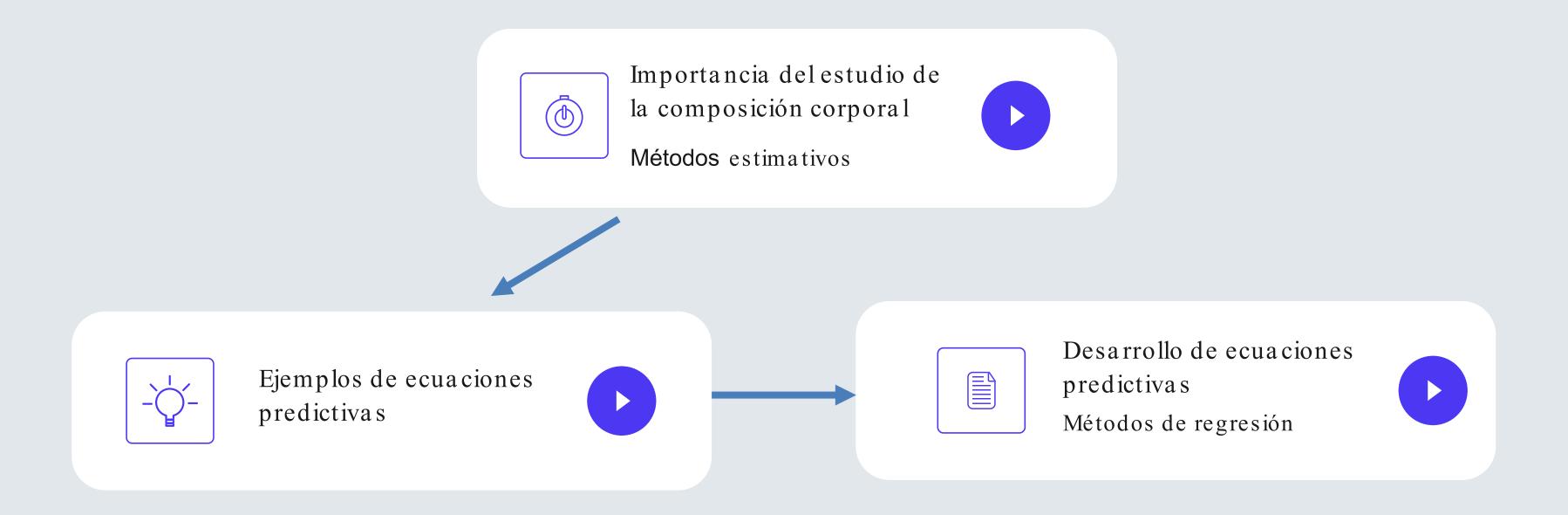
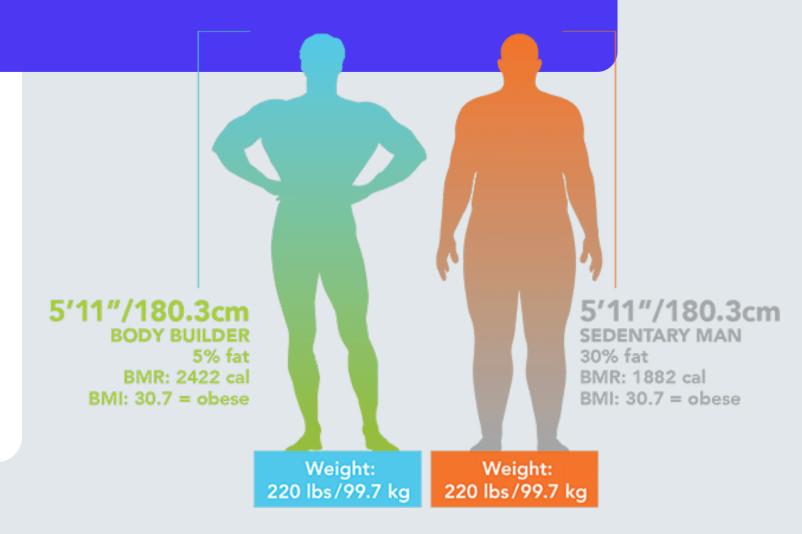


Desarrollo de ecuaciones predictivas para estimar la composición corporal


Rosa Consuelo Villegas Valle

Universidad de Sonora México

© InBody


Contenido temático

LA IMPORTANCIA DE LA DETERMINACIÓN DE LA COMPOSICIÓN CORPORAL

Estudio de la composición corporal

Cuantificación <u>in vivo</u> de los componentes corporales y sus relaciones cuantitativas.

Evaluación del estado nutricional; calidad del crecimiento

Evaluación de intervenciones terapéuticas, recuperación de pacientes con desnutrición

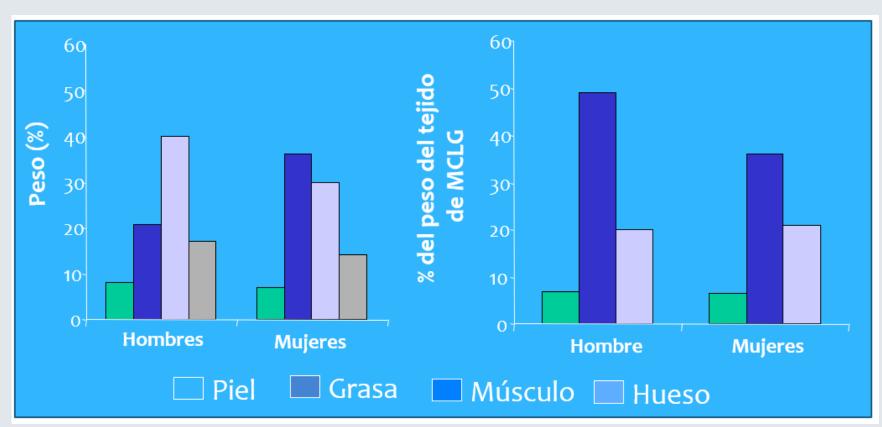
Riesgo de enfermedades crónicas

Distribución de componentes corpora les en sobrepeso/obesidad; resistencia a la insulina, diabetes, ECV.

Cambios en la enfermedad

Pérdida selectiva de masa muscular en el VIH/SIDA, o en pacientes con cirrosis, estado de los fluidos corporales.

Intervenciones de actividad física


Cambios en los componentes del cuerpo debido al aumento de la actividad física o el ejercicio.

MÉTODOS PARA EVALUAR LA COMPOSICIÓN CORPORAL

Método directo

Disección de cadáveres

• La composición corporal de hombres y mujeres es similar excepto en grasa corporal (hombres n=31, mujeres n=20).

Bruselas, 1984.

Componente	Densidad (g/mL)	Masa Libre de Grasa(%)	Cuerpo de Ref. (%)
Agua (W)	0.9937	73.8	62.4
Proteína (P)	1.34	19.4	16.4
Minerales (M)	3.038	6.8	5.9
Óseos	2.982	5.6	4.8
No óseos	3.317	1.2	1.1
Grasa (F)	0.9007		15.3
Masa libre de grasa (FFM)	1.100	100	84.7
Total	1.064		100

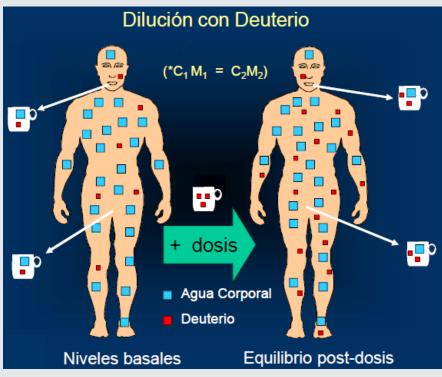
Densities are at 36 C. Adapted from Brozek et al 1963. Ann N Y Ac Sci 110. Pp113-140

MÉTODOS PARA EVALUAR LA COMPOSICIÓN CORPORAL

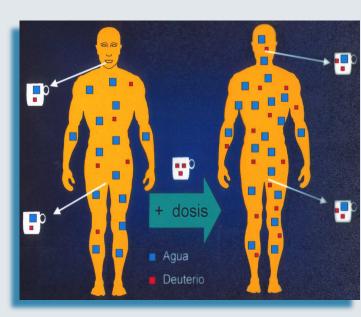
Métodos indirectos

- Métodos *in vivo* (no manipulan tejidos)
- Miden un parámetro (por ejemplo, la densidad corporal) y estiman uno o más componentes a través de una relación constante – supuestos
- Se validan a partir del método directo o de la densitometría
- Generalmente son poco accesibles y/o costosos.

