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Preface

This book comprises 157 problems in classical electromagnetism, originating from

the second-year course given by the authors to the undergraduate students of

physics at the University of Pisa in the years from 2002 to 2017. Our course covers

the basics of classical electromagnetism in a fairly complete way. In the first part,

we present electrostatics and magnetostatics, electric currents, and magnetic

induction, introducing the complete set of Maxwell’s equations. The second part is

devoted to the conservation properties of Maxwell’s equations, the classical theory

of radiation, the relativistic transformation of the fields, and the propagation of

electromagnetic waves in matter or along transmission lines and waveguides.

Typically, the total amount of lectures and exercise classes is about 90 and

45 hours, respectively. Most of the problems of this book were prepared for the

intermediate and final examinations. In an examination test, a student is requested

to solve two or three problems in 3 hours. The more complex problems are pre-

sented and discussed in detail during the classes.

The prerequisite for tackling these problems is having successfully passed the

first year of undergraduate studies in physics, mathematics, or engineering,

acquiring a good knowledge of elementary classical mechanics, linear algebra,

differential calculus for functions of one variable. Obviously, classical electro-

magnetism requires differential calculus involving functions of more than one

variable. This, in our undergraduate programme, is taught in parallel courses

of the second year. Typically, however, the basic concepts needed to write down the

Maxwell equations in differential form are introduced and discussed in our elec-

tromagnetism course, in the simplest possible way. Actually, while we do not

require higher mathematical methods as a prerequisite, the electromagnetism course

is probably the place where the students will encounter for the first time topics such

as Fourier series and transform, at least in a heuristic way.

In our approach to teaching, we are convinced that checking the ability to solve a

problem is the best way, or perhaps the only way, to verify the understanding of the

theory. At the same time, the problems offer examples of the application

of the theory to the real world. For this reason, we present each problem with a title

that often highlights its connection to different areas of physics or technology,
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so that the book is also a survey of historical discoveries and applications of

classical electromagnetism. We tried in particular to pick examples from different

contexts, such as, e.g., astrophysics or geophysics, and to include topics that, for

some reason, seem not to be considered in several important textbooks, such as,

e.g., radiation pressure or homopolar/unipolar motors and generators. We also

included a few examples inspired by recent and modern research areas, including,

e.g., optical metamaterials, plasmonics, superintense lasers. These latter topics

show that nowadays, more than 150 years after Maxwell's equations, classical

electromagnetism is still a vital area, which continuously needs to be understood

and revisited in its deeper aspects. These certainly cannot be covered in detail in a

second-year course, but a selection of examples (with the removal of unnecessary

mathematical complexity) can serve as a useful introduction to them. In our

problems, the students can have a first glance at “advanced” topics such as, e.g., the

angular momentum of light, longitudinal waves and surface plasmons, the princi-

ples of laser cooling and of optomechanics, or the longstanding issue of radiation

friction. At the same time, they can find the essential notions on, e.g., how an

optical fiber works, where a plasma display gets its name from, or the principles of

funny homemade electrical motors seen on YouTube.

The organization of our book is inspired by at least two sources, the book

Selected Problems in Theoretical Physics (ETS Pisa, 1992, in Italian; World

Scientific, 1994, in English) by our former teachers and colleagues A. Di Giacomo,

G. Paffuti and P. Rossi, and the great archive of Physics Examples and other

Pedagogic Diversions by Prof. K. McDonald (http://puhep1.princeton.edu/%

7Emcdonald/examples/) which includes probably the widest source of advanced

problems and examples in classical electromagnetism. Both these collections are

aimed at graduate and postgraduate students, while our aim is to present a set of

problems and examples with valuable physical contents, but accessible at the

undergraduate level, although hopefully also a useful reference for the graduate

student as well.

Because of our scientific background, our inspirations mostly come from the

physics of condensed matter, materials and plasmas as well as from optics, atomic

physics and laser–matter interactions. It can be argued that most of these subjects

essentially require the knowledge of quantum mechanics. However, many phe-

nomena and applications can be introduced within a classical framework, at least in

a phenomenological way. In addition, since classical electromagnetism is the first

field theory met by the students, the detailed study of its properties (with particular

regard to conservation laws, symmetry relations and relativistic covariance) pro-

vides an important training for the study of wave mechanics and quantum field

theories, that the students will encounter in their further years of physics study.

In our book (and in the preparation of tests and examinations as well), we tried to

introduce as many original problems as possible, so that we believe that we have

reached a substantial degree of novelty with respect to previous textbooks.

Of course, the book also contains problems and examples which can be found in

existing literature: this is unavoidable since many classical electromagnetism

problems are, indeed, classics! In any case, the solutions constitute the most
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important part of the book. We did our best to make the solutions as complete and

detailed as possible, taking typical questions, doubts and possible mistakes by the

students into account. When appropriate, alternative paths to the solutions are

presented. To some extent, we tried not to bypass tricky concepts and ostensible

ambiguities or “paradoxes” which, in classical electromagnetism, may appear more

often than one would expect.

The sequence of Chapters 1–12 follows the typical order in which the contents

are presented during the course, each chapter focusing on a well-defined topic.

Chapter 13 contains a set of problems where concepts from different chapters are

used, and may serve for a general review. To our knowledge, in some under-

graduate programs the second-year physics may be “lighter” than at our department,

i.e., mostly limited to the contents presented in the first six chapters of our book

(i.e., up to Maxwell's equations) plus some preliminary coverage of radiation

(Chapter 10) and wave propagation (Chapter 11). Probably this would be the choice

also for physics courses in the mathematics or engineering programs. In a physics

program, most of the contents of our Chapters 7–12 might be possibly presented in

a more advanced course at the third year, for which we believe our book can still be

an appropriate tool.

Of course, this book of problems must be accompanied by a good textbook

explaining the theory of the electromagnetic field in detail. In our course, in

addition to lecture notes (unpublished so far), we mostly recommend the volume II

of the celebrated Feynman Lectures on Physics and the volume 2 of the Berkeley

Physics Course by E. M. Purcell. For some advanced topics, the famous Classical

Electrodynamics by J. D. Jackson is also recommended, although most of this book

is adequate for a higher course. The formulas and brief descriptions given at the

beginning of the chapter are not meant at all to provide a complete survey of the-

oretical concepts, and should serve mostly as a quick reference for most important

equations and to clarify the notation we use as well.

In the first Chapters 1–6, we use both the SI and Gaussian c.g.s. system of units.

This choice was made because, while we are aware of the wide use of SI units, still

we believe the Gaussian system to be the most appropriate for electromagnetism

because of fundamental reasons, such as the appearance of a single fundamental

constant (the speed of light c) or the same physical dimensions for the electric and

magnetic fields, which seems very appropriate when one realizes that such fields are

parts of the same object, the electromagnetic field. As a compromise we used both

units in that part of the book which would serve for a “lighter” and more general

course as defined above, and switched definitely (except for a few problems) to

Gaussian units in the “advanced” part of the book, i.e., Chapters 7–13. This choice

is similar to what made in the 3rd Edition of the above-mentioned book by Jackson.

Problem-solving can be one of the most difficult tasks for the young physicist,

but also one of the most rewarding and entertaining ones. This is even truer for the

older physicist who tries to create a new problem, and admittedly we learned a lot

from this activity which we pursued for 15 years (some say that the only person

who certainly learns something in a course is the teacher!). Over this long time,

occasionally we shared this effort and amusement with colleagues including in
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particular Francesco Ceccherini, Fulvio Cornolti, Vanni Ghimenti, and Pietro

Menotti, whom we wish to warmly acknowledge. We also thank Giuseppe Bertin

for a critical reading of the manuscript. Our final thanks go to the students who did

their best to solve these problems, contributing to an essential extent to improve

them.

