

Sucesiones y continuidad

Sucesión

Es una función de la forma $\begin{cases} s \colon & \mathbb{N} \to \mathbb{R} \\ & n \mapsto s(n) \equiv s_n \end{cases}$

Se puede entender como una lista ordenada de elementos, denominados **términos**, indexados en los números naturales, que siguen una regla específica.

Otras formas de denotarla son: (s_n) , $(s_n)_n$, $(s_n)_{n\in\mathbb{N}}$, $(s_n)_{n=0}^{\infty}$ o $(s_n)_{n>0}$, o también usando $\{\}$.

La imagen de $n \in \mathbb{N}$ por s, es decir, s_n , se denomina **término** n-**ésimo** de la sucesión; por eso se utiliza la escritura $(s_n) \subseteq \mathbb{R}$. Se acepta que una cantidad finita de términos de la sucesión no estén definidos, o sea, que el dominio no sea exactamente \mathbb{N} (esto ocurre, por ejemplo, para evitar la división por cero u otro tipo de indefinición).

Convergencia

Si una sucesión (s_n) converge a un valor $l \in \mathbb{R}$ se escribe $s_n \to l$ y equivale a:

$$(\forall \epsilon > 0) (\exists n_0 \in \mathbb{N}) (\forall n > n_0) : |s_n - l| \le \epsilon$$

Sucesión acotada

Una sucesión (s_n) es acotada si y solo si $(\exists M > 0) (\forall n \in \mathbb{N}) : |s_n| \leq M$.

Subsucesión

Sean (s_n) una sucesión y $\varphi \colon \mathbb{N} \to \mathbb{N}$ una función estrictamente creciente. Una **subsucesión** de (s_n) , generada por la función φ , corresponde a la sucesión $(s_{\varphi(n)})$.

Herencia de convergencia a subsucesiones

Sean (s_n) sucesión y $l \in \mathbb{R}$. Entonces $s_n \to l$ si y solo si todas las subsucesiones de (s_n) convergen a l.

Teorema de Bolzano-Weierstrass

Toda sucesión acotada posee al menos una subsucesión convergente.

Convergencia y acotamiento

Para una sucesión se cumple:

■ convergente ⇒ acotada es V (por la definición

de convergencia).

- acotada \implies convergente es F (por ejemplo, la sucesión $(-1)^n$ es acotada pero no converge porque las subsucesiones son tal que $(-1)^{2n} \to 1$ y $(-1)^{2n+1} \to -1$, y $1 \neq 1$).
- acotada ⇒ alguna subsucesión converge es V (por el teorema de Bolzano-Weierstrass).

Notación para función

 $f \colon A \subseteq \mathbb{R} \to \mathbb{R}$ denota una función real f definida en un dominio $A \subseteq \mathbb{R}$.

Continuidad en un punto

Sean $f: A \subseteq \mathbb{R} \to \mathbb{R}$ y $a \in A$ un punto en el dominio. Entonces f es continua en el punto a ssi:

$$(\forall (x_n) \subseteq A) : x_n \to a \implies f(x_n) \to f(a)$$

Continuidad en un conjunto

- Si una función es continua en cada uno de los puntos de un subconjunto del dominio, se dice que la función es continua en el conjunto.
- Si dicho subconjunto es todo el dominio, se dice que la función es continua (a secas).

Es importante hacer esta diferencia en el lenguaje porque la continuidad es una noción puntual.

Caracterización epsilon-delta de continuidad (en un punto)

Sean $f: A \subseteq \mathbb{R} \to \mathbb{R}$ y $a \in A$ un punto en el dominio. Entonces f es continua en el punto a si y solo si $\lim_{x\to a} f(x) = a$, o equivalentemente:

$$(\forall \epsilon > 0) (\exists \delta = \delta(\epsilon) > 0) (\forall x \in A) :$$
$$|x - a| \le \delta \implies |f(x) - f(a)| \le \epsilon$$

Álgebra y composición de funciones continuas

Sean $f: A \subseteq \mathbb{R} \to \mathbb{R}$ y $g: B \subseteq \mathbb{R} \to \mathbb{R}$ funciones continuas en $z \in A \cap B$. Entonces, son continuas las funciones $\beta \cdot f$ con $\beta \in \mathbb{R}$, $f \pm g$, $f \cdot g$ y $\frac{f}{g}$ con $g(z) \neq 0$, y la composición $g \circ f$ (siempre que g sea continua en f(a), y que $f(A) \subseteq B$).