Técnicas de imagen



Técnicas fisico - químicas


MÉTODOS PARA EVALUAR LA COMPOSICIÓN CORPORAL

Métodos doblemente indirectos

- Resultan de aplicar ecuaciones derivadas de algún método indirecto
- Por diseño, existe un cierto error al aplicar la ecuación, y se asumen ciertos errores también en su diseño
- Permiten hacer extensible el estudio de la composición corporal a una población muy amplia

<u>Laboratorio</u> <u>Métodos de referencia</u>

Supuesto:

 $D_{Grasa} = 0.9 \text{ g/cm}^3$; $D_{MLG} = 1.1 \text{ g/cm}^3$

Supuesto:

Hidratación constante de la MLG

Métodos Estimativos de Campo o Cama

Antropometría

Impedancia Bioeléctrica (BIA)

Retos en la evaluación de la composición corporal en niños

Métodos para determinar la composición corporal en niños de acuerdo a su costo y complejidad técnica

- Medición de pliegues cutáneos
- Bioimpedancia eléctrica (BIA)
- Bioimpedancia multifrecuencia (BIS)
- Absorciometría dual de rayos X (DXA)
- Pletismografía por desplazamiento de aire (BOD-POD)
- Resonancia magnética nuclear

Idealmente un método debe tener:

- Alta exactitud, precisión y reproducibilidad
- Baja dificultad técnica; mínima invasividad
- Costo razonable → ecuaciones

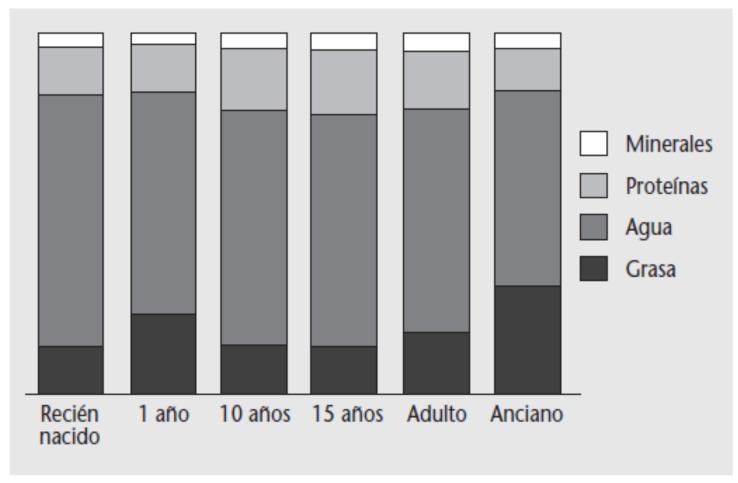


Figura 1. Cambios porcentuales en la composición corporal a lo largo de la vida. Adaptado de Ellis KJ, 2000.

Algoritmos publicados: Ecuaciones para BIA

https://www.bodystat.com/wpcontent/uploads/2012/03/52-abioelectrical-impedance-analysis-equationfor-predicting-total-body-water-childrenhuman-immunodeficiency-virus-1.pdf

Table 1. Published equations for estimating TBW and FFM evaluated with our BIA, TBW and DXA data.

Author(s) and reference	Equation	N	Age	Study location	TBW or FFM measurement & collection methods
Total body water:					_
Horlick et al [10]	TBW = $0.725 + 0.475 \text{ Ht}^2/\text{R} + 0.140 \text{ W}$	1291	4–18	New York, USA	Deuterium saliva
Arpadi et al [22]	$Ln(TBW) = 1.65 + 0.05 Ht^2/R$	20	4–11	New York, USA	¹⁸ O urine
Gregory et al [23]	TBW = 0.79 + 0.55 Ht ² /l	28	7–16	Dundee, Scotland	Deuterium
Danford et al (24)	TBW = $1.84 + 0.45 \text{ Ht}^2/\text{R} + 0.11 \text{ W}$	37	5–9	Illinois, USA	Deuterium, saliva (children)
Kushner et al [25] Equation 1 Equation 2	TBW = $0.700 \text{ Ht}^2/\text{R} - 0.32$ TBW = $0.593 \text{ Ht}^2/\text{R} + 0.065 \text{ W} + 0.04$	81	3 mo– 9 yrs	Illinois, USA & Lima, Peru	¹⁸ O, urine (infants) Deuterium
Davies et al [26]	$TBW = -0.50 + 0.60 \text{ Ht}^2/\text{I}$	26	5-17	Dundee, Scotland	Deuterium
Davies & Gregory (28)	$TBW = 0.13 + 0.58 Ht^2/I$	54	5–17	Dundee, Scotland	¹⁸ O
Fjeld et al (31)	TBW = $0.76 + 0.18 \text{ Ht}^2/\text{I} + 0.39 \text{ W}$	44	3mo– 3yrs	Lima, Peru	Deuterium saliva
Leman et al [32]	TBW = 1.67 + 0.35 Ht ² /R + 0.24 W – 0.74 S	39	5–18	Nigeria	Deuterium
Fat-free mass:					
Horlick et al [10]	FFM = $(3.474 + 0.459 \text{ Ht}^2/\text{R} + 0.064 \text{ W})/$ (0.769 - 0.009 A - 0.016 S)	1291	4–18	New York, USA	¹⁸ O
Goran et al [15]	FFM = (0.59 Ht ² /R + 0.065 W + 0.04 / (0.769 – 0.0025 A – 0.19 S)	31	4–6	Vermont & Arizona USA	Densitometry
Deurenberg et al [27] ¹	FFM = 0.430 * 10 ⁴ * Ht ² /I + 0.354 W + 0.9 S	64	8–11	Wageningen, Netherlands	Total body potassium
Cordain et al [29]	$FFM = 6.86 + 0.81 \text{ Ht}^2/\text{R}$	30	9–14	Colorado, USA	DEXA, total body potassium
De Lorenzo et al [30]	$FFM = 2.33 + 0.588 Ht^2/I + 0.211 W$	35	7–13	Rome, Italy	Deuterium Respiratory water
Houtkooper et al [33]	$FFM = 0.61 \text{ Ht}^2/\text{R} + 0.25 \text{ W} + 1.31$	94	10–14	Ohio & Arizona, USA	Deuterium saliva
Schaefer et al [34]	FFM = 0.65 Ht ² /I + 0.68 A + 0.15	112	3–19	Heidelberg, Germany	40K whole body potassium counter

A = Age in years; Ht = height (cm); W = weight (kg); S = sex where males = 1 and females=0; TBW = total body water (L); I = impedance; R = resistance derived from bioelectrical impedance analysis; Arpadi et al [22] include HIV-positive subjects only; Horlick et al [10] include 54 HIV-positive subjects. Deurenberg et al [27] where height in meters; males = 1 and females = 0. The authors refer to impedance as R in their paper. ¹Estimated from body density.

Algoritmos publicados: Pliegues

TABLE 1

Published equations for predicting body density (d in kg/L) or percentage of body fat (%BF) in pediatric subjects¹

Reference	Equation	No. of skinfold sites	Characteristics
Slaughter et al (4) 1988 ($n = 66$)	M: %BF = $1.21 \times \Sigma$ SFT $-0.008 \times \Sigma$ SFT ² -1.7	2	Children with $\Sigma SFT < 35 \text{ mm}$
Durnin and Rahaman (11) 1967 (n = 86)	F: %BF = $1.33 \times \Sigma$ SFT $- 0.013 \times \Sigma$ SFT ² $- 2.5$ M: $d = 1.1533 - 0.0643 \times \log \Sigma$ SFT F: $d = 1.1369 - 0.0598 \times \log \Sigma$ SFT	4	Adolescents 12-16 y of age
Johnston et al (12) 1988 (n = 308)	M: $d = 1.1660 - 0.0070 \times \log \Sigma SFT$ F: $d = 1.144 - 0.060 \times \log \Sigma SFT$	4	Children and adolescents 8–14 y of age
Brook (13) 1971 (n = 23)	M: $d = 1.1690 - 0.0788 \times \log \Sigma SFT$ F: $d = 1.2063 - 0.0999 \times \log \Sigma SFT$	4	Children 1–11 y of age
Deurenberg et al (14) 1990 (n = 212)	M: $d = 1.1133 - 0.0561 \times \log \Sigma SFT + 1.7 \text{ (age } \times 10^{-3}\text{)}$ F: $d = 1.1187 - 0.063 \times \log \Sigma SFT + 1.9 \text{ (age } \times 10^{-3}\text{)}$	4	Children, mean age: 11 y

¹ΣSFT, sum of skinfold-thickness measurements.

https://pubmed.ncbi.nlm.nih.gov/12399284/

Table 1 Anthropometric equations to estimate infant fat mass (kg)

Reference	Equations	Reference method	N subjects	Subject age of range
Deierlein et al. [21]	-0.012-0.064*gender(1 = male; 0 = female) + 0.0024*age (days) $-0.150*$ body weight (kg) + 0.055*body weight ² (kg) ² + 0.046*ethnicity (1 = Hispanic; 0 = not Hispanic) + 0.020*sum of 3 skinfolds (triceps, subscapular and thigh)	ADP	128	1-3 days
Catalano et al. [20]	0.54657 + 0.39055 * Birth weight (g) + $0.0453*$ Flank Skinfold (mm) - $0.03237*$ Length (cm)	TOBEC	194	1-3 days
Lingwood et al. [11]	$FFM = 0.057 + 0.646 * weight (kg) - 0.089 * gender (1 = male; 2 = female) \\ + 0.009 * length (cm) \\ FM = weight - FFM$	ADP	77	0-4 days
Aris et al. [22]	-0.022 + 0.307 * weight (kg) - 0.077 * gender (1 = male; 0 = female) - 0.019 * gestational age (week) + 0.028 * subscapular skinfold (mm)	ADP	88	1-3 days

^{*}indicates multiplication in the scientific equation

https://bmcpediatr.biomedcentral.com/articles/10.1186/s12887-017-0844-6

ORIGINAL ARTICLE

Body composition prediction equations based on deuterium oxide dilution method in Mexican children: a national study

E Ramírez¹, ME Valencia^{2,5}, H Bourges³, T Espinosa³, SY Moya-Camarena², G Salazar⁴ and H Alemán-Mateo²

BACKGROUND/OBJECTIVES: Obesity and undernutrition co-exist in many regions of Mexico. However, accurate assessments are difficult because epidemiological data on body composition are not available. The aim of this study was to facilitate assessments of body composition in Mexican school children of different geographical regions and ethnicity by developing equations for bioelectrical impedance and anthropometry based on deuterium oxide dilution.

