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ABSTRACT
Research related to cardiorespiratory fitness often uses 
regression analysis in order to predict cardiorespiratory 
status or future outcomes. Reading these studies can be 
tedious and difficult unless the reader has a thorough 
understanding of the processes used in the analysis. 
This feature seeks to “simplify” the process of regression 
analysis for prediction in order to help readers understand 
this type of study more easily. Examples of the use of this 
statistical technique are provided in order to facilitate better 
understanding.

INTRODUCTION
Graded, maximal exercise tests that directly measure 

maximum oxygen consumption (VO2max) are impractical 
in most physical therapy clinics because they require 
expensive equipment and personnel trained to administer 
the tests. Performing these tests in the clinic may also 
require medical supervision; as a result researchers have 
sought to develop exercise and non-exercise models that 
would allow clinicians to predict VO2max without having 
to perform direct measurement of oxygen uptake. In most 
cases, the investigators utilize regression analysis to develop 
their prediction models. 

Regression analysis is a statistical technique for 
determining the relationship between a single dependent 
(criterion) variable and one or more independent (predictor) 
variables. The analysis yields a predicted value for the 
criterion resulting from a linear combination of the predictors. 
According to Pedhazur,15 regression analysis has 2 uses in 
scientific literature: prediction , including classification, 
and explanation.  The following provides a brief review 
of the use of regression analysis for prediction. Specific 
emphasis is given to the selection of the predictor variables 
(assessing model efficiency and accuracy) and cross-
validation (assessing model stability). The discussion is not 
intended to be exhaustive. For a more thorough explanation 
of regression analysis, the reader is encouraged to consult 
one of many books written about this statistical technique 

(eg, Fox;5 Kleinbaum, Kupper, & Muller;12 Pedhazur;15 and 
Weisberg16). Examples of the use of regression analysis for 
prediction are drawn from a study by Bradshaw et al.3 In 
this study, the researchers’ stated purpose was to develop 
an equation for prediction of cardiorespiratory fitness (CRF) 
based on non-exercise (N-EX) data.

SELECTING THE CRITERION (OUTCOME MEASURE)
The first step in regression analysis is to determine the 

criterion variable. Pedhazur15 suggests that the criterion 
have acceptable measurement qualities (ie, reliability and 
validity). Bradshaw et al3 used VO2max as the criterion of 
choice for their model and measured it using a maximum 
graded exercise test (GXT) developed by George.6 George 6 
indicated that his protocol for testing compared favorably with 
the Bruce protocol in terms of predictive ability and had good 
test-retest reliability (ICC = .98 - .99). The American College 
of Sports Medicine indicates that measurement of VO2max is 
the “gold standard” for measuring cardiorespiratory fitness.1 
These facts support that the criterion selected by Bradshaw 
et al3 was appropriate and meets the requirements for 
acceptable reliability and validity.

SELECTING THE PREDICTORS: MODEL EFFICIENCY
Once the criterion has been selected, predictor variables 

should be identified (model selection). The aim of model 
selection is to minimize the number of predictors which 
account for the maximum variance in the criterion.15 In 
other words, the most efficient model maximizes the value 
of the coefficient of determination (R2). This coefficient 
estimates the amount of variance in the criterion score 
accounted for by a linear combination of the predictor 
variables. The higher the value is for R2, the less error or 
unexplained variance and, therefore, the better prediction. 
R2 is dependent on the multiple correlation coefficient (R), 
which describes the relationship between the observed 
and predicted criterion scores. If there is no difference 
between the predicted and observed scores, R equals 1.00. 
This represents a perfect prediction with no error and no 
unexplained variance (R2 = 1.00). When R equals 0.00, 
there is no relationship between the predictor(s) and the 
criterion and no variance in scores has been explained (R2 
= 0.00). The chosen variables cannot predict the criterion. 
The goal of model selection is, as stated previously, to 
develop a model that results in the highest estimated value 
for R2.
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According to Pedhazur,15 the value of R is often 
overestimated. The reasons for this are beyond the scope 
of this discussion; however, the degree of overestimation 
is affected by sample size. The larger the ratio is between 
the number of predictors and subjects, the larger the 
overestimation. To account for this, sample sizes should be 
large and there should be 15 to 30 subjects per predictor.11,15 
Of course, the most effective way to determine optimal 
sample size is through statistical power analysis.11,15

Another method of determining the best model for 
prediction is to test the significance of adding one or 
more variables to the model using the partial F-test. This 
process, which is further discussed by Kleinbaum, Kupper, 
and Muller,12 allows for exclusion of predictors that do 
not contribute significantly to the prediction, allowing 
determination of the most efficient model of prediction. 
In general, the partial F-test is similar to the F-test used in 
analysis of variance. It assesses the statistical significance 
of the difference between values for R2 derived from 2 or 
more prediction models using a subset of the variables 
from the original equation. For example, Bradshaw et al3 
indicated that all variables contributed significantly to 
their prediction. Though the researchers do not detail the 
procedure used, it is highly likely that different models 
were tested, excluding one or more variables, and the 
resulting values for R2 assessed for statistical difference. 

