

MI7027 - Tópicos Aplicados en Mecánica de Rocas para Minería

Créditos	6 SCT
Creditos	6 3 C 1
Requisitos	Requiere autorización. Curso dirigido a estudiantes del Programa de Magíster en Minería y Doctorado de Ingeniería de Minas.
Carácter	Electivo
Objetivo	Desarrollar competencias técnicas y analíticas para aplicar principios de la mecánica de rocas en el diseño, evaluación y modelamiento de excavaciones mineras subterráneas, mediante el análisis de casos reales y el uso de herramientas numéricas en un proyecto aplicado.
Descripción del curso	Este curso electivo aborda tópicos seleccionados de mecánica de rocas, con énfasis en sus aplicaciones prácticas en minería subterránea. Los contenidos integran y profundizan conocimientos adquiridos en cursos previos de geotecnia y geomecánica, complementados con la revisión de casos de estudio reales. A través de talleres prácticos y el desarrollo de un proyecto aplicado propuesto por los estudiantes, se busca fortalecer las habilidades necesarias para el análisis y la resolución de problemas geomecánicos complejos.
Contenido	 Introducción y fundamentos Diseño geotécnico de excavaciones subterráneas Aplicaciones prácticas en minería subterránea
Actividades	 Clases expositivas y análisis de casos reales Talleres prácticos con uso de software de modelamiento Lectura crítica y discusión de literatura técnica Presentaciones intermedias de avance de proyecto Trabajo final: desarrollo y presentación de un proyecto aplicado
Evaluación	La evaluación se basa exclusivamente en el desarrollo de un proyecto aplicado, que integra teoría, análisis geotécnico y uso de software. El proyecto será evaluado mediante los siguientes hitos: • Propuesta de proyecto y justificación técnica: 10% • Presentación intermedia de avance técnico: 25% • Informe final técnico del proyecto: 40% • Presentación final del proyecto (oral): 25%

- Brzovic, A., & Villaescusa, E. (2007). Rock mass characterization and assessment of block-forming geological discontinuities during caving of primary copper ore at the El Teniente mine, Chile. *International journal of rock mechanics and mining sciences*, 44(4), 565-583. https://doi.org/10.1016/j.ijrmms.2006.09.010
- Ghazvinian, E, Fuenzalida, M, Orrego, C & Pierce, M 2020, 'Back analysis of cave propagation and subsidence at Cadia East Mine', in R Castro, F Báez & K Suzuki (eds), MassMin 2020: Proceedings of the Eighth International Conference & Exhibition on Mass Mining, University of Chile, Santiago, pp. 535-550, https://doi.org/10.36487/ACG_repo/2063_36.
- Paredes, P 2022, 'Evaluation of the effect of wider-spaced layouts in recovery for high column block caves', in Y Potvin (ed.), Caving 2022: Proceedings of the Fifth International Conference on Block and Sublevel Caving, Australian Centre for Geomechanics, Perth, pp. 393-416, https://doi.org/10.36487/ACG_repo/2205_27.
- Quevedo, R. J., Sari, Y. A., & McKinnon, S. D. (2024). Cave mine pillar stability analysis using machine learning. *Journal of the Southern African Institute of Mining and Metallurgy*, 124(2), 43-52. https://doi.org/10.17159/2411-9717/2509/2024
- Sainsbury, B, Pierce, ME & Mas Ivars, D 2008, 'Analysis of Caving Behaviour Using a Synthetic Rock Mass Ubiquitous Joint Rock Mass Modelling Technique', in Y Potvin, J Carter, A Dyskin & R Jeffrey (eds), SHIRMS 2008: Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium, Australian Centre for Geomechanics, Perth, pp. 243-253, https://doi.org/10.36487/ACG_repo/808_136.
- Sainsbury, B. L., Sainsbury, D. P., & Pierce, M. E. (2011, February). A
 historical review of the development of numerical cave propagation
 simulations. In Continuum and Distinct Element Numerical Modeling
 in Geomechanics-2011, Proc. 2nd Int. FLAC/DEM Symp.,
 Melbourne (pp. 14-16).
- Vakili, A. (2016). An improved unified constitutive model for rock material and guidelines for its application in numerical modelling. *Computers and Geotechnics*, 80, 261-282. https://doi.org/10.1016/j.compgeo.2016.08.020

Bibliografía