SUBJECTS/METHODS: We evaluated 336 subjects (143 belonged to six major indigenous groups) from Northern, Central and Southern Mexico. We measured height (Ht), weight (Wt), tricipital skinfold (Tricp-SKF) and resistance (R) based on a bioimpedance analysis (BIA). Fat-free mass (FFM) and fat mass (FM) were estimated from measurements of total body water with the deuterium dilution technique.

RESULTS: The final BIA equation was FFM (kg) = $0.661 \times \text{Ht}^2/R + 0.200 \times \text{Wt} - 0.320$. The R^2 was 0.96; the square root of the mean square error (SRMSE) was 1.39 kg. The final anthropometric equation was FM (kg) = $-1.067 \times \text{sex} + 0.458 \times \text{Tricp-SKF} + 0.263 \times \text{Wt} - 5.407$. The R^2 was 0.91; SRMSE was 1.60 kg. The BIA equation had a bias of 0.095 kg and precision of 1.43 kg. The anthropometric equation had a bias of 0.047 kg and precision of 1.58 kg.

CONCLUSIONS: We validated two equations for evaluating body composition in Mexican indigenous and non-indigenous children and youth from three main regions of the country. These equations provided reliable estimates and will promote a better understanding of both obesity and undernutrition.

European Journal of Clinical Nutrition (2012) 66, 1099-1103; doi:10.1038/ejcn.2012.89; published online 18 July 2012

Keywords: body composition; ethnic groups; Mexican children and youth; obesity; undernutrition

Table 3. Bioelectrical impedance analysis equation for FFM, and anthropometric equation for FM

Equation	R ²	SRMSE	VIF
FFM kg = $0.661 \times Ht^2/R + 0.200 \times Wt - 0.320$	0.96	1.39	5.3
FM kg = $-1.067 \times \text{sex} + 0.458 \times$ Tricp-SKF + $0.263 \times \text{Wt} - 5.407$	0.91	1.60	1.7

Abbreviations: FFM, fat-free mass; FM, fat mass; Ht^2/R , stature²/resistance (cm/ Ω); Wt, weight (kg); sex, male = 1, female = 0; SRMSE, squared root of the mean square error; Tricp-SKF, tricipital skinfold; VIF, variance inflation factor.

https://pubmed.ncbi.nlm.nih.gov/22805494/

% Grasa en niños

Para seleccionar una ecuación predictora y obtener resultados confiables :

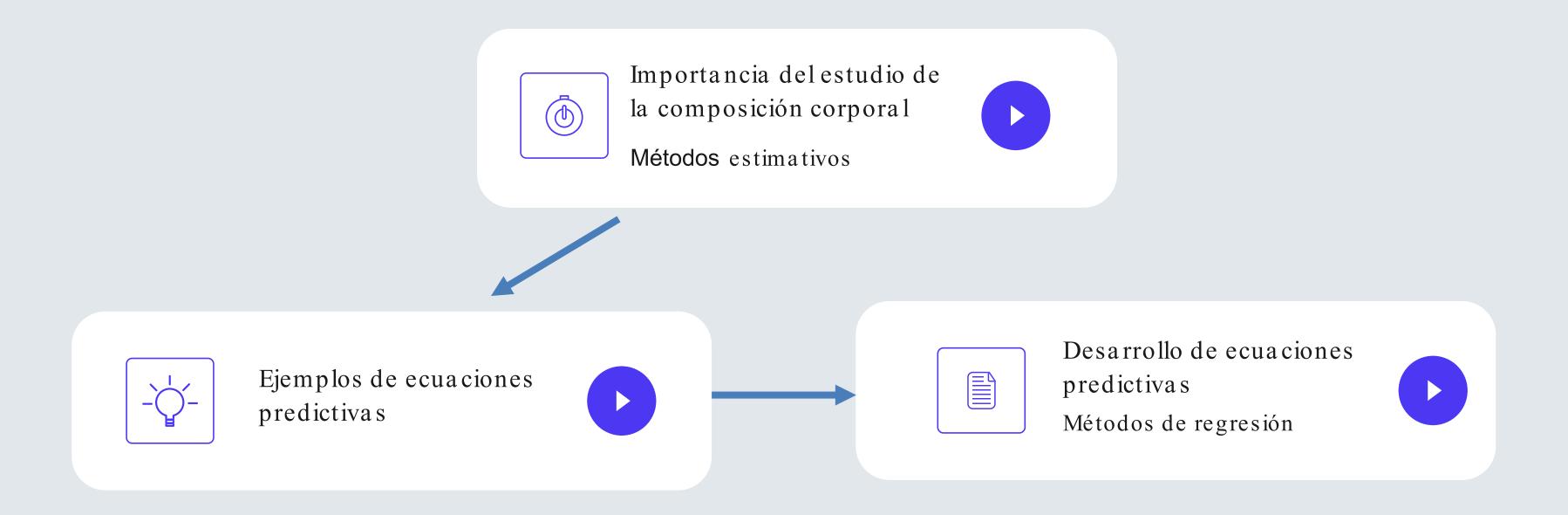

- Validada con algún método de referencia
- Origen de alguna población similar
 - Distintos grupos étnicos tienen distintas propociones de masa libre de grasa/masa grasa
- Actualmente no existen valores de referencia de grasa corporal para niños latinos/hispanos
- Proyectos en desarrollo

TABLA IV. Valores de referencia de la composición corporal en niños. Adaptado de Fomon SJ, 2002.

Porcentaje del peso corporal total								
Edad (años)	Talla (cm)	Peso (kg)	Masa grasa (%)	Masa proteica (%)	Masa mineral (%)	ACT (%)	AEC (%)	AIC (%)
Niños								
0	51,6	3,5	13,7	12,9	3,2	69,6	42,5	27,0
1	76,1	10,1	22,5	12,9	2,9	61,2	32,9	28,3
2	87,2	12,6	19,5	14,0	3,2	62,9	31,9	31,0
5	109,9	18,7	14,6	15,8	3,7	65,4	30,0	35,4
10	137,5	31,4	13,7	16,8	4,1	64,8	26,7	38,0
12,5	153,0	42,3	16,3	16,4	4,1	62,7	26,4	36,4
15,5	171,5	59,5	13,0	17,4	4,5	64,6	25,8	38,8
18,5	177,0	69,9	12,9	17,7	4,8	64,1	24,7	39,4
Niñas								
0	50,5	3,3	14,9	12,8	3,2	68,6	42,0	26,7
1	74,3	9,2	23,7	12,9	2,8	60,1	31,8	28,3
2	85,5	11,9	20,4	13,9	3,0	62,2	31,5	30,8
5	108,4	17,7	16,7	15,0	3,1	64,6	31,0	33,6
10	138,3	32,6	19,4	15,0	3,1	62,0	28,1	33,9
12,5	154,6	43,8	21,5	15,4	4,2	58,5	25,6	32,9
15,5	162,1	55,0	24,7	14,9	4,5	55,5	23,7	31,8
18,5	164,0	57,0	25,0	14,9	4,4	55,2	23,5	31,7

ACT: agua corporal total; AEE: agua extracelular; AIC: agua intracelular.

Contenido temático

Técnicas de regresión

1. Descripción

Conocer el efecto de una variable "X" sobre una variable "Y" considerando otras variables como como confusores.

Ejemplo:

Evaluar la asociación del consumo de alcohol (X) con la presión arterial (Y), tomando en cuenta el sexo y edad de los sujetos (confusores).