Pisa, Tuscany, Italy Andrea Macchi

May 2017 Giovanni Moruzzi

Francesco Pegoraro
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Chapter 1

Basics of Electrostatics

Topics. The electric charge. The electric field. The superposition principle. Gauss’s

law. Symmetry considerations. The electric field of simple charge distributions

(plane layer, straight wire, sphere). Point charges and Coulomb’s law. The equations

of electrostatics. Potential energy and electric potential. The equations of Poisson

and Laplace. Electrostatic energy. Multipole expansions. The field of an electric

dipole.

Units. An aim of this book is to provide formulas compatible with both SI (French:

Système International d’Unités) units and Gaussian units in Chapters 1–6, while

only Gaussian units will be used in Chapters 7–13. This is achieved by introducing

some system-of-units-dependent constants.

The first constant we need is Coulomb’s constant, ke, which for instance appears

in the expression for the force between two electric point charges q1 and q2 in vac-

uum, with position vectors r1 and r2, respectively. The Coulomb force acting, for

instance, on q1 is

f1 = ke
q1q2

|r1− r2|
2

r̂12 , (1.1)

where ke is Coulomb’s constant, dependent on the units used for force, electric

charge, and length. The vector r12 = r1 − r2 is the distance from q2 to q1, point-

ing towards q1, and r̂12 the corresponding unit vector. Coulomb’s constant is

ke =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

4πε0
8.987 · · · ×109 N ·m2 ·C

−2
≃ 9×109 m/F SI

1 Gaussian.
(1.2)

Constant ε0 ≃ 8.854187817620 · · · × 10−12 F/m is the so-called “dielectric permit-

tivity of free space”, and is defined by the formula
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ε0 =
1

μ0c2
, (1.3)

where μ0 = 4π×10−7 H/m (by definition) is the vacuum magnetic permeability, and

c is the speed of light in vacuum, c = 299792458 m/s (this is a precise value, since

the length of the meter is defined from this constant and the international standard

for time).

Basic equations The two basic equations of this Chapter are, in differential and

integral form,

∇ ·E = 4πke ̺,

∮

S

E ·dS = 4πke

∫

V

̺d3r (1.4)

∇×E = 0 ,

∮

C

E ·dℓ = 0 . (1.5)

where E(r, t) is the electric field, and ̺(r, t) is the volume charge density, at a point

of location vector r at time t. The infinitesimal volume element is d3r = dxdydz.

In (1.4) the functions to be integrated are evaluated over an arbitrary volume V , or

over the surface S enclosing the volume V . The function to be integrated in (1.5) is

evaluated over an arbitrary closed path C. Since ∇×E = 0, it is possible to define an

electric potential ϕ = ϕ(r) such that

E = −∇ϕ . (1.6)

The general expression of the potential generated by a given charge distribution ̺(r)

is

ϕ(r) = ke

∫

V

̺(r′)

|r− r′|
d3r′ . (1.7)

The force acting on a volume charge distribution ̺(r) is

f =

∫

V

̺(r′)E(r′)d3r′ . (1.8)

As a consequence, the force acting on a point charge q located at r (which corre-

sponds to a charge distribution ̺(r′) = qδ(r−r′), with δ(r) the Dirac-delta function)

is

f = qE(r) . (1.9)

The electrostatic energy Ues associated with a given distribution of electric

charges and fields is given by the following expressions

Ues =

∫

V

E2

8πke
d3r . (1.10)
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Ues =
1

2

∫

V

̺ϕd3r , (1.11)

Equations (1.10–1.11) are valid provided that the volume integrals are finite and

that all involved quantities are well defined.

The multipole expansion allows us to obtain simple expressions for the leading

terms of the potential and field generated by a charge distribution at a distance much

larger than its extension. In the following we will need only the expansion up to the

dipole term,

ϕ(r) ≃ ke

(

Q

r
+

p · r

r3
+ . . .

)

, (1.12)

where Q is the total charge of the distribution and the electric dipole moment is

p ≡

∫

V

r′ρ(r′)d3r′ . (1.13)

If Q = 0, then p is independent on the choice of the origin of the reference frame.

The field generated by a dipolar distribution centered at r = 0 is

E = ke
3r̂(p · r̂)−p

r3
. (1.14)

We will briefly refer to a localized charge distribution having a dipole moment as

“an electric dipole” (the simplest case being two opposite point charges ±q with a

spatial separation δ, so that p = qδ). A dipole placed in an external field Eext has a

potential energy

Up = −p ·Eext . (1.15)

1.1 Overlapping Charged Spheres

Fig. 1.1

We assume that a neutral sphere of radius R can be

regarded as the superposition of two “rigid” spheres:

one of uniform positive charge density +̺0, com-

prising the nuclei of the atoms, and a second sphere

of the same radius, but of negative uniform charge

density −̺0, comprising the electrons. We further

assume that its is possible to shift the two spheres

relative to each other by a quantity δ, as shown in

Fig. 1.1, without perturbing the internal structure of

either sphere.

Find the electrostatic field generated by the global charge distribution
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a) in the “inner” region, where the two spheres overlap,

b) in the “outer” region, i.e., outside both spheres, discussing the limit of small

displacements δ≪ R.

1.2 Charged Sphere with Internal Spherical Cavity

a
ObOa

d b

Fig. 1.2

A sphere of radius a has uniform charge density ̺

over all its volume, excluding a spherical cavity of

radius b < a, where ̺ = 0. The center of the cavity,

Ob is located at a distance d, with |d| < (a−b), from

the center of the sphere, Oa. The mass distribution of

the sphere is proportional to its charge distribution.

a) Find the electric field inside the cavity.

Now we apply an external, uniform electric field E0.

Find

b) the force on the sphere,

c) the torque with respect to the center of the sphere, and the torque with respect to

the center of mass.

1.3 Energy of a Charged Sphere

A total charge Q is distributed uniformly over the volume of a sphere of radius R.

Evaluate the electrostatic energy of this charge configuration in the following three

alternative ways:

a) Evaluate the work needed to assemble the charged sphere by moving successive

infinitesimals shells of charge from infinity to their final location.

b) Evaluate the volume integral of uE = |E|
2/(8πke) where E is the electric field

[Eq. (1.10)].

c) Evaluate the volume integral of ̺φ/2 where ̺ is the charge density and φ is the

electrostatic potential [Eq. (1.11)]. Discuss the differences with the calculation made

in b).
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1.4 Plasma Oscillations

L

h

Fig. 1.3

A square metal slab of side L has thickness h, with

h≪ L. The conduction-electron and ion densities in

the slab are ne and ni = ne/Z, respectively, Z being

the ion charge.

An external electric field shifts all conduction

electrons by the same amount δ, such that |δ| ≪ h,

perpendicularly to the base of the slab. We assume

that both ne and ni are constant, that the ion lattice is

unperturbed by the external field, and that boundary

effects are negligible.

a) Evaluate the electrostatic field generated by the

displacement of the electrons.

b) Evaluate the electrostatic energy of the system.

Now the external field is removed, and the “electron slab” starts oscillating around

its equilibrium position.

c) Find the oscillation frequency, at the small displacement limit (δ≪ h).

1.5 Mie Oscillations

Now, instead of a the metal slab of Problem 1.4, consider a metal sphere of radius R.