Although the techniques discussed above are useful in 
determining the most efficient model for prediction, theory 
must be considered in choosing the appropriate variables. 
Previous research should be examined and predictors 
selected for which a relationship between the criterion and 
predictors has been established.12,15

It is clear that Bradshaw et al3 relied on theory and 
previous research to determine the variables to use in 
their prediction equation. The 5 variables they chose for 
inclusion--gender, age, body mass index (BMI), perceived 
functional ability (PFA), and physical activity rating (PA-
R)--had been shown in previous studies to contribute to 
the prediction of VO2max (eg, Heil et al;8 George, Stone, 
& Burkett7). These 5 predictors accounted for 87% (R 
= .93, R2 = .87) of the variance in the predicted values 
for VO2max.  Based on a ratio of 1:20 (predictor:sample 
size), this estimate of R , and thus R2, is not likely to be 
overestimated.  The researchers used changes in the value 
of R2 to determine whether to include or exclude these or 
other variables. They reported that removal of perceived 
functional ability (PFA) as a variable resulted in a decrease 
in R from .93 to .89. Without this variable, the remaining 
4 predictors would account for only 79% of the variance 
in VO2max.  The investigators did note that each predictor 
variable contributed significantly (p < .05) to the prediction 
of VO2max (see above discussion related to the partial 
F-test).

ASSESSING ACCURACY OF THE PREDICTION
Assessing accuracy of the model is best accomplished 

by analyzing the standard error of estimate (SEE) and 
the percentage that the SEE represents of the predicted 
mean (SEE %). The SEE represents the degree to which 

the predicted scores vary from the observed scores on the 
criterion measure, similar to the standard deviation used 
in other statistical procedures. According to Jackson,10 
lower values of the SEE indicate greater accuracy in 
prediction. Comparison of the SEE for different models 
using the same sample allows for determination of the 
most accurate model to use for prediction. SEE % is 
calculated by dividing the SEE by the mean of the criterion 
(SEE/mean criterion) and can be used to compare different 
models derived from different samples. 

Bradshaw et al3 report a SEE of 3.44 mL·kg-1·min-1 
(approximately 1 MET) using all 5 variables in the equation 
(gender, age, BMI, PFA, PA-R). When the PFA variable is 
removed from the model, leaving only 4 variables for the 
prediction (gender, age, BMI, PA-R), the SEE increases 
to 4.20 mL·kg-1·min-1. The increase in the error term 
indicates that the model excluding PFA is less accurate 
in predicting VO2max.  This is confirmed by the decrease 
in the value for R (see discussion above). The researchers 
compare their model of prediction with that of George, 
Stone, and Burkett,7 indicating that their model is as 
accurate. It is not advisable to compare models based on 
the SEE if the data were collected from different samples 
as they were in these 2 studies. That type of comparison 
should be made using SEE %.  Bradshaw and colleagues3 
report SEE % for their model (8.62%), but do not report 
values from other models in making comparisons.

Some advocate the use of statistics derived from the 
predicted residual sum of squares (PRESS) as a means of 
selecting predictors.2,4,16  These statistics are used more 
often in cross-validation of models and will be discussed 
in greater detail later. 

ASSESSING STABILITY OF THE MODEL FOR 
PREDICTION

Once the most efficient and accurate model for 
prediction has been determined, it is prudent that the 
model be assessed for stability. A model, or equation, is 
said to be “stable” if it can be applied to different samples 
from the same population without losing the accuracy 
of the prediction. This is accomplished through cross-
validation of the model. Cross-validation determines how 
well the prediction model developed using one sample 
performs in another sample from the same population. 
Several methods can be employed for cross-validation, 
including the use of 2 independent samples, split 
samples, and PRESS-related statistics developed from the 
same sample.

Using 2 independent samples involves random 
selection of 2 groups from the same population. One 
group becomes the “training” or “exploratory” group 
used for establishing the model of prediction.5 The 
second group, the “confirmatory” or “validatory” group 
is used to assess the model for stability. The researcher 
compares R2 values from the 2 groups and assessment of 
“shrinkage,” the difference between the two values for R2, 
is used as an indicator of model stability. There is no rule 
of thumb for interpreting the differences, but Kleinbaum, 
Kupper, and Muller12 suggest that “shrinkage” values of 
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less than 0.10 indicate a stable model. While preferable, 
the use of independent samples is rarely used due to cost 
considerations.  

A similar technique of cross-validation uses split samples. 
Once the sample has been selected from the population, 
it is randomly divided into 2 subgroups. One subgroup 
becomes the “exploratory” group and the other is used as 
the “validatory” group. Again, values for R2 are compared 
and model stability is assessed by calculating “shrinkage.” 