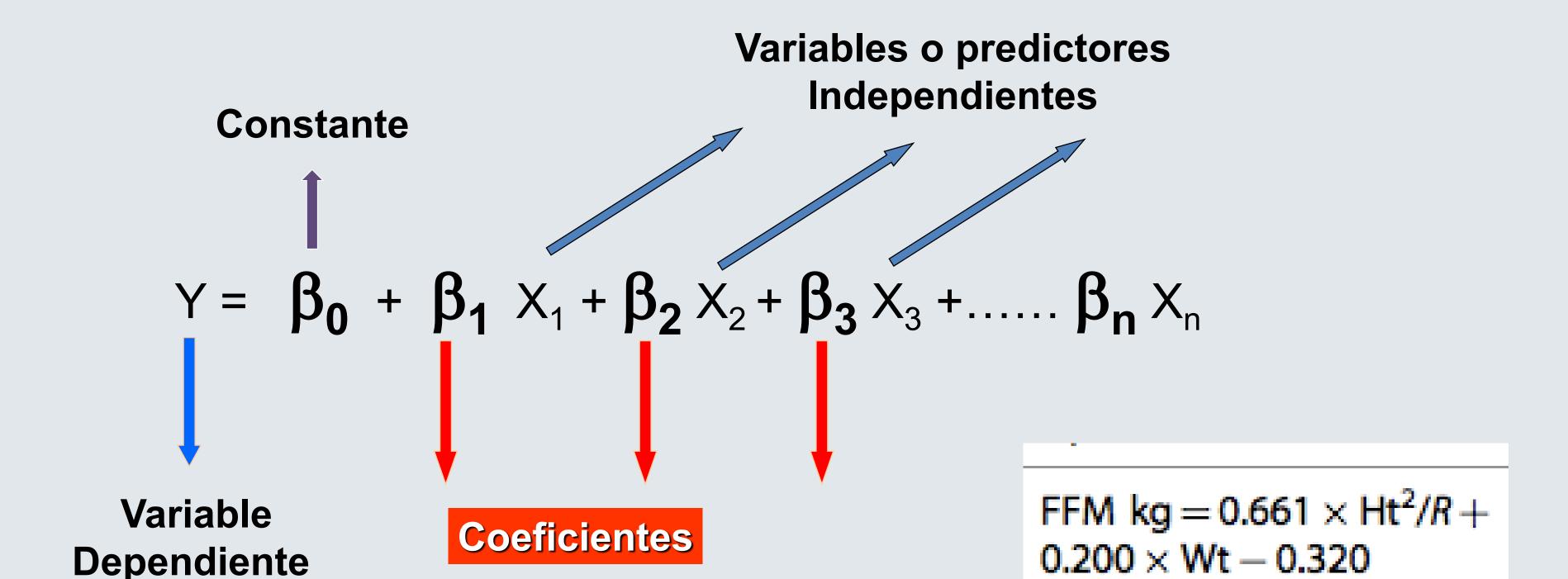
2. Determinantes

Encontrar las variables que influyen sobre una respuesta (Y) a partir de un grupo de probables variables explicativas (varias X).

Ejemplo:

Encontrar los factores sociodemográficos y dietarios (Xs) que determinanla presión arterial de una persona (Y).

3. Predicción


Predecir el valor o presencia de una característica (Y) a partir de los valores de diversas variables predictoras (varias X). Se obtiene una ecuación predictora.

Ejemplo:

FFM kg = $0.661 \times Ht^2/R + 0.200 \times Wt - 0.320$

Ramírez et al, 2012.

Estructura de una ecuación predictora

Proceso para el diseño de una ecuación predictiva

Programas estadísticos

- -SAS
- -STATA
- -SPSS
- -NCSS
- -R

01

Limpiar base de datos.
Cuidar el tamaño de muestra

Mínimo 30 sujetos por grupo: ecuación y validación.

02

Limpiar exceso de variables predictoras (X) para evitar multicolinealidad 03

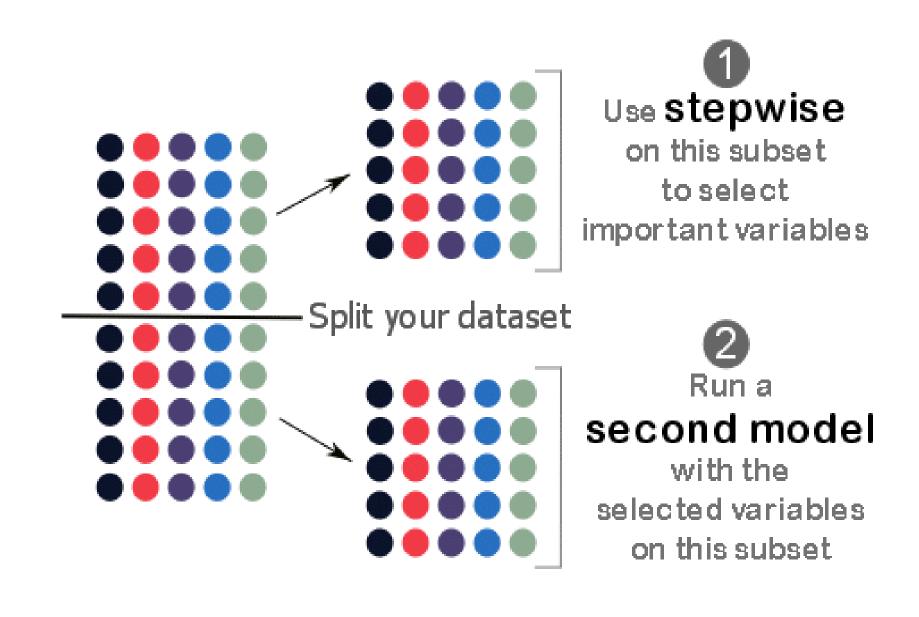
Elegir un método automatizado de selección de variables (hacia adelante, hacia atrás, todas las regresiones posibles).

04

Especificar un criterio para elegir "el mejor modelo"

05

Obtener/seleccionar el modelo
final.
Probar el
cumplimiento de
supuestos
esta dísticos.


06

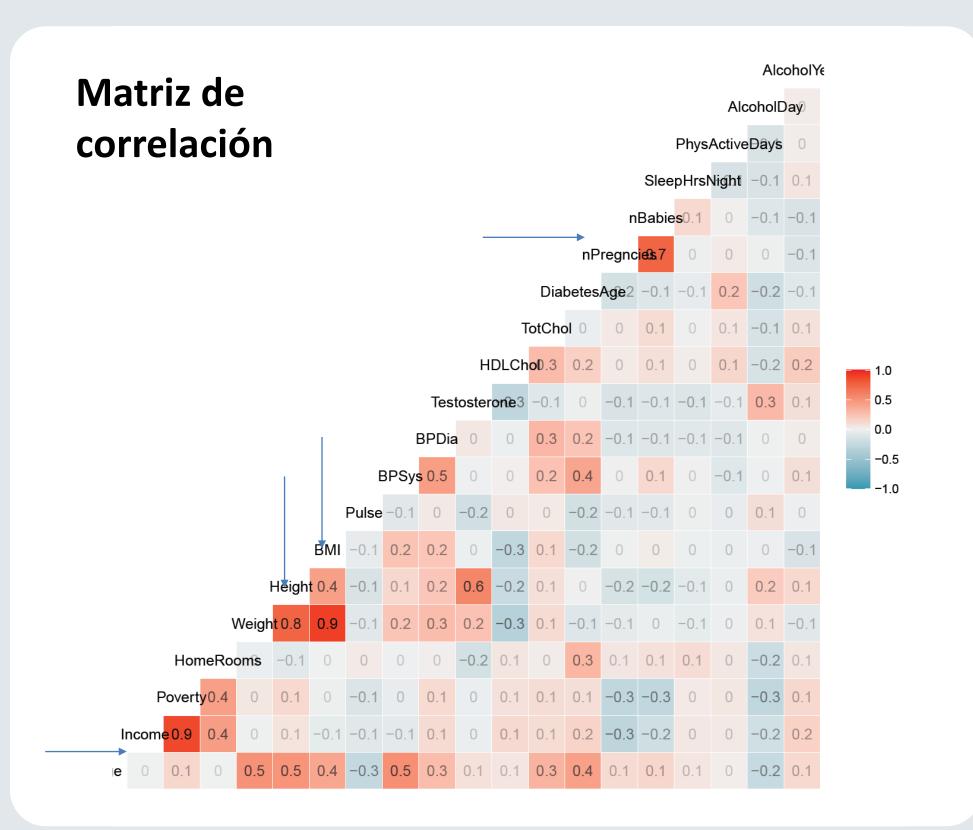
Probar sesgo y exactitud del modelo.

Validar el modelo en una población similar.

Antes de comenzar: separación de muestra

- Para obtener los parámetros de la regresión sin sesgo:
- 1. Dividir la muestra en 2: "training set" y "testing set"
- 2. Usar el primer grupo para seleccionar las variables (forward, backward, mixto)
- 3. Usar el segundo grupo para correr el modelo sólo con las variables seleccionadas y estimar los parámetros de la regresión.