Initially, all the conduction electrons (ne per unit volume) are displaced by −δ (with

δ≪ R) by an external electric field, analogously to Problem 1.1.

a) At time t = 0 the external field is suddenly removed. Describe the subsequent

motion of the conduction electrons under the action of the self-consistent electro-

static field, neglecting the boundary effects on the electrons close to the surface of

the sphere.

b) At the limit δ → 0 (but assuming eneδ = σ0 to remain finite, i.e., the charge

distribution is a surface density), find the electrostatic energy of the sphere as a

function of δ and use the result to discuss the electron motion as in point a).

1.6 Coulomb explosions

At t = 0 we have a spherical cloud of radius R and total charge Q, comprising N

point-like particles. Each particle has charge q = Q/N and mass m. The particle

density is uniform, and all particles are at rest.
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a) Evaluate the electrostatic potential energy of a charge located at a distance r < R

from the center at t = 0.

r0

R

rs(t)

Fig. 1.4

b) Due to the Coulomb repul-

sion, the cloud begins to expand

radially, keeping its spherical

symmetry. Assume that the

particles do not overtake one

another, i.e., that if two par-

ticles were initially located at

r1(0) and r2(0), with r2(0) >

r1(0), then r2(t) > r1(t) at any

subsequent time t > 0. Con-

sider the particles located in

the infinitesimal spherical shell

r0 < rs < r0 +dr, with r0 +dr < R, at t = 0. Show that the equation of motion of the

layer is

m
d2rs

dt2
= ke

qQ

r2
s

(

r0

R

)3

(1.16)

c) Find the initial position of the particles that acquire the maximum kinetic energy

during the cloud expansion, and determinate the value of such maximum energy.

d) Find the energy spectrum, i.e., the distribution of the particles as a function of

their final kinetic energy. Compare the total kinetic energy with the potential energy

initially stored in the electrostatic field.

e) Show that the particle density remains spatially uniform during the expansion.

1.7 Plane and Cylindrical Coulomb Explosions

Particles of identical mass m and charge q are distributed with zero initial velocity

and uniform density n0 in the infinite slab |x|< a/2 at t = 0. For t > 0 the slab expands

because of the electrostatic repulsion between the pairs of particles.

a) Find the equation of motion for the particles, its solution, and the kinetic energy

acquired by the particles.

b) Consider the analogous problem of the explosion of a uniform distribution having

cylindrical symmetry.
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1.8 Collision of two Charged Spheres

Two rigid spheres have the same radius R and the same mass M, and opposite

charges ±Q. Both charges are uniformly and rigidly distributed over the volumes of

the two spheres. The two spheres are initially at rest, at a distance x0 ≫ R between

their centers, such that their interaction energy is negligible compared to the sum of

their “internal” (construction) energies.

a) Evaluate the initial energy of the system.

The two spheres, having opposite charges, attract each other, and start moving at

t = 0.

b) Evaluate the velocity of the spheres when they touch each other (i.e. when the

distance between their centers is x = 2R).

c) Assume that, after touching, the two spheres penetrate each other without friction.

Evaluate the velocity of the spheres when the two centers overlap (x = 0).

1.9 Oscillations in a Positively Charged Conducting Sphere

An electrically neutral metal sphere of radius a contains N conduction electrons. A

fraction f of the conduction electrons (0< f < 1) is removed from the sphere, and the

remaining (1− f )N conduction electrons redistribute themselves to an equilibrium

configurations, while the N lattice ions remain fixed.

a) Evaluate the conduction-electron density and the radius of their distribution in

the sphere.

Now the conduction-electron sphere is rigidly displaced by δ relatively to the ion

lattice, with |δ| small enough for the conduction-electron sphere to remain inside the

ion sphere.

b) Evaluate the electric field inside the conduction-electron sphere.

c) Evaluate the oscillation frequency of the conduction-electron sphere when it is

released.

1.10 Interaction between a Point Charge and an Electric Dipole

q θ
r p

Fig. 1.5

An electric dipole p is located at a distance

r from a point charge q, as in Fig. 1.5. The

angle between p and r is θ.

a) Evaluate the electrostatic force on the

dipole.

b) Evaluate the torque acting on the dipole.
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1.11 Electric Field of a Charged Hemispherical Surface

σ
E

R

Fig. 1.6

A hemispherical surface of radius R is uniformly

charged with surface charge density σ. Evaluate the

electric field and potential at the center of curva-

ture (hint: start from the electric field of a uniformly

charged ring along its axis).



Chapter 2

Electrostatics of Conductors

Topics. The electrostatic potential in vacuum. The uniqueness theorem for Poisson’s

equation. Laplace’s equation, harmonic functions and their properties. Boundary

conditions at the surfaces of conductors: Dirichlet, Neumann and mixed boundary

conditions. The capacity of a conductor. Plane, cylindrical and spherical capaci-

tors. Electrostatic field and electrostatic pressure at the surface of a conductor. The

method of image charges: point charges in front of plane and spherical conductors.

Basic equations Poisson’s equation is

∇2ϕ(r) = −4πke ̺(r) , (2.1)

where ϕ(r) is the electrostatic potential, and ̺(r) is the electric charge density, at the

point of vector position r. The solution of Poisson’s equation is unique if one of the

following boundary conditions is true

1. Dirichlet boundary condition: ϕ is known and well defined on all of the

boundary surfaces.

2. Neumann boundary condition: E = −∇ϕ is known and well defined on all of

the boundary surfaces.

3. Modified Neumann boundary condition (also called Robin boundary con-

dition): conditions where boundaries are specified as conductors with known

charges.

4. Mixed boundary conditions: a combination of Dirichlet, Neumann, and mod-

ified Neumann boundary conditions:

Laplace’s equation is the special case of Poisson’s equation

∇2ϕ(r) = 0 , (2.2)

which is valid in vacuum.

c© Springer International Publishing AG 2017
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2.1 Metal Sphere in an External Field

A a metal sphere of radius R consists of a “rigid” lattice of ions, each of charge +Ze,

and valence electrons each of charge −e. We denote by ni the ion density, and by

ne the electron density. The net charge of the sphere is zero, therefore ne = Zni. The

sphere is located in an external, constant, and uniform electric field E0. The field

causes a displacement δ of the “electron sea” with respect to the ion lattice, so that

the total field inside the sphere, E, is zero. Using Problem 1.1 as a model, evaluate

a) the displacement δ, giving a numerical estimate for E0 = 103 V/m;

b) the field generated by the sphere at its exterior, as a function of E0;

c) the surface charge density on the sphere.

2.2 Electrostatic Energy with Image Charges

qa

(a)

x

q

b

a

O

(c)

a

d

(b)

−q

+q

Fig. 2.1

Consider the configurations of

point charges in the presence

of conducting planes shown in

Fig. 2.1. For each case, find the

solution for the electrostatic

potential over the whole space

and evaluate the electrostatic

energy of the system. Use the

method of image charges.

a) A charge q is located at a

distance a from an infinite con-

ducting plane.

b) Two opposite charges +q

and −q are at a distance d from

each other, both at the same

distance a from an infinite conducting plane.

c) A charge q is at distances a and b, respectively, from two infinite conducting half

planes forming a right dihedral angle.

2.3 Fields Generated by Surface Charge Densities

Consider the case a) of Problem 2.2: we have a point charge q at a distance a from

an infinite conducting plane.

a) Evaluate the surface charge density σ, and the total induced charge qind, on the

plane.
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b) Now assume to have a nonconducting plane with the same surface charge distri-

bution as in point a). Find the electric field in the whole space.

c) A non conducting spherical surface of radius a has the same charge distribution

as the conducting sphere of Problem 2.4. Evaluate the electric field in the whole

space.