Aplicaciones de continuidad

Intervalos cerrados, acotados y no vacíos

En esta parte del curso se trabajará constantemente con intervalos de la forma [a, b], con $a, b \in \mathbb{R}$.

Siempre se asumirá (salvo que se diga lo contrario), que $a \leq b$ (si no, sería un conjunto vacío). Es importante que sea **cerrado y acotado**, para que cumpla las hipótesis de los teoremas.

Teorema de Bolzano / Teorema del Cero Intermedio / Teorema del Valor Intermedio (TVI)

Sea $f: [a, b] \to \mathbb{R}$ una función continua.

Si
$$f(a)f(b) \leq 0 \implies$$
 existe $\overline{x} \in [a,b]$ tal que $f(\overline{x}) = 0$

$$\iff (\exists \ \overline{x} \in [a,b]) : f(\overline{x}) = 0$$

Teorema de los Valores Intermedios / Propiedad de Darboux / TVI Generalizado

Sea $f : [a, b] \to \mathbb{R}$ una función continua.

Si $c, d \in f([a, b]) \implies$ para todo x_0 entre c y d, existe $\overline{x} \in [a, b]$ tal que $f(\overline{x}) = \text{tal que } f(\overline{x}) = x_0$

$$\iff (\forall x_0 \in [c,d] \subseteq f([a,b])) (\exists \overline{x} \in [a,b]) : f(\overline{x}) = x_0$$

Teorema de Weierstrass: MÁXIMOS y mínimos

Sea $f \colon [a,b] \to \mathbb{R}$ una función continua. Entonces:

 \bullet f es acotada, simbólicamente:

$$(\exists M > 0) (\forall x \in [a, b]) : |f(x)| \le M$$

 $\,\blacksquare\,\, f$ alcanza su MÁXIMO en [a,b], simbólicamente:

$$(\exists \ x_{\max} \in [a,b]) \ (\forall \ x \in [a,b]) : f(x) \le f(x_{\max})$$

• f alcanza su mínimo en [a, b], simbólicamente:

$$(\exists x_{\min} \in [a, b]) (\forall x \in [a, b]) : f(x_{\min}) \le f(x)$$

Monotonía e inyectividad

Una función f monótona estricta es tal que:

- creciente: $x_1 < x_2 \implies f(x_1) < f(x_2)$
- decreciente: $x_1 < x_2 \implies f(x_2) < f(x_1)$

Y siempre es invectiva. Si se restringe su codominio a su recorrido, es epiyectiva, y por tanto biyectiva, así que admite inversa.

Continuidad de la función inversa

Sea $I \subseteq \mathbb{R}$ un intervalo (finito o infinito, abierto o cerrado o semicerrado). Sea $f \colon I \subseteq \mathbb{R} \to \mathbb{R}$ continua y estrictamente monótona (creciente o decreciente). Entonces: f(I) es un intervalo y la inversa $f^{-1} \colon f(I) \to I$ es continua.

Continuidad uniforme

Sea $f: A \subseteq \mathbb{R} \to \mathbb{R}$. f es uniformemente continua

ssi:
$$(\forall \epsilon > 0) (\exists \delta = \delta(\epsilon) > 0) (\forall x, y \in A)$$
: $|x - y| \le \delta \implies |f(x) - f(y)| \le \epsilon$

Caracterización de continuidad uniforme

Sea $f: [a, b] \to \mathbb{R}$ una función continua, con dominio **cerrado** y acotado.

Entonces f es uniformemente continua si y solo si f es continua en todo punto $\overline{x} \in [a, b]$.