Limpieza de variables para evitar la multicolinea lidad


En los modelos lineales múltiples los predictores deben ser independientes, no deben referirse a lo mismo.

La colinealidad ocurre cuando:

- un predictor está linealmente relacionado con uno o varios de los otros predictores del modelo
- es la combinación lineal de otros predictores.

Encontrar el mejor modelo que explique con mayor precisión la variabilidad de la Ycon el menor número de predictores

Incluir todas las variables que ayudan a predecir la variable de respuesta (Y) evitando la excesiva colinealidad.

Proceso para el diseño de una ecuación predictiva

Programas estadísticos

- -SAS
- -STATA
- -SPSS
- -NCSS
- -R

01

Cuidar el tamaño de muestra

Mínimo 30 sujetos por grupo.

02

Limpiar exceso de variables predictoras (X) para evitar multicolinealidad 03

Elegir un método automatizado de selección de variables (hacia adelante, hacia atrás, todas las regresiones posibles).

04

Especificar un criterio para elegir "el mejor modelo"

05

Obtener/seleccionar el modelo
final.
Probar el
cumplimiento de
supuestos
esta dísticos.

06

Probar sesgo y exactitud del modelo.

Validar el modelo en una población similar.

Elegir método automatizado para seleccionar variables

FFM kg =
$$0.661 \times Ht^2/R + 0.200 \times Wt - 0.320$$

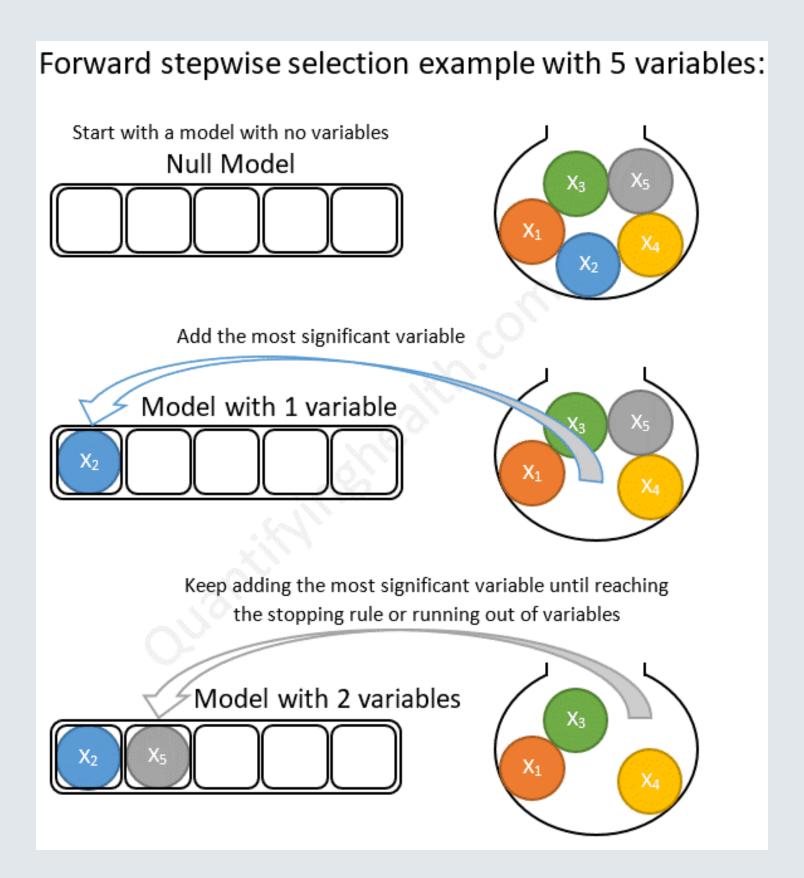
1. Métodos paso a paso

Emplean criterios matemáticos para decidir qué predictores contribuyen significativamente al modelo y en qué orden se introducen.

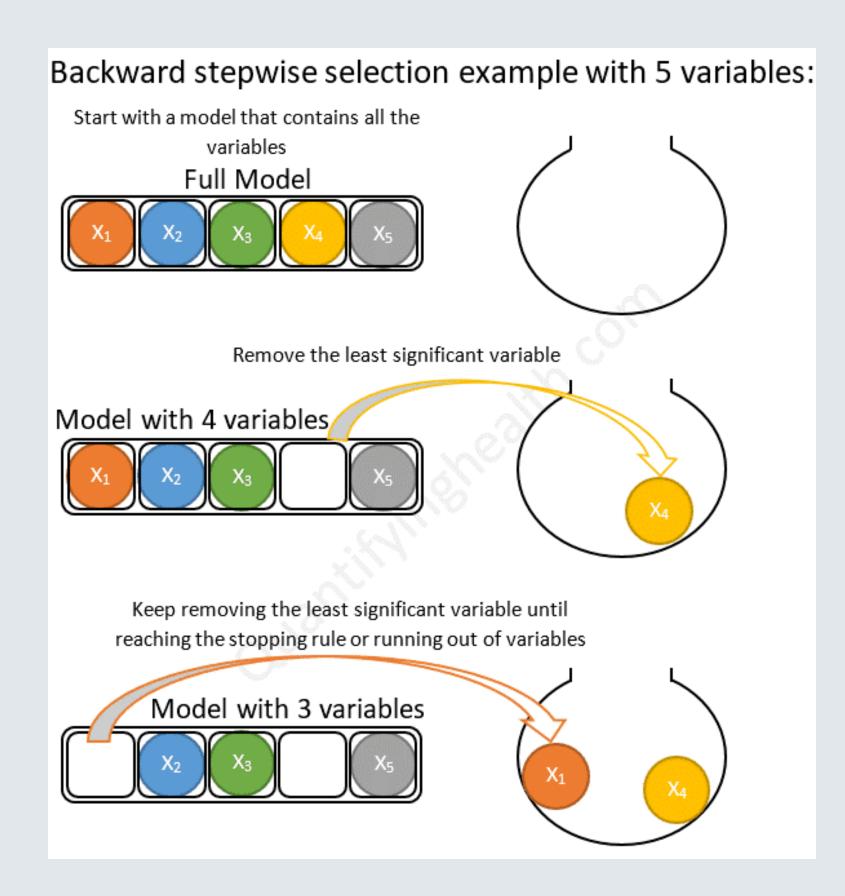
Tres estrategias:

- Forward (hacia adelante)
- Backward (hacia atrás)
- Mixto (también llamado sólo stepwise)

2. Todas las regresiones posibles


Genera todos los modelos posibles **2**p

Los ordena de acuerdo con:


- Número de variables incluidas
- Algún criterio elegido por el investigador (Cp Mallows, R², AIC, etc).

El investigador elige el modelo que utilizará con base en conocimiento previo, literatura y los criterios numéricos generados para cada modelo.

Métodos paso a paso

Para un mismo conjunto de datos, no todos los métodos (ni criterios) proporcionarán un mismo modelo final.

Métodos todas las regresiones posibles

5 variablespredictoras →

$$2^5 = 32$$
 modelos posibles.

El programa los ordena de acuerdo al número de variables y algunos criterios estadísticos

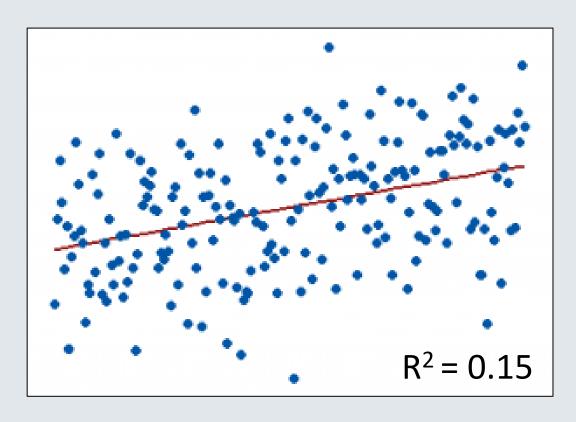
All Possible Regression Report

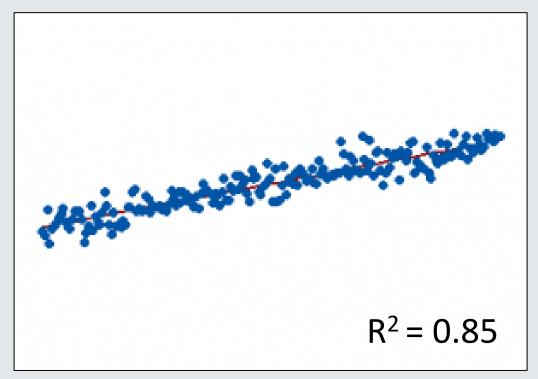
Dataset C:\...\---CLASES---\7 REGRESIÓN\Sample_Dataset_2014.xls