2.4 A Point Charge in Front of a Conducting Sphere

q

d

a

Fig. 2.2

A point charge q is located at a distance d from

the center of a conducting grounded sphere of radius

a < d. Evaluate

a) the electric potential ϕ over the whole space;

b) the force on the point charge;

c) the electrostatic energy of the system.

Answer the above questions also in the case of an

isolated, uncharged conducting sphere.

2.5 Dipoles and Spheres

θ

p

(a)

(b)

(c)

a

a

a

d

d

d

p

p

Fig. 2.3

An electric dipole p is located at a distance d from

the center of a conducting sphere of radius a. Evalu-

ate the electrostatic potential ϕ over the whole space

assuming that

a) p is perpendicular to the direction from p to the

center of the sphere,

b) p is directed towards the center of the sphere.

c) p forms an arbitrary angle θ with respect to the

straight line passing through the center of the sphere

and the dipole location.

In all three cases consider the two possibilities of

i) a grounded sphere, and ii) an electrically unchar-

ged isolated sphere.

2.6 Coulomb’s Experiment

Coulomb, in his original experiment, measured the force between two charged metal

spheres, rather than the force between two “point charges”. We know that the field

of a sphere whose surface is uniformly charged equals the field of a point charge,
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and that the force between two charge distributions, each of spherical symmetry,

equals the force between two point charges

F = ke
q1q2

r2
r̂, (2.3)

where q1 and q2 are the charges on the spheres, and r = r r̂ is the distance between

the two centers of symmetry. But we also know that electric induction modifies the

surface charge densities of conductors, so that a correction to (2.3) is needed. We

expect the induction effects to be important if the radius a of the spheres is not

negligibly small with respect to r.

a
Q Q

r

Fig. 2.4

a) Using the method of image

charges, find the solution for

the electrical potential outside

the spheres as a series expan-

sion, and identify the expan-

sion parameter. For simplic-

ity, assume the spheres to be

identical and to have the same

charge Q, as in the figure.

b) Evaluate the lowest order correction to the force between the spheres with respect

to Coulomb’s law (2.3).

2.7 A Solution Looking for a Problem

An electric dipole p is located at the origin of a Cartesian frame, parallel to the z

axis, in the presence of a uniform electric field E, also parallel to the z axis.

E

x

y
p

z(a) (b) (c)

a b
p0

E0

Fig. 2.5

a) Find the total electrostatic potential ϕ = ϕ(r), with the condition ϕ = 0 on the xy

plane. Show that, in addition to the xy plane, there is another equipotential surface

with ϕ = 0, that this surface is spherical, and calculate its radius R.

Now use the result from point a) to find the electric potential in the whole space for

the following problems:
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b) A conducting sphere of radius a is placed in a uniform electric field E0;

c) a dipole p0 is placed in the center of a conducting spherical shell of radius b.

d) Find the solution to problem c) using the method of image charges.

2.8 Electrically Connected Spheres

Two conducting spheres of radii a and b < a, respectively, are connected by a

thin metal wire of negligible capacitance. The centers of the two spheres are at a

distance d≫ a > b from each other. A total net charge Q is located on the system.

Evaluate to zeroth order approximation, neglecting the induction effects on the

surfaces of the two spheres,

a) how the charge Q is partitioned between the two spheres,

b
a

d

Fig. 2.6

b) the value V of the elec-

trostatic potential of the sys-

tem (assuming zero potential

at infinity) and the capacitance

C = Q/V ,

c) the electric field at the sur-

face of each sphere, comparing

the intensities and discussing

the limit b→ 0.

d) Now take the electrostatic

induction effects into account

and improve the preceding

results to the first order in a/d

and b/d.

2.9 A Charge Inside a Conducting Shell

d

q
R

R

O

Fig. 2.7

A point charge q is located at a distance d from

the center of a spherical conducting shell of internal

radius R > d, and external radius R′ > R. The shell is

grounded, so that its electric potential is zero.

a) Find the electric potential and the electric field in

the whole space.

b) Evaluate the force acting on the charge.

c) Show that the total charge induced on the surface

of the internal sphere is −q.

d) How does the answer to a) change if the shell is not grounded, but electrically

isolated with a total charge equal to zero?
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2.10 A Charged Wire in Front of a Cylindrical Conductor

P P

xa a

r r

Q

K
=

1.
5

K = 3.0
K

=
2.0

y

K
=

1
.0

K
=

1
.2

K
=

1
/ 1

.5

K
=

1/ 2
K = 1/ 3

Fig. 2.8

We have two fixed points P ≡ (−a,0)

and P′ ≡ (+a,0) on the xy plane, and a

third, generic point Q ≡ (x,y). Let r =

QP and r′ = QP′ be the distances of Q

from P and P′, respectively.

a) Show that the family of curves

defined by the equation r/r′ = K, with

K > 0 a constant, is the family of cir-

cumferences drawn in Fig. 2.8.

b) Now consider the electrostatic field

generated by two straight infinite, par-

allel wires of linear charge densities

λ and −λ, respectively. We choose a

Cartesian reference frame such that

the z axis is parallel to the wires, and

the two wires intersect the xy plane at

(−a,0) and (+a,0), respectively. Use the geometrical result of point a) to show that

the equipotential surfaces of the electrostatic field generated by the two wires are

infinite cylindrical surfaces whose intersections with the xy plane are the circumfer-

ences shown in Fig. 2.8.

λ

d

R

Fig. 2.9

c) Use the results of points a) and b) to

solve the following problem by the method

of image charges. An infinite straight wire

of linear charge density λ is located in front

of an infinite conducting cylindrical surface

of radius R. The wire is parallel to the axis

of the cylinder, and the distance between the

wire and axis of the cylinder is d, with d > R,

as shown in Fig. 2.9. Find the electrostatic

potential in the whole space.

2.11 Hemispherical Conducting Surfaces

O O

(a)

a

q

R

R

q

(b)

b
θθ

Fig. 2.10

Find the configurations of image

charges that solve the problems repr-

esented in Fig. 2.10a, 2.10b, and the

corresponding induced-charge distrib-

utions, remembering that the electric

potential of an infinite conductor is

zero.

a) The plane infinite surface of a con-

ductor has a hemispherical boss of
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radius R, with curvature center in O. A point charge q is located at a distance a > R

from O, the line segment from O to q forms an angle θ with the symmetry axis of

the problem.

b) An infinite conductor has a hemispherical cavity of radius R. A point charge q is

located inside the cavity, at a distance b < R from O. Again, the line segment from

O to q forms an angle θ with the symmetry axis of the problem.

2.12 The Force Between the Plates of a Capacitor

The plates of a flat, parallel-plate capacitor have surface S and separation h≪
√

S .

Find the force between the plates, both for an isolated capacitor (as a function of

the constant charge Q), and for a capacitor connected to an ideal voltage source (as

a function of the constant voltage V). In both cases, use two different methods, i.e.,

calculate the force

a) from the electrostatic pressure on the surface of the plates,

b) from the expression of the energy as a function of the distance between the plates.

2.13 Electrostatic Pressure on a Conducting Sphere

A conducting sphere of radius a has a net charge Q and it is electrically isolated.

Find the electrostatic pressure at the surface of the sphere

a) directly, from the surface charge density and the electric field on the sphere,

b) by evaluating variation of the electrostatic energy with respect to a.

c) Now calculate again the pressure on the sphere, assuming that the sphere is not

isolated, but connected to an ideal voltage source, keeping the sphere at the constant

potential V with respect to infinity.