Holiday, Ballard, and McKeown9 advocate the use of 
PRESS-related statistics for cross-validation of regression 
models as a means of dealing with the problems of data-
splitting.  The PRESS method is a jackknife analysis that is 
used to address the issue of estimate bias associated with the 
use of small sample sizes.13 In general, a jackknife analysis 
calculates the desired test statistic multiple times with 
individual cases omitted from the calculations. In the case 
of the PRESS method, residuals, or the differences between 
the actual values of the criterion for each individual and the 
predicted value using the formula derived with the individual’s 
data removed from the prediction, are calculated. The PRESS 
statistic is the sum of the squares of the residuals derived 
from these calculations and is similar to the sum of squares 
for the error (SSerror) used in analysis of variance (ANOVA). 
Myers14 discusses the use of the PRESS statistic and describes 
in detail how it is calculated. The reader is referred to this 
text and the article by Holiday, Ballard, and McKeown9 for 
additional information. 

Once determined, the PRESS statistic can be used 
to calculate a modified form of R2 and the SEE. R2 PRESS is 
calculated using the following formula: R2 PRESS = 1 – [PRESS /
SS total], where SStotal equals the sum of squares for the original 
regression equation.14 Standard error of the estimate for PRESS 
(SEEPRESS) is calculated as follows:  SEEPRESS = , where n equals 
the number of individual cases.14 The smaller the difference 
between the 2 values for R2 and SEE, the more stable the 
model for prediction. Bradshaw et al3 used this technique 
in their investigation. They reported a value for R2

PRESS of .83, 
a decrease of .04 from R2 for their prediction model. Using 
the standard set by Kleinbaum, Kupper, and Muller,12 the 
model developed by these researchers would appear to have 
stability, meaning it could be used for prediction in samples 
from the same population. This is further supported by the 
small difference between the SEE and the SEEPRESS, 3.44 and 
3.63 mL·kg-1·min-1, respectively.

COMPARING TWO DIFFERENT PREDICTION MODELS
A comparison of 2 different models for prediction may 

help to clarify the use of regression analysis in prediction. 
Table 1 presents data from 2 studies and will be used in the 
following discussion.  

As noted above, the first step is to select an appropriate 
criterion, or outcome measure. Bradshaw et al3 selected 
VO2max as their criterion for measuring cardiorespiratory 
fitness. Heil et al8 used VO2peak. These 2 measures are often 
considered to be the same, however, VO2peak assumes that 
conditions for measuring maximum oxygen consumption 
were not met.17 It would be optimal to compare models based 
on the same criterion, but that is not essential, especially 

since both criteria measure cardiorespiratory fitness in much 
the same way.

The second step involves selection of variables for 
prediction. As can be seen in Table 1, both groups of 
investigators selected 5 variables to use in their model. The 
5 variables selected by Bradshaw et al3 provide a better 
prediction based on the values for R2  (.87 and .77), indicating 
that their model accounts for more variance (87% versus 
77%) in the prediction than the model of Heil et al.8 It should 
also be noted that the SEE calculated in the Bradshaw3 model 
(3.44 mL·kg-1·min-1) is less than that reported by Heil et al8 

(4.90 mL·kg-1·min-1). Remember, however, that comparison 
of the SEE should only be made when both models are 
developed using samples from the same population. 
Comparing predictions developed from different populations 
can be accomplished using the SEE%. Review of values for 
the SEE% in Table 1 would seem to indicate that the model 
developed by Bradshaw et al3 is more accurate because the 
percentage of the mean value for VO2max represented by 
error is less than that reported by Heil et al.8 In summary, 
the Bradshaw3 model would appear to be more efficient, 
accounting for more variance in the prediction using the 
same number of variables. It would also appear to be more 
accurate based on comparison of the SEE%. 

The 2 models cannot be compared based on stability of 
the models. Each set of researchers used different methods 
for cross-validation. Both models, however, appear to be 
relatively stable based on the data presented. A clinician can 
assume that either model would perform fairly well when 
applied to samples from the same populations as those used 
by the investigators. 

SUMMARY
The purpose of this brief review has been to demystify 

regression analysis for prediction by explaining it in simple 

Table 1. Comparison of Two Non-exercise Models for 
Predicting CRF
Variables Heil et al 8

N = 374
Bradshaw et al 3

N = 100

β

Intercept 36.580 48.073

Gender 
(male = 1, female = 0)

3.706 6.178

Age (years) 0.558 -0.246

Age2 -7.81E-3

Percent body fat -0.541

Body mass index (kg·m-2) -0.619

Activity code (0 – 7) 1.347

Physical activity rating (0 –10) 0.671

Perceived functional ability 0.712

R (R2)

.88 (.77) .93 (.87)

SEE

4.90 mL·kg-1·min-1 3.44 mL·kg-1·min-1

SEE %

12.7% 8.6%
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terms and to demonstrate its use. When reviewing research 
articles in which regression analysis has been used for 
prediction, physical therapists should ensure that the: (1) 
criterion chosen for the study is appropriate and meets the 
standards for reliability and validity, (2) processes used by the 
investigators to assess both model efficiency and accuracy 
are appropriate, 3) predictors selected for use in the model 
are reasonable based on theory or previous research, and 
4) investigators assessed model stability through a process 
of cross-validation, providing the opportunity for others 
to utilize the prediction model in different samples drawn 
from the same population.
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