Dependent Sprint

All Possible Results Section

Model		Root		
Size	R-Squared	MSE	Ср	Model
1	0.602390	0.7603137	29.428077	C (Athlete)
1	0.070330	1.162595	328.407126	B (Gender)
1	0.045607	1.177952	342.299574	E (Smoking)
1	0.040928	1.180836	344.928818	l (Writing)
1	0.015751	1.196235	359.076624	D (Weight)
1	0.014648	1.196905	359.696149	F (English)
1	0.013202	1.197783	360.508692	K (StudyTime)
1	0.009616	1.199958	362.524132	G (Reading)
1	0.005132	1.202671	365.043463	A (Rank)
1	0.002972	1.203976	366.257457	H (Math)
1	0.000275	1.205603	367.773070	J (SleepTime)
2	0.650240	0.7149245	4.539970	CD
2	0.623515	0.741735	19.557371	BC
2	0.610039	0.7548931	27.129843	CH
2	0.608882	0.7560123	27.780023	CK
2	0.606178	0.7586205	29.299134	CI
2	0.605840	0.7589465	29.489405	CE
2	0.603498	0.7611974	30.805096	CG
2	0.602842	0.7618273	31.174059	CF
2	0.602712	0.7619516	31.246872	CJ
2	0.602446	0.7622065	31.396231	AC
3	0.655549	0.7113037	3.556531	CDK
3	0.654420	0.7124685	4.190972	CDE
3	0.653631	0.7132811	4.634181	BCD
3	0.652237	0.7147152	5.417603	CDH
3	0.651512	0.7154594	5.824789	CDG
3	0.650770	0.7162211	6.241971	CDF
3	0.650380	0.716621	6.461171	CDJ
3	0.650300	0.7167032	6.506273	CDI
3	0.650262	0.7167421	6.527579	ACD
3	0.629936	0.7372754	17.949149	BCK
4	0.659054	0.7095063	3.586855	BCDK
4	0.658983	0.7095806	3 627022	CDFK


Criterios para elegir "El mejor modelo": R cuadrada


Indica la proporción de la varianza en la variable dependiente que explican colectivamente las variables independientes

Mide la fuerza de la asociación entre el modelo y la V.DEP. en una escala 0-100%.

En ecuaciones predictivas, se busca generar un modelo con R² alta (>0.80)

Equation	R ²
FFM kg = $0.661 \times Ht^2/R + 0.200 \times Wt - 0.320$	0.96
FM kg = $-1.067 \times \text{sex} + 0.458 \times$ Tricp-SKF + $0.263 \times \text{Wt} - 5.407$	0.91

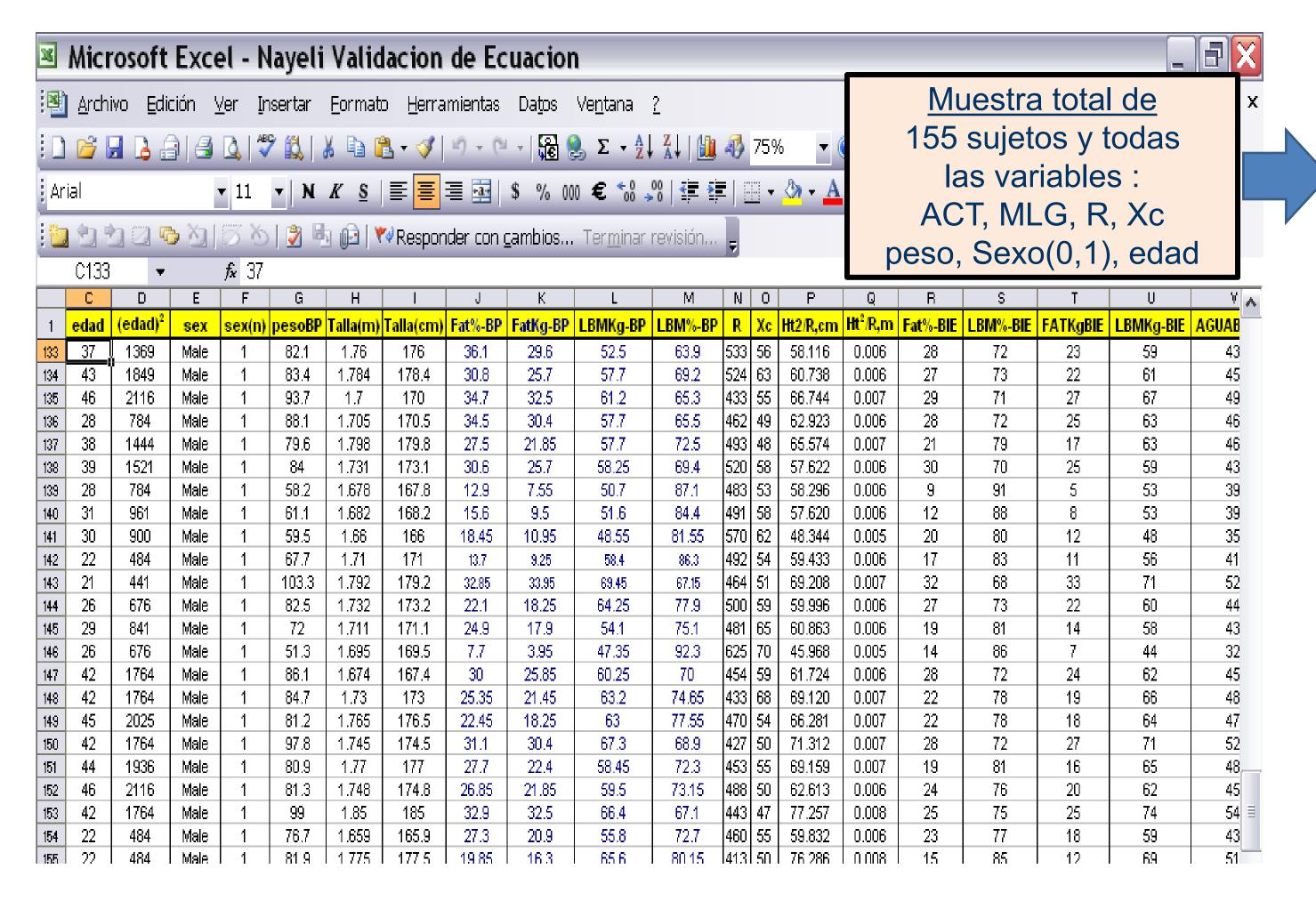
Métodos todas las regresiones posibles

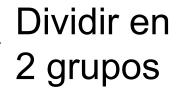
Se selecciona un modelo con

- Alta R²
- Bajo error estándar de regresión (S)
- Cp Mallow cercano a Número de variables + 1