2.14 Conducting Prolate Ellipsoid

a) Show that the equipotential surfaces generated by a uniformly charged line

segment are prolate ellipsoids of revolution, with the focal points coinciding with

the end points of the segment.

b) Evaluate the electric field generated by a conducting prolate ellipsoid of revolu-

tion of major axis 2a and minor axis 2b, carrying a charge Q. Evaluate the electric

capacity of the ellipsoid, and the capacity of a confocal ellipsoidal capacitor.

c) Use the above results to evaluate an approximation for the capacity of a straight

conducting cylindrical wire of length h, and diameter 2b.



Chapter 3

Electrostatics of Dielectric Media

Topics. Polarization charges. Dielectrics. Permanent and induced polarization. The

auxiliary vector D. Boundary conditions at the surface of dielectrics. Relative dielec-

tric permittivity εr.

Basic equations We P denote the electric polarization (electric dipole moment per

unit volume) of a material. Some special materials have a permanent non-zero elec-

tric polarization, but in most cases a polarization appears only in the presence of an

electric field E. We consider linear dielectric materials, for which P is parallel and

proportional to E, thus

P =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ε0χE , where χ = εr −1 , SI

χE , where χ =
εr−1

4π
, Gaussian,

(3.1)

where χ is called the electric susceptibility and εr the relative permittivity of the

material.1 Notice that εr is a dimensionless quantity with the same numerical value

both in SI and Gaussian units.

We shall denote by ̺b and ̺f the volume densities of bound electric charge and

of free electric charge, respectively, and by σb and σf the surface densities of bound

charge. Quantities ̺b and σb are related to the electric polarization P by

̺b = −∇ ·P , and σb = P · n̂ , (3.2)

1In anisotropic media (such as non-cubic crystals) P and E may be not parallel to each other, in this

case χ and εr are actually second rank tensors. Here, however, we are interested only in isotropic

and homogeneous media, for which χ and εr are scalar quantities.

c© Springer International Publishing AG 2017
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where n̂ is the unit vector pointing outwards from the boundary surface of the polar-

ized material. We may thus rewrite (1.4) as

∇ ·E =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̺f +̺b

ε0
=
̺f

ε0
−

1

ε0
∇ ·P , SI

4π(̺f +̺b) = 4π̺f −4π∇ ·P , Gaussian.
(3.3)

We can also introduce the auxiliary vector D (also called electrical displacement)

defined as

D =

{

ε0E+P , SI,

E+4πP , Gaussian,
(3.4)

so that

∇ ·D =

{

̺f , SI,

4π̺f , Gaussian.
(3.5)

In addition, ∇×E = 0 holds in static conditions. Thus, at the interface between two

different dielectric materials, the component of E parallel to the interface surface,

and the perpendicular component of D are continuous. In a material of electric per-

mittivity εr

D =

{

ε0εrE , SI

εrE , Gaussian.
(3.6)

To facilitate the use of the basic equations in this chapter also with the system

independent units, we summarize some of them in the following table:

Table 3.1 Basic equations for electrostatics in dielectrics

Quantity SI Gaussian System independent

Polarization P of an isotropic

dielectric medium of relative

permittivity εr

ε0(εr −1) E
εr −1

4π
E

εr −1

4πke
E

∇ ·E
̺f +̺b

ε0
4π(̺f +̺b) 4πke (̺f +̺b)

∇ · (εrE)
̺f

ε0
4π̺f 4πke ̺f

∇×E 0 0 0

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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3.1 An Artificial Dielectric

We have a tenuous suspension of conducting spheres, each of radius a, in a liquid

dielectric material of relative dielectric permittivity εr = 1. The number of spheres

per unit volume is n.

a) Evaluate the dielectric susceptibility χ of the system as a function of the fraction

of the volume filled by the conducting spheres. Use the mean field approximation

(MFA), according to which the electric field may be assumed to be uniform through-

out the medium.

b) The MFA requires the field generated by a single sphere on its nearest neighbor

to be much smaller than the mean field due to the collective contribution of all the

spheres. Derive a condition on n and a for the validity of the MFA.

3.2 Charge in Front of a Dielectric Half-Space

q ε r

d

Fig. 3.1

A plane divides the whole space into two halves, one

of which is empty and the other filled by a dielectric

medium of relative permittivity εr. A point charge q

is located in vacuum at a distance d from the medium

as shown in Fig. 3.1.

a) Find the electric potential and electric field in the

whole space, using the method of image charges.

b) Evaluate the surface polarization charge density

on the interface plane, and the total polarization

charge of the plane.

c) Find the field generated by the polarization charge

in the whole space.

3.3 An Electrically Polarized Sphere

Ferroelectricity is the property of some materials like Rochelle salt, carnauba wax,

barium titanate, lead titanate, . . . , that possess a spontaneous electric polarization in

the absence of external fields.

a) Consider a ferroelectric sphere of radius a and uniform polarization P, in the

absence of external fields, and evaluate the electric field in the whole space (hint:

see Problem 1.1).

b) Now consider again a ferroelectric sphere of radius a and uniform polarization P,

but with a concentrical spherical hole of radius b < a. Evaluate the electric field and

the displacement field in the whole space.

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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3.4 Dielectric Sphere in an External Field

A dielectric sphere of relative permittivity εr and radius a is placed in vacuum, in an

initially uniform external electric field E0, as shown in Fig. 3.2.

a) Find the electric field in the whole space (hint: use the results of Problem 3.3 and

the superposition principle).

a

E0

ε r

Fig. 3.2

a

Ed

ε r

Fig. 3.3

A spherical cavity of radius a is located inside an infinite dielectric medium of

relative permittivity εr, as in Fig. 3.3. The system is in the presence of an external

electric field which, far from the cavity (i.e., at a distance≫ a), is uniform and equal

to Ed.

b) Find the electric field in the whole space.

3.5 Refraction of the Electric Field at a Dielectric Boundary

θ

E0

ε r h

L

Fig. 3.4

A dielectric slab of thickness h, length L≫ h, and

dielectric permittivity εr, is placed in an external

uniform electric field E0. The angle between E0

and the normal to the slab surface is θ, as in Fig.

3.4.

a) Find the electric field E′ inside the slab and

the angle θ′ between E′ and the normal to the

slab surface.

b) Find the polarization charge densities in the

dielectric medium.

c) Evaluate the torque exerted by the external field on the slab, if any.

Neglect all boundary effects.

http://dx.doi.org/10.1007/978-3-319-63133-2_3
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3.6 Contact Force between a Conducting Slab and a Dielectric

Half-Space

R

ε r

S

(a)

ε rQS

h

xO

(b)

Fig. 3.5

A conducting square slab of surface S = a2

and thickness h ≪ a is in contact with a

dielectric medium of relative permittivity εr.

The dielectric medium is much larger than the

slab, thus, we can consider it as a hemisphere

of radius R≫ a, with the slab in contact with

its base, as shown in Fig. 3.5.a. Part b) of Fig.

3.5 is an enlargement of the area enclosed

in the dashed rectangle of part a). With this

assumption, we can assume the slab to be in

contact with a semi-infinite medium filling

the half-space x > 0, while we have vacuum

in the half space x < 0. The conducting slab

carries a total charge Q, and we assume that the boundary effects at its edges are

negligible.

a) Considering both the cases in which the slab is in contact with the dielectric, and

in which it is displaced by an amount ξ≪ a to the left, find the free charge densities

on the left (σ1) and right (σ2) surfaces of the slab, the polarization charge density

(σb) at the surface of the dielectric, and the electric field in the whole space.

b) Calculate the electrostatic force acting on the slab.

c) How do these results change if the dielectric medium is assumed to be an infinite

(in the y and z directions) layer of finite thickness w in the x direction?