Continuidad y continuidad uniforme

- continuidad uniforme

 continuidad, siempre
 (de la definición de continuidad uniforme se llega
 a la continuidad en un punto, para cada punto).
- ¡La recíproca no es cierta! Ejemplo: x^3 es continua, pero su cota δ depende del punto, o sea: no es uniformemente continua. Salvo que se trabaje en un dominio cerrado y acotado, por el teorema que caracteriza la continuidad y la continuidad uniforme, sí se tendrá esta implicancia.

Derivadas y sus teoremas

Función derivable en un punto

 $f:(a,b)\to\mathbb{R}$ es **derivable** en $\overline{x}\in(a,b)$ si existe el siguiente límite, y se llama **derivada de** f **en** \overline{x} :

$$\lim_{x\to \overline{x}}\frac{f(x)-f(\overline{x})}{x-\overline{x}}=\lim_{h\to 0}\frac{f(\overline{x}+h)-f(\overline{x})}{h}\equiv f'(\overline{x})$$

La derivada en un punto corresponde al valor de la pendiente de la recta tangente a la función en el punto.

Álgebra de derivadas

Sean $f, g \colon (a, b) \to \mathbb{R}$ derivables en $\overline{x} \in (a, b)$. Entonces f + g, fg y $\frac{f}{g}$, si $g(\overline{x}) \neq 0$, son derivables, con:

- $(f+g)'(\overline{x}) = f'(\overline{x}) + g'(\overline{x})$
- $(fg)'(\overline{x}) = f'(\overline{x})g(\overline{x}) + f(\overline{x})g'(\overline{x})$
- $\bullet \ \left(\frac{f}{g}\right)'(\overline{x}) = \frac{f'(\overline{x})g(\overline{x}) f(\overline{x})g'(\overline{x})}{g(\overline{x})^2}$

Regla de la cadena

Sea $f:(a,b) \to (c,d)$ derivable en $\overline{x} \in (a,b)$ y $g:(c,d) \to \mathbb{R}$ derivable en $\overline{y} = f(\overline{x}) \in (c,d)$. Entonces la composición $g \circ f$ es derivable en \overline{x} con

$$(g \circ f)'(\overline{x}) = g'(f(\overline{x})) \cdot f'(\overline{x})$$

Escrito con la notación de Leibnitz, si y es una función de u, i.e. y=y(u), y u es una función de x, i.e. u=u(x), entonces $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x}$.

Derivada de la función inversa

Sea $f:(a,b)\to (c,d)$ biyectiva y continua. Si f es derivable en $\overline{x}\in (a,b)$ con $f'(\overline{x})\neq 0$, entonces la función inversa $f^{-1}\colon (c,d)\to (a,b)$ es derivable en $\overline{y}=f(\overline{x})$ con

$$(f^{-1})'(\overline{y}) = \frac{1}{f'(\overline{x})} = \frac{1}{f'(f^{-1}(\overline{y}))}$$

Escrito con la notación de Leibnitz, si y es una función de u, i.e. y=y(u), y u es una función de x, i.e. u=u(x), entonces $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}}$.

Derivabilidad y continuidad

ullet derivable en punto \Longrightarrow continua en dicho punto

Puntos extremos de una función

- Sean $\underline{f}: A \subseteq \mathbb{R} \to \mathbb{R}$ y $\overline{x} \in A$ or GLOBAL de f i es el valor más bajo (alto) alcanzado por la función: $f(\overline{x}) \leq (\geq) f(x) \ (\forall \ x \in A).$
- \overline{x} es **mínimo (máximo) LOCAL** si es el valor más bajo (alto) alcanzado en una vecindad: Todo punto extremo global es punto extremo local.

Puntos críticos de una función

Sea $f: A \subseteq \mathbb{R} \to \mathbb{R}$ función que admite derivada. $\overline{x} \in A$ es **punto crítico** si $f'(\overline{x})$ no existe o si $f'(\overline{x}) = 0$.