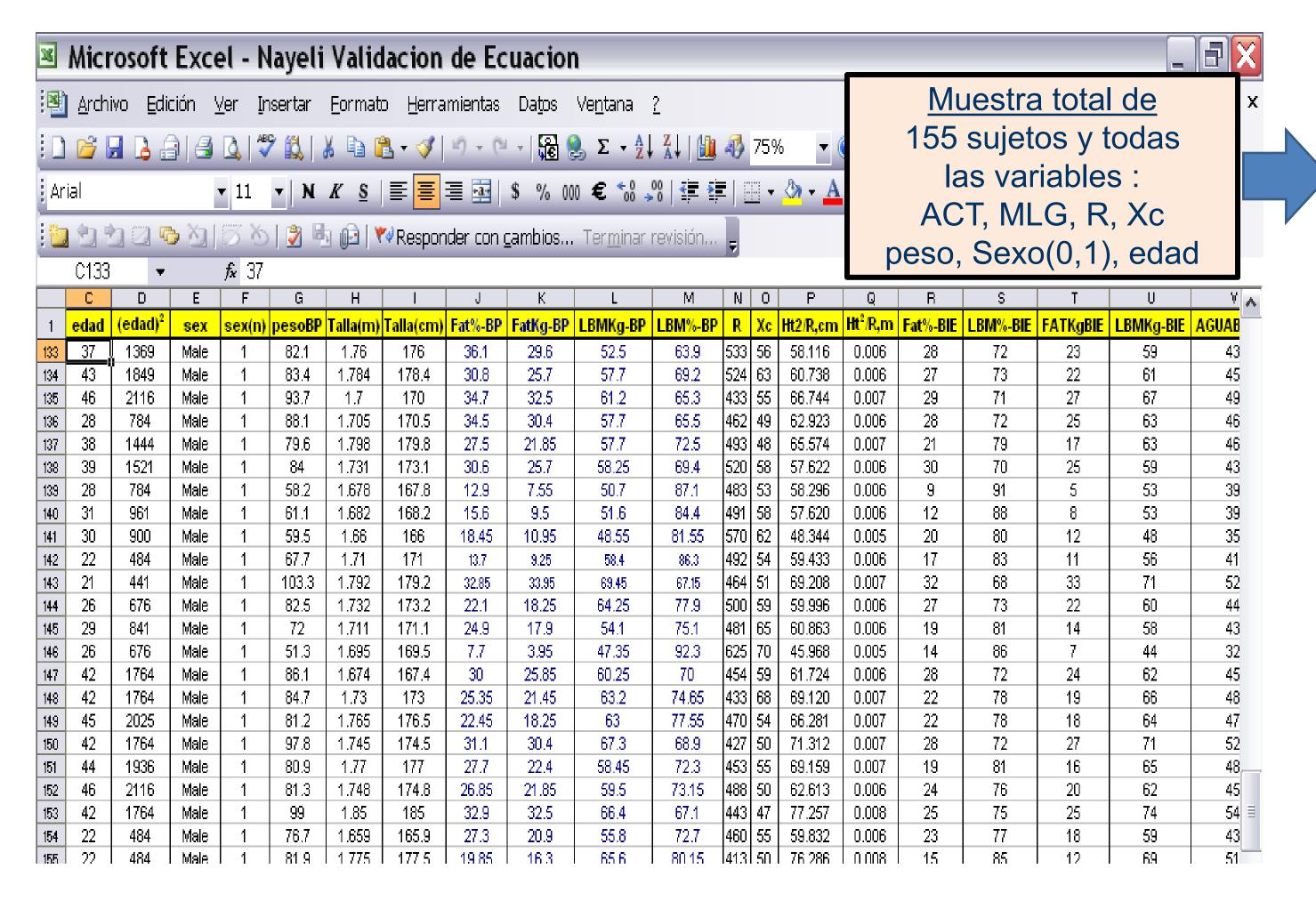
5 variablespredictoras →

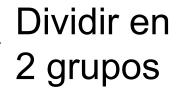
$$2^5 = 32$$
 modelos posibles.

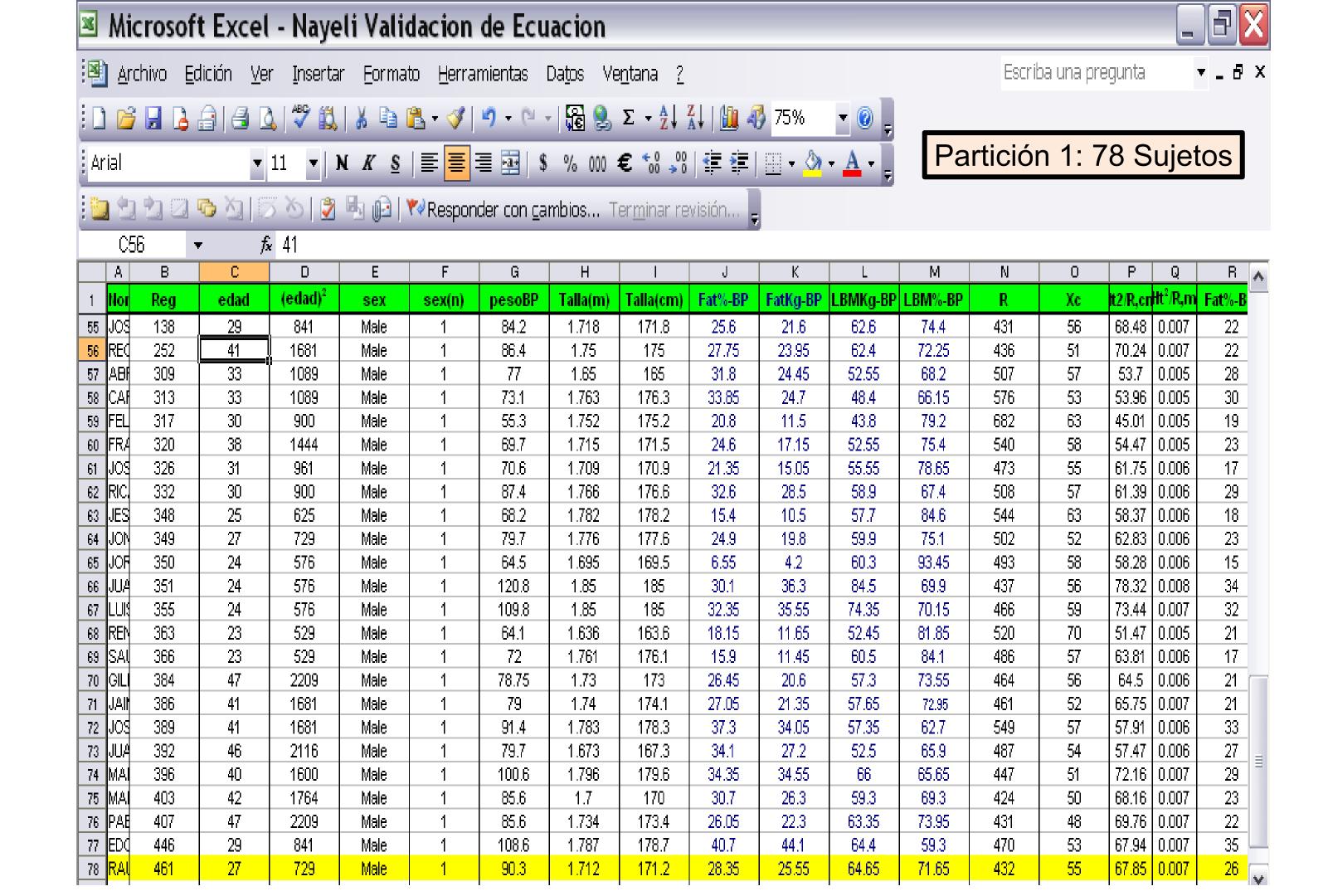

Best Subsets Regression: Strength versus Temperature, Pressure, ... Response is Strength C R-Sq Mallows R-Sq R-Sq (adj) (pred) 72.1 66.9 71.0 12.328 37.1 26.3 18.154 X 85.9 84.8 X X81.4 8.9321 82.0 80.6 74.2 X X10.076 85.9 79.0 8.5978 X X X86.5 84.9 81.4 8.9110 X X X 89.1 87.3 80.6 8.1698 86.0 79.3 87.7 78.8 89.9 X X X X X

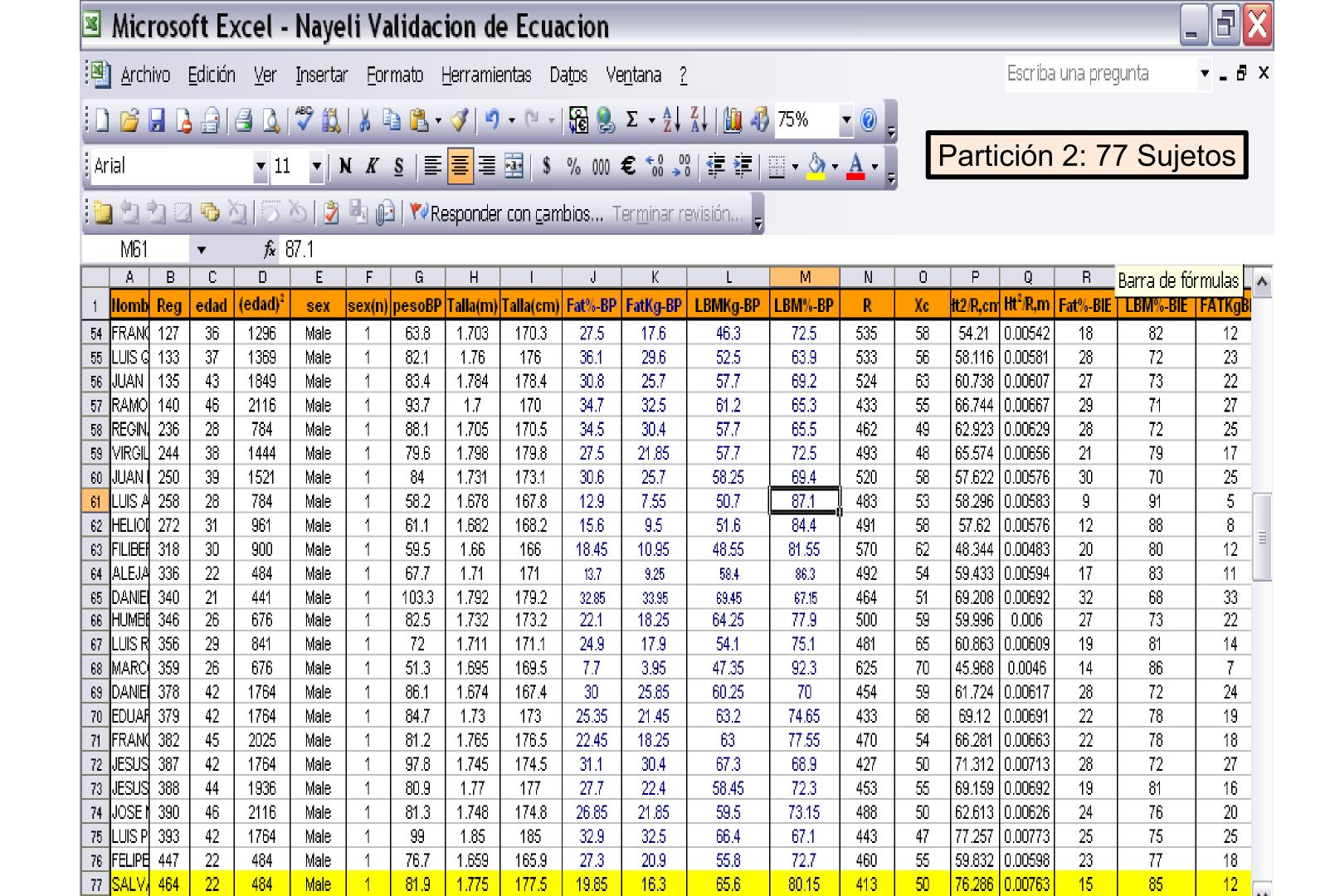

Comparación de métodos

- Stepwise (forward, backward, mixto) no ajusta TODOS los modelos sino que evalúa la significancia de las variables una por una para llegar a 1 modelo final, elegido por el programa estadístico
- TRP genera todos los modelos posibles y muestra los "mejores candidatos" con base algún criterio (R2, Cp de Mallows). El investigador elige el modelo final.