3.7 A Conducting Sphere between two

Dielectrics
R 2ε r2

1ε r1

Q

Fig. 3.6

A conducting sphere of mass density ̺ and

radius R floats in a liquid of density ̺1 > 2̺

and relative dielectric permittivity εr1 in the

presence of the gravitational field. Above the

liquid there is a gaseous medium of mass den-

sity ̺2≪ ̺ and relative dielectric permittivity

εr2 < εr1. The sphere is given a charge Q such that exactly one half of its volume is

submerged. Evaluate

a) the electric field in the whole space, the surface free charge densities on the

sphere, and the surface polarization charge densities of the two dielectrics, as func-

tions of R, εr1, εr2 and Q;

b) the value of Q.
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3.8 Measuring the Dielectric Constant of a Liquid

+

−

a

b

h

g

εr

V

Fig. 3.7

A cylindrical capacitor has internal radius a,

external radius b> a, and length ℓ≫ b, so that

the boundary effects are negligible. The axis

of the capacitor is vertical, and the bottom of

the capacitor is immersed in a vessel contain-

ing a liquid of mass density ̺ and dielectric

permittivity εr, in the presence of the gravi-

tational field. If a voltage source maintains a

potential difference V between the two cylin-

drical plates, the liquid rises for a height h in

the cylindrical shell between the plates. Show

how one can evaluate the value of εr from the

measurement of h.

(This is a problem from Ref. [1]).

3.9 A Conducting Cylinder in a Dielectric Liquid

b

h

εr

Q

L

a

L
−

h

Fig. 3.8

A conducting cylinder of mass M, radius a and

height L≫ a is immersed for a depth L−h (with

h≫ a) in a dielectric liquid having relative per-

mittivity εr. The liquid is contained in a cylindri-

cal vessel of radius b > a, with conducting lateral

surface. A free charge Q is located on the inter-

nal cylinder. Boundary effects are assumed to be

negligible. The cylinder is free to move vertically

preserving its axis. Find

a) the electric field E(a) at the surface of the

internal cylinder, and the surface charge densi-

ties;

b) the electric field in the region between the lat-

eral surface of the internal cylinder and the con-

tainer of the liquid (a < r < b);

c) the electrostatic force on the internal cylinder.

d) Assume that the internal cylinder has mass M,

and the liquid has mass density ̺ > M/(πa2L). Discuss the equilibrium conditions.
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3.10 A Dielectric Slab in Contact with a Charged Conductor

A dielectric slab of relative permeability εr, thickness h and surface S ≫ h is in

contact with a plane conducting surface, carrying a uniform surface charge density

σ, as in Fig. 3.9. Boundary effects are negligible.

a) Evaluate the electric field in the whole space.

b) Evaluate the polarization surface-charge densities on the dielectric surfaces.

ε r σ

S

h

conductor

Fig. 3.9

c) How do the answers to points a)

and b) change if the slab is moved

at a distance s < h from the conduct-

ing plane? How does the electrostatic

energy of the system depend on s? Is

there an interaction force between slab

and conductor?

3.11 A Transversally Polarized Cylinder

a

z

P

Fig. 3.10

An infinite cylinder of radius a has an internal

uniform electric polarization P, perpendicular

to its axis, as shown in Fig. 3.10. Evaluate the

electric charge density on the lateral surface

of the cylinder, the electric potential and the

electric field in the whole space.

Hint: see Problem 1.1.

Reference

1. J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York,1975, Problem 4.13

http://dx.doi.org/10.1007/978-3-319-63133-2_1


Chapter 4
Electric Currents

Topics. Electric current density. Continuity equation. Stationary electric currents.

Drude model for a conductor. Ohm’s law. Joule heating.

Basic equations The electric current density J = J(r, t) is the local flow of charge

per unit area and surface, which appears in the continuity equation

∂tρ +∇ ·J = 0 , (4.1)

that states the conservation of the total electric charge. In integral form

dQ

dt
≡

∫
V

∂tρ d3r =
∫

S
J ·dS ≡ I . (4.2)

where Q is the total charge contained into the volume V bounded by the closed

surface S. Usually the flux (or electric current) I is defined also for an open surface,

as the total charge crossing the surface per unit time.

The quantity

w = J ·E (4.3)

is interpreted as the work per unit time and volume done by the EM fields on a

distribution of currents.

In a model of matter where there are several species of charged particles (labeled

with the index s) each having a charge qs, a density of particles ns = ns(r, t) and

flowing with velocity vs = vs(r, t), the current density is given by

J = ∑
s

qsnsvs . (4.4)

In a metal where electrons are the only charge carrier, J = −eneve.

c© Springer International Publishing AG 2017
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Drude’s model for electrons in a metal assumes the classical equation of motion

me

dve

dt
= −eE−meνve , (4.5)

where ν is a phenomenological friction coefficient. In a steady state (dve/dt = 0)

this leads to Ohm’s law for a conductor

J =
nee2

meν
E ≡ σE ≡

E

ρ
, (4.6)

where σ is the conductivity and ρ = 1/σ the resistivity of the material.1

In a material satisfying (4.6), the latter implies that the current I flowing between

two points (or layers) at different values of the electric potential, the potential drop

V is proportional to I, leading to the definition of the resistance R:

V = RI . (4.7)

In the common (but particular) example of a straight conductor of length ℓ and

cross-section area A, such that the electric field is uniform inside the conductor,

one obtains R = ℓ/(σA) = ρℓ/A. The equations (Kirchoff’s laws) describing DC

electric circuits, i.e. networks of interconnected conductors each satisfying (4.7),

can be found in any textbook and will not be repeated here.

Equation (4.7) is known as Ohm’s law, but it is appropriate to use this name

also for the underlying and more general Equation (4.6) due to G. Kirchoff. An

Ohmic conductor is defined as any material which satisfies (4.6). For such materials,

Equation (4.3) gives the power per unit volume dissipated into the material as a

consequence of the friction term,

J ·E = σE2 =
E2

ρ
, (4.8)

which causes the heating of the material (Joule effect). For the above mentioned

example, this is equivalent to state that the power dissipated into the whole conduc-

tor is W = RI2.

Notice that all the above equations have the same form both in the SI and in

the Gaussian system. However, the units of measure are different. For example, the

current I is measure in C/s or Ampère (1 A = 1 C/S) in SI, and in statCoulomb/s or

“statAmpère” in Gaussian units, while the resistance is measured in Ohms (Ω ) in

SI and in s/cm in Gaussian units. For the latter, σ has the dimensions of the inverse

of a time, and is thus measured in s−1, while ρ can be measured in s.

1Unfortunately the lower-case Greek letters commonly used as symbols for resistivity and con-

ductivity are the same used for volume and surface charge densities, respectively. However, the

meaning of the symbols used in the formulas throughout the book should be clear from the con-

text.
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4.1 The Tolman-Stewart Experiment

ω
S

a

2b

Fig. 4.1

The experiment of Tolman and Stewart [1] was con-

ceived in order to show that conduction in metals is due

to electrons. A metallic torus (ring) of major radius a

and minor radius b is spun at a very high angular veloc-

ity ω around its axis. We assume that b ≪ a, so that the

radial motion of the charge carriers can be neglected.

The cross section of the ring is S = πb2.

At time t = 0 the rotation of the ring is suddenly

stopped. A current I = I(t) flowing in the ring and

decaying in time is observed for t > 0.

a) Using the Drude model for conduction in metals, find I = I(t) and its characteris-

tic decay time τ for a ring of copper (electrical conductivity σ ≃ 107 Ω−1m−1 and

electron density ne = 8.5×1028 m−3).

b) Evaluate the charge that flows in the ring from t = 0 to t = ∞ as a function of σ .