Condición para ser punto extremo

Sean $f: A \subseteq \mathbb{R} \to \mathbb{R}$ y $\overline{x} \in A$. Entonces: \overline{x} es extremo de $f \land f'(\overline{x})$ existe $\Longrightarrow f'(\overline{x}) = 0$

Teorema del Valor Medio (TVM)

Sean $f, g: [a, b] \to \mathbb{R}$ continuas en [a, b] y derivables en (a, b), con $g(b) \neq g(a)$ y $g'(x) \neq 0$ $(\forall x \in (a, b))$.

$$\implies (\exists \ \xi \in (a,b)) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Teorema del Valor Medio (TVM) de Rolle

Sea $f: [a, b] \to \mathbb{R}$ continua en [a, b] y derivable en (a, b). Entonces $f(a) = f(b) \implies (\exists \xi \in (a, b)) : f'(\xi) = 0$.

Teorema del Valor Medio (TVM) de Lagrange

Si $f: [a, b] \to \mathbb{R}$ continua en [a, b] y derivable en (a, b). Entonces $(\exists \xi \in (a, b)) : f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

Teorema del Valor Medio (TVM) de Cauchy

Sean $f, g: [a, b] \to \mathbb{R}$ continuas en [a, b] y derivables en (a, b). Entonces se cumple que:

$$(\exists \xi \in (a,b)) : f'(\xi) [g(b) - g(a)] = [f(a) - f(b)] g'(\xi)$$

Tabla de derivadas

Con a constante en \mathbb{R} , $n \in \mathbb{Z}$ (\mathbb{R}), se tiene que:

F(x)	F'(x)	Restricciones	F(x)	F'(x)
x^n	nx^{n-1}			
$g(x)^n$	$ng(x)^{n-1}g'(x)$			
$\frac{1}{x^n}$	$-n\frac{1}{x^{n+1}}$	$x \neq 0$		
e^x	e^x			
$e^{g(x)}$	$g'(x)e^{g(x)}$			
a^x	$\ln(a)a^x$	$a > 1, a \neq 0, x \in \mathbb{R}$		
$\ln(x)$	$\frac{1}{x}$	$x \neq 0$		
$\ln\left(g(x)\right)$	$\frac{g'(x)}{g(x)}$			
$\log_a(x)$	$\frac{1}{\ln(a)} \frac{1}{x}$	$x \neq 0$		
$\sin(x)$	$\cos(x)$		$\sinh(x)$	$\cosh(x)$
$\cos(x)$	$-\sin(x)$		$\cosh(x)$	$\sinh(x)$
$\tan(x)$	$\sec^2(x)$		$\tanh(x)$	$\operatorname{sech}(x)^2$
$\csc(x)$	$-\csc(x)\cot(x)$		$\operatorname{csch}(x)$	$-\csc(x)\coth(x)$
sec(x)	$\sec(x)\tan(x)$		$\operatorname{sech}(x)$	$-\mathrm{sech}(x)\mathrm{tanh}(x)$
$\cot(x)$	$-\csc^2(x)$		$\coth(x)$	$-\operatorname{csch}(x)$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	$x \in (-1, 1)$		
$\arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}$	$x \in (-1, 1)$		
$\arctan(x)$	$\frac{1}{1+x^2}$			
$\operatorname{arccsc}(x)$	$-\frac{1}{ x \sqrt{1-x^2}}$	$x \in (-\infty, 1) \cup (1, +\infty)$		
$\operatorname{arcsec}(x)$	$\frac{1}{ x \sqrt{1-x^2}}$	$x \in (-\infty, 1) \cup (1, +\infty)$		
$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$			

Derivadas y continuidad en acción

Funciones de clase C

Sea la función $f:(a,b)\to\mathbb{R}$ derivable k veces en (a,b). Entonces su derivada k-ésima se define recursivamente por $f^{(k)}(\overline{x}):=\left(f^{(k-1)}\right)'(\overline{x})$. Si es k veces derivable y su derivada k-ésima es continua, entonces $f\in C^k(a,b)$.

Puntos extremos de una función

- Sean $\underline{f}: A \subseteq \mathbb{R} \to \mathbb{R}$, k veces derivable, $v \overline{x} \in A$, i es el valor más bajo (alto) alcanzado por la función: $f(\overline{x}) \leq (\geq) f(x) \ (\forall \ x \in A)$.
 - \overline{x} es mínimo (máximo) LOCAL si es el valor más bajo (alto) alcanzado en una vecindad: $f(\overline{x}) \leq (\geq) f(x) (\forall x \in A \cap [\overline{x} \delta, \overline{x} + \delta]).$
 - Si $f^{(k)}(\overline{x}) > 0, k$ par $\Longrightarrow \overline{x}$ es **mín. local**.