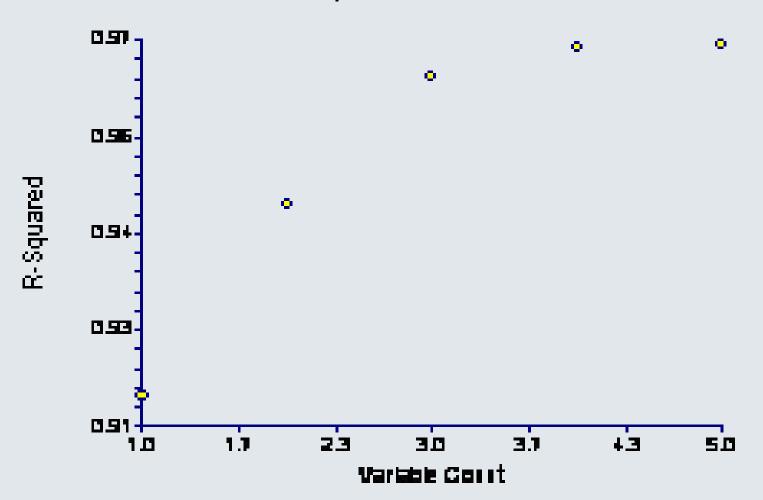

Ejemplo


Proceso de generación de una ecuación de predicción




- Generación de ecuación
- 2. Validación de la ecuación

- Generación de ecuación
- 2. Validación de la ecuación



Ejemplo

Code	Variable	Count	: Mean		
	LBMKg BP	78	49.68398		
Α	edad	78	34.25641		
В	sex n	78	0.474359		
С	pesoBP	78	72.66987		
D	Xc	78	57.58974		
Е	Ht2_R_cm	78	52.22204		
Selection Results Section					
Selecti	ion Results Section				
Selecti Model	ion Results Section	R-Squared	Coded		
	ion Results Section R-Squared	R-Squared Change	Coded Variables		
Model		•			
Model	R-Squared	Change	Variables		
Model Size 1	R-Squared 0.914872	Change 0.914872	Variables E		
Model Size 1 2	R-Squared 0.914872 0.944428	Change 0.914872 0.029557	Variables E CE		

R-Squared as Variable Court

Stepwise Regression Report

3/1/2005 8:34:01 PM

Page/Date/Time Database Nayeli 78 LBMKg_BP Dependent

Iteration Detail Section

lter.	A -41	Variable	D. C	C(MCF)
No.	Action	Variable	R-Squared	Sgrt(MSE)
0	Unchanged		0.000000	11.00266
1	Added	Ht2_R_cm	0.914872	3.231272
2	Unchanged		0.914872	3.231272
3	Added	pesoBP	0.944428	2.628086
4	Unchanged		0.944428	2.628086
5	Added	edad	0.964213	2.123197
6	Unchanged		0.964213	2.123197
7	Added	X.c.	0.968877	1.993527
8	Unchanged	······	0.968877	1.993527
	_			

Multiple Regression Report

Regression Equation Section									
	Regression	Standard	T-Value		Reject	Power			
Independent	Coefficient	Error	to test	Prob	H0 at	of Test			
Variable	<u>b.(i)</u>	Sb(i)	H0:B(i)=0	Level	5 %?	<u>at</u> 5 %			
Intercept	-2.4658	3.0317	-0.813	0.4187	No	0.1264			
edad	-0.1773	0.0323	-5.487	0.0000	Yes	0.9997			
Ht2_R_cm	0.7374	0.0324	22.786	0.0000	Yes	1.0000			
pesoBP	0.1763	0.0243	7.270	0.0000	Yes	1.0000			
Xc.	0.1198	0.0362	3.308	0.0015	Yes	0.9038			
R2		0.9633	0.9689						

FFM (kg) =
$$0.7374$$
 (Talla 2 /R) + 0.1763 (Peso) -0.1773 (Edad) + 0.1198 (Xc) -2.4658

R² = 0.97; SEE = 1.99, n=155: Se llevó a cabo el proceso de validación cruzada y análisis de multicolinealidad Peso, kg; Talla,cm; R y Xc, ohms; Edad, años

Análisis final de la ecuación

- Bland-Altman: evalúa exactitud, precisión y sesgo
- Análisis de concordancia

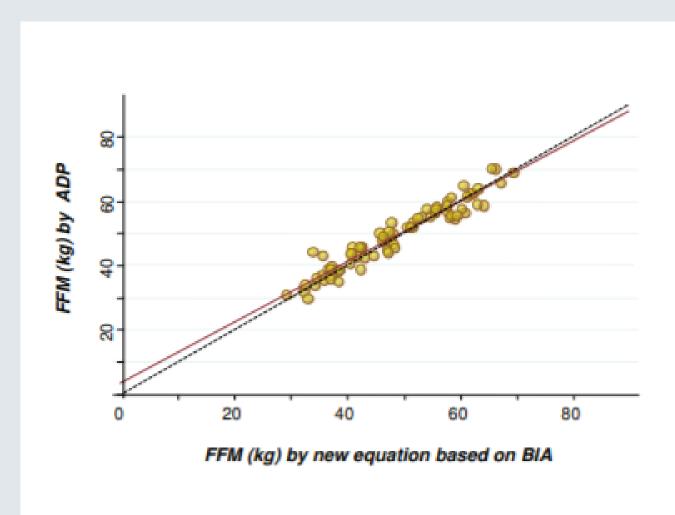
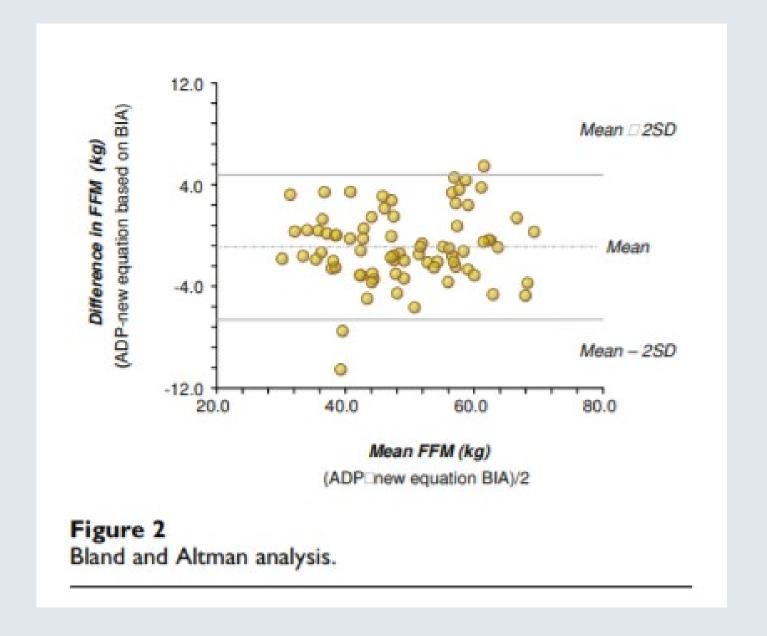



Figure I
Regression between fat free mass by ADP and the new equation based on BIA.

- El sesgo (media de la diferencia en MLG por ADP y la estimada a partir de la nueva ecuación) fue
 -0.87 ± 2.84 kg
- No hubo asociación (p > 0.05) entre las diferencias de medias y la media de dos mediciones (MLG obtenida por ADP y por la nueva ecuación validada)

Validación cruzada

 Se prueba la predicción de la Y en el segundo grupo utilizando la ecuación generada en el primer grupo.

Media de la MLG (predicción) = 48.51 Kg
de la muestra de 78 sujetos

Sin diferencia
esta dística
significativa

Media de la MLG medida = 48.43 Kg
en la muestra de 77 sujetos

Gracias por su atención!

Rosa Consuelo Villegas Valle

Universidad de Sonora México