4.2 Charge Relaxation in a Conducting Sphere

A conducting sphere of radius a and conductivity σ has a net charge Q. At time

t = 0 the charge is uniformly distributed over the volume of the sphere, with a

volume charge density ρ0 = Q(3/4πa3). Since in static conditions the charge in

an isolated conductor can only be located on the conductor’s surface, for t > 0 the

charge progressively migrates to the surface of the sphere.

a) Evaluate the time evolution of the charge distribution on the sphere, and of the

electric field everywhere in space. Give a numerical value for the time constant τ in

the case of a good conductor (e.g., copper).

b) Evaluate the time evolution of the electrostatic energy of the sphere during the

charge redistribution.

c) Show that the energy dissipated into Joule heat equals the loss of electrostatic

energy.

4.3 A Coaxial Resistor

a

h

b

V

J

Fig. 4.2

Two coaxial cylindrical plates of very low

resistivity ρ0 have radii a and b, respectively,

with a < b. The space between the cylindrical

plates is filled up to a height h with a medium

of resistivity ρ ≫ ρ0, as in Fig. 4.2. A voltage

source maintains a constant potential differ-

ence V between the plates.
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a) Evaluate the resistance R of the system.

b) Discuss the relation between R and the capacitance of a cylindrical capacitor of

radii a and b.

4.4 Electrical Resistance between two Submerged Spheres (1)

a b
ρ

x

Fig. 4.3

a) Two highly conducting spheres of radii a

and b, respectively, are deeply submerged in

the water of a lake, at a distance x from each

other, with x ≫ a and x ≫ b. The water of the

lake has resistivity ρ . Evaluate the approx-

imate resistance between the two spheres,

using the results of the answer to point b) of

problem 4.3.

a b

ρ

x

Fig. 4.4

b) Now suppose that the two spheres are not

completely submerged, but just sunk so that

their centers are exactly at the level of the sur-

face of the lake, as shown in the figure. Eval-

uate the resistance between them.

4.5 Electrical Resistance between two Submerged Spheres (2)

ε r

ρ
a V

Fig. 4.5

Two identical, perfectly con-

ducting spheres of radius a are

immersed in a fluid of resis-

tivity ρ and relative electric

permittivity εr. The distance

between the centers of the two

spheres is ℓ ≫ a. A constant

potential difference difference

V is maintained between the spheres by a suitable voltage source.

As a first approximation, assume the charge to be uniformly distributed over the

surface of each sphere, neglecting electrostatic induction effects. Evaluate

a) the charge on each sphere,

b) the resistance R and the current I flowing between the spheres.

c) Find the temporal law and the decay time for the discharge of the spheres when

the voltage source is disconnected.

d) Discuss how electrostatic induction modifies the previous answers, to the lowest

order in a/ℓ.



4.6 Effects of non-uniform resistivity 29

4.6 Effects of non-uniform resistivity

Two geometrically identical cylindrical conductors have both height h and radius

a, but different resistivities ρ1 and ρ2. The two cylinders are connected in series

as in Fig. 4.6, forming a single conducting cylinder of height 2h and cross section

S = πa2. The two opposite bases are connected to a voltage source maintaining a

potential difference V through the system, as shown in the figure.

V

h h

a
ρ1 ρ 2

Fig. 4.6

a) Evaluate the electric fields,

the electric current and the

current densities flowing in

the two cylinders in stationary

conditions.

b) Evaluate the surface charge

densities at the surface separat-

ing the two materials, and at

the base surfaces connected to

the voltage source.

4.7 Charge Decay in a Lossy Spherical Capacitor

b

a

σ ε r

−Q0

+Q0

O

Fig. 4.7

A spherical capacitor has internal radius a

and external radius b. The spherical shell a <
r < b is filled by a lossy dielectric medium

of relative dielectric permittivity εr and con-

ductivity σ . At time t = 0, the charge of the

capacitor is Q0.

a) Evaluate the time constant for the dis-

charge of the capacitor.

b) Evaluate the power dissipated by Joule

heating inside the capacitor, and compare it

with the temporal variation of the electrosta-

tic energy.

4.8 Dielectric-Barrier Discharge

The plates of a parallel-plate capacitor have surface S and separation d. The space

between the plates is divided into two layers, parallel to the plates, of thickness

d1 and d2, respectively, with d1 +d2 = d, as in Fig. 4.8. The layer of thickness d1 is

filled with a gas of negligible dielectric susceptibility (χ = 0, εr ≃ 1), while the layer

of thickness d2 is filled with a dielectric material of dielectric permittivity εr > 1.

The electric potential difference between the plates, V , is kept constant by a voltage

source. Boundary effects can be neglected.
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+

−
d2

d1 V

ε r

Fig. 4.8

a) Find the electric field inside the capacitor.

An ionization discharge is started in the

gaseous layer at t = 0, and the gas instan-

taneously becomes conducting. We assume

that, for t > 0, the ionized gas can be consid-

ered as an Ohmic conductor of constant and

uniform resistivity ρ .

b) After a sufficiently long time we observe

that the current stops flowing in the gas, and

the system reaches a steady state (i.e., all

physical quantities are constant). Find the

electric field in the capacitor in these con-

ditions, and the surface free charge density

between the two layers.

+

−

J

d2

d1
V

ε r

Fig. 4.9

c) Find the time dependence of the electric

field during the transient phase (t > 0), and

the relaxation time needed by the system to

reach the steady state condition.

4.9 Charge Distribution in a Long Cylindrical Conductor

V

0
z

h−h

E

Ja
ρ

Fig. 4.10

Consider a conducting homogeneous

cylindrical wire of radius a and length

2h, with a ≪ h, and resistivity ρ . The

wire is connected to a voltage source

that keeps a constant potential dif-

ference V across its ends. We know

that the electric field E and, conse-

quently, the current density J = E/ρ
must be uniform inside the wire, see

Problem 4.6. This implies the pres-

ence of charge distributions generat-

ing the uniform field. Only surface charge distributions are allowed in a conductor

in steady conditions. The charge distributions on the bases of the cylinder are not

sufficient for generating an even approximately uniform field in our case of a ≪ 2h.

Thus, a charge density σL must be present also on the lateral surface. Verify that a

surface charge density σL = γz, where γ is a constant and z is the coordinate along

the cylinder axis, leads to a good approximation for the field inside the conductor

far from the ends [2].
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4.10 An Infinite Resistor Ladder

R

R

R

R

R

R

R

R

R

R

R

R

A

B

Fig. 4.11

An infinite resistor ladder consists

of an infinite number of resistors,

all of resistance R, arranged as in

Fig. 4.11. Evaluate the resistance mea-

sured between the terminals A and B.

Hint: use an invariance property of the

ladder.

References

1. R.C. Tolman, T.D. Stewart, The electromotive force produced by the acceleration of metals.

Phys. Rev. 8, 97–116 (1916)

2. C.A. Coombes, H. Laue, Electric fields and charge distributions associated with steady currents.

Am. J. Phys. 49, 450–451 (1981)



Chapter 5

Magnetostatics

Topics. Stationary magnetic field in vacuum. Lorentz force. Motion of an electric

point charge in a magnetic field. The magnetic force on a current. The magnetic field

of steady currents. “Mechanical” energy of a circuit in a magnetic field. Biot-Savart

law. Ampères’ circuital law. The magnetism of matter. Volume and surface magne-

tization current densities (bound currents). Magnetic susceptibility. The “auxiliary”

vector H. Magnetic field boundary conditions. Equivalent magnetic charge method.