Todo punto extremo global es punto extremo local.

Puntos críticos de una función

Sea $f: A \subseteq \mathbb{R} \to \mathbb{R}$ función que admite derivada. $\overline{x} \in A$ es **punto crítico** si $f'(\overline{x})$ no existe o si $f'(\overline{x}) = 0$.

Condición para ser punto extremo

Sean $f : A \subseteq \mathbb{R} \to \mathbb{R}$ y $\overline{x} \in A$. Entonces:

 \overline{x} es extremo de $f \wedge f'(\overline{x})$ existe $\implies f'(\overline{x}) = 0$

Teorema del Valor Medio (TVM) de Rolle

Sea $f: [a, b] \to \mathbb{R}$ continua en [a, b] y derivable en (a, b). Entonces $f(a) = f(b) \implies (\exists \xi \in (a, b)) : f'(\xi) = 0$.

Teorema del Valor Medio (TVM) de Lagrange

Si $f: [a,b] \to \mathbb{R}$ continua en [a,b] y derivable en (a,b). Entonces $(\exists \xi \in (a,b)): f'(\xi) = \frac{f(b) - f(a)}{b-a}$.

Teorema del Valor Medio (TVM) de Cauchy

Sean $f, g: [a, b] \to \mathbb{R}$ continuas en [a, b] y derivables en (a, b). Entonces se cumple que: $(\exists \xi \in (a, b))$: $f'(\xi)[g(b) - g(a)] = [f(a) - f(b)]g'(\xi)$.

Regla de l'Hôpital

Sean $f, g: (a, b) \to \mathbb{R}$ derivables en (a, b) tales que $\lim_{x \to a} f(x) = L = \lim_{x \to a} g(x)$ con L = 0 ó $L = \pm \infty, g'(x) \neq$

 $0 \ (\forall x \in (a,b))$. Entonces: $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ siempre que el último exista. Notar que el límite puede ser hacia $a^+, a^-, +\infty$ o $-\infty$. Es una herramienta para calcular límites que "a primera vista" se indefinen.

Derivadas y monotonía

Sea $f:[a,b]\to\mathbb{R}$ continua en [a,b] y derivable en (a,b). Si $(\forall x, (a \ge b))$ entonces: f creciente en [a,b]

Si la $f'(x) \le 0 \iff f$. decreciente en [a, b] es estricta.

Convexidad y puntos de inflexión

Una función $f:[a,b]\to\mathbb{R}$ se dice **convexa** si:

$$f(z) \le f(x) + \left(\frac{f(y) - f(x)}{y - x}\right)(z - x) \ (\forall x < z < y)$$

$$\iff \frac{f(z) - f(x)}{z - x} \le \frac{f(y) - f(z)}{y - z} \ (\forall \ x \ < \ z \ < \ y \)$$

La **convexidad** asegura que las rectas secantes al gráfico de la función queden por encima del gráfico. Un **punto de inflexión** es un punto de cambio de convexiddad de la función.

Derivadas y convexidad

Sea $f: [a, b] \to \mathbb{R}$ continua en [a, b] y derivable en (a, b).

- f es **convexa** en [a,b] ssi f' es creciente en (a,b), equivalentemente $f'' \ge 0$ en (a,b).
- f es **cóncava** en [a,b] ssi f' es decreciente en (a,b), equivalentemente $f'' \leq 0$.

Fórmula de Taylor (función = aprox. + error)

Sea $f:(a,b)\to\mathbb{R}$ k+1 veces derivable en $\overline{x}\in(a,b)$. Su desarrollo de Taylor de orden n en torno a x_0

es:
$$T_{x_0}^n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
.

Entonces $(\forall x > x_0) (\exists \xi \in (x_0, x))$ se satisface que

$$f(x) = T_{x_0}^n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$