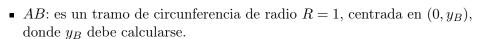


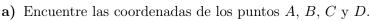
Auxiliar 10: Aplicaciones de la integral

Profesora: M. Eugenia Martínez M. Auxiliar: Bianca Zamora Araya Fecha: 22 de octubre de 2025

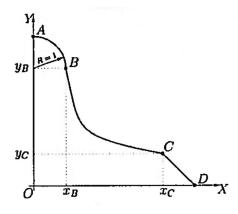
P1. [Espacios]


- a) Calcule el área encerrada entre las curvas $y^2 = x$ e y = x, entre x = 0 y x = 4.
- b) Sea f: [0,2] definida por $f(x) = x\sqrt{2-x}$. Considere la región $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 \mid x \in [0,2] \land 0 \le y \le f(x)\}$.
 - i) Calcule el área de la región \mathcal{R} .
 - ii) Calcule V_{OX} , el volumen del sólido engendrado por la rotación de \mathcal{R} en torno al eje OX.
 - iii) Calcule V_{OY} , el volumen del sólido engendrado por la rotación de \mathcal{R} en torno al eje OY.

P2. [Frazadas]

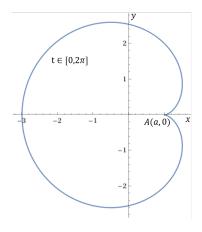

- a) Considere la función $f(x) = \frac{1}{3} (2 + x^2)^{\frac{3}{2}}$, con $x \in [1, 2]$.
 - i) Calcule el largo de la curva de ecuación y = f(x) si $x \in [1, 2]$.
 - ii) Calcule el área del manto del sólido generado por la rotación de la región bajo la curva y = f(x) en torno al eje OY.
- **b)** Considere la función $f(x) = \cosh(x)$.
 - i) Calcule la longitud de la curva definida por f en el intervalo [0,1].
 - ii) Se define la región $\Omega := \{(x,y) \in \mathbb{R}^2 \mid x \in [0,1] \land 0 \le y \le f(x)\}$. Calcule la superficie del manto del sólido que se genera al rotar la región Ω en torno al eje OX.
- c) Dada la elipse de ecuación $\frac{x^2}{2} + y^2 = 1$, encontrar la superficie del manto del sólido de revolución generado al rotar la eclipse en torno al eje OX.

P3. [Contexto]


Un adorno de halloween se forma por la rotación en torno al eje OY de la región del primer cuadrante encerrada por la curva OABCDO de la figura:

- BC: es un tramo de la curva de ecuación $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 4$.
- C: es un punto de abscisa $x_C = 3\sqrt{3}$.
- CD: es un trazo de recta de pendiente m=-1.

- b) Escriba las ecuaciones de los tramos AB, BC y CD de la curva, presentando cada uno en la forma y = f(x).
- c) Escriba explícitamente las 3 integrales, cuya suma permite calcular el volumen del adorno y calcúlelas. INDICACIÓN: Puede usar el reemplazo $u=4-x^{\frac{2}{3}}$ donde corresponda.
- d) Escriba explícitamente las 3 integrales, cuya suma permite calcula el área total del manto generado por la curva ABCD y calcúlelas.



P4. [Contexto]

Las ecuaciones parámetricas que se indican definen una curva cerrada, que luce como se muestra en la figura. Cuando t=0, parte en el punto A(a,0), y vuelve a ese punto paea $t=2\pi$.

$$\begin{cases} x(t) = a \left(2\cos(t) - \cos(2t) \right) \\ y(t) = a \left(2\sin(t) - \sin(2t) \right) \end{cases}$$

Calcule la longitud de la curva.