Units. In order to write formulas compatible with both SI and Gaussian units, we

introduce two new “system dependent” constants, km and bm, defined as

km =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

µ0

4π
, SI,

1

c
, Gaussian,

bm =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1, SI,

1

c
, Gaussian,

(5.1)

where, again, µ0 = 4π×10−7 T·m/A is the “magnetic permeability of vacuum”, and

c = 29979245800 cm/s is the light speed in vacuum.

Basic equations The two Maxwell equations for the magnetic field B relevant to

this chapter are

∇ ·B = 0 , (5.2)

∇×B = 4πkm J . (5.3)

Equation (5.2) is always valid (in the absence of magnetic monopoles), while (5.3) is

valid in the absence of time-dependent electric fields. It is thus possible to introduce

a vector potential A, such that

B(r) = ∇×A(r) , (5.4)

c© Springer International Publishing AG 2017
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Imposing the gauge condition ∇ ·A = 0, the vector potential satisfies

∇2A(r) = −4πkmJ(r) , (5.5)

which is the vector analogous of Poisson’s equation (2.1). Thus,

A(r) = km

∫

V

J(r′)

|r− r′|
d3r′. (5.6)

A particular and typical case is that of closed “line” currents, e.g. flowing in a

circuit having wires of negligible thickness. In such case one may replace J(r′)d3r′

by I(r′)dℓ and calculate the field via the Biot-Savart formula

B(r) = km

∮

I(r− r′)dℓ× (r− r′)

|r− r′|3
, (5.7)

where the integral is extended to the closed path of the current.

The force exerted by a magnetic field over a distribution of currents is

f = bm

∫

v

J(r′)×B(r′) d3r′. (5.8)

A single point charge q located at r and moving with velocity v is equivalent to a

current density j(r′) = qδ(r− r′)v, so that the magnetic force on the point charge is

f = bmqv×B . (5.9)

The energy associated to a magnetic field distribution is given by the expression

Um =

∫

V

bmB2

8πkmµr
d3r . (5.10)

In the absence of magnetic monopoles, the first non-vanishing term of the multi-

pole expansion is the magnetic dipole m

m =
1

2

∫

V

r′×J(r′)d3r′. (5.11)

In the simple case of a small plane coil of area A and electric current I this reduces

to the line integral over the coil path C

m =
I

2

∮

C

r′×dℓ = AIn̂ , (5.12)

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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where n̂ is perpendicular to the coil surface. A magnetic dipole term located at r = 0

generates a magnetic field

B(r) = km
3r̂(m · r̂)−m

r3
. (5.13)

In an external magnetic field Bext, the magnetic force on a magnetic dipole is

f = (m ·∇)Bext . (5.14)

The magnetization density M of a material is defined as the dipole moment per

unit volue,

M =
dm

dV
. (5.15)

Ampère equivalence theorem states that a magnetization density M=M(r) is always

equivalent to a distribution of volume current density Jm and surface current density

Km bound to the material, and given by

Jm =
1

bm
∇×M , (5.16)

Km =
1

bm
M · n̂ , (5.17)

where n̂ is the unit normal vector pointing outwards from the boundary surface of

the material. The total volume and surface current densities are thus

J = Jf +Jm , K =Kf +Km , (5.18)

the subscript f denoting the free (e.g., conduction) current densities.

The auxiliary field H is defined as

H =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

B

µ0
−M , SI,

B−4πM , Gaussian,

(5.19)

so that Equation (5.3) becomes

∇×H = 4πkm Jf , (5.20)

A material may have either a permanent magnetization, or a magnetization

induced by a magnetic field. In linear, isotropic diamagnetic and paramagnetic mate-

rials M is parallel and proportional to H,

M = χmH , (5.21)
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where χm is the magnetic susceptibility of the material, with χm < 0 for diamag-

netic materials and χm > 0 for paramagnetic materials.1. The (relative) magnetic

permeability µr is defined as

µr =

{

1+χm , SI,

1+4πχm , Gaussian.
(5.22)

We have µr < 1 for diamagnetic materials and µr > 1 for paramagnetic materials.

Inserting (5.21) and (5.22) into (5.19) we obtain

B =

{

µ0µr H , SI,

µr H , Gaussian,
(5.23)

valid for isotropic, non-ferromagnetic, materials.

To facilitate the use of the basic equations in this chapter also with the system

independent units, we summarize some of them in the following table (Table 5.1):

Table 5.1 Basic equations for magnetostatics

Quantity SI Gaussian System independent

∇×B µ0J
4π

c
J 4πkmJ

Magnetic force on a

point charge q moving

with velocity v in a

magnetic field B

qv×B q
v

c
×B bm qv×B

Magnetic field dB

generated by a wire

element dℓ carrying a

current I at a distance

r (Biot-Savart’s law)

µ0

4π

Idℓ× r̂

r2

1

c

Idℓ× r̂

r2
km

Idℓ× r̂

r2

Magnetic moment m

of a ring circuit

carrying an electric

current I, and

enclosing a surface S

IS
1

c
I S bm I S

Volumetric magnetic

energy density um

B2

2µ0µr

B2

8πµr

bmB2

8πkmµr

1The magnetization is expressed in terms of the auxiliary field H, rather than in terms of the

magnetic field B, for historical reasons. In ferromagnetic materials there is no one-to-one corre-

spondence between M and H (between M and B) because of magnetic hysteresis
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5.1 The Rowland Experiment

a

ω

b

V

a

h

h

+−

Fig. 5.1

This experiment by Henry

A. Rowland (1876) aimed at

showing that moving charges

generate magnetic fields. A

metallic disk or radius a and

thickness b ≪ a is electrically

charged and kept in rotation

with a constant angular veloc-

ity ω.

a) The disk rotates between

two conducting plates, one at a distance h ≃ 0.5 cm above its upper surface, and

the other at h below its lower surface, as in Fig. 5.1. The two plates are connected to

the same terminal of a voltage source maintaining a potential difference V0 = 104 V,

while the other terminal is connected to the disk by a sliding contact. Evaluate the

surface charge density on the disk surfaces.

b) Calculate the magnetic field Bc near the center of the disk and the magnetic field

component Br parallel and close to the disk surfaces, as a function of the distance r

from the axis. Typical experimental values were a = 10 cm, and ω ≃ 2π×102 rad/s

(period T = 2π/ω = 10−2 s).

c) The field component Br generated by the disk at r = a can be measured by ori-

enting the apparatus so that r̂ is perpendicular to the Earth’s magnetic field B⊕, of

strength B⊕ ≃ 5× 10−5 T, and measuring the deviation of a magnetic needle when

the disk rotates. Find the deviation angle of the needle.

5.2 Pinch Effect in a Cylindrical Wire

a
−e

J

Fig. 5.2

A uniform current density J

flows in an infinite cylindri-

cal conductor of radius a. The

current carriers are electrons

(charge −e) of number volume

density ne and drift velocity v,

parallel to the axis of the cylin-

der. Ions can be considered as fixed in space, with uniform number density ni and

charge Ze. The system is globally neutral.

a) Evaluate the magnetic field generated by the current, and the resulting magnetic

force on the electrons.
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The magnetic force modifies the volume distribution of the electrons and this, in

turn, gives origin to a static electric field. At equilibrium the magnetic force on the

electrons is compensated by the electrostatic force.

b) Evaluate the electric field that compensates the magnetic force on the electrons,

and the corresponding charge distribution.

c) Evaluate the effect in “standard” conditions for a good Ohmic conductor.

5.3 A Magnetic Dipole in