the absence of SHIP, these Ly49-defined NK cell

subsets selectively and gradually expand over time, sug-

gesting that SHIP may normally limit their proliferation or

survival [50�]. It remains to be shown whether this process

is also dependent on MHC class I expression.

Exploitation of the NK cell receptor
repertoire
NK cells are able to kill normal missing-self targets, as the

relevant inhibitory receptor(s) is no longer engaged by the

target cell’s MHC molecules. Obviously, NK cells will also

react to target cells expressing a foreign MHC class I allele,

as long as the relevant inhibitory receptor(s) is not engaged.

Thus, one explanation for why NK cells react to normal

allogeneic cells is that non-self MHC, exactly like no-self

MHC, is unable to mediate NK cell inhibition [51].

This principle has been elegantly exploited to direct

donor NK cells to recipient’s leukemic cells following

bone marrow transplantation in which the recipient MHC

class I molecules do not block all donor-derived NK cells

[52��]. In this case, the hematopoietic graft gave rise to

some NK cells that were not inhibited by the host’s MHC

class I molecules. These NK cells prevented not only the

relapse of leukemia in the host but also provided addi-

tional benefits, such as enhanced engraftment and

absence of graft versus host disease (GvHD).

Although they represent an exciting new opportunity for

exploiting NK cell reactivities, the outcome of the Ruggieri

studies [52��,53] would not have been predicted based on

experiments in mice. Radiation bone marrow chimeras,

with an MHC mismatch between the radio resistant (non-

hematopoietic) and the radio sensitive (hematopoietic)

compartments, revealed that NK cell reactivity to miss-

ing-self is determined by MHC class I molecules of both

hematopoietic and non-hematopoietic cells [54–57]. It is

therefore surprising that NK cell reactivity in the human

situation seems to be dictated at least transiently by the

hematopoietic cells alone. Along these lines, it is known

that the use of a large number of MHC class I-deficient

stem cells can eventually override bone marrow graft

rejection in MHC class I-sufficient mice [58]. Perhaps

the use of a large number of stem cells similarly allows

for the generation of an early wave of NK cells, which

escape tolerization by non-hematopoietic cells. Indeed,

donor-type NK cells are detected very rapidly after trans-

plantation, and alloreactive NK clones can be recovered

early but are no longer detected 4 months after transplan-

tation [53]. Thus, clinical work may also teach us a new

lesson in NK cell biology.

Conclusions
Knowledge of NK cell reactivity and specificity has

greatly expanded in recent years. As a first major pay-

off from the basic research, it may now become possible to

exploit the peculiarities of NK cell reactivity in clinical

settings. Nevertheless, major issues of NK cell biology,
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such as the specificity of NK cell activation, the molecular

basis for diverse NKR expression, the acquisition of

missing-self reactivity and the basis for NK cell tolerance,

remain to be resolved.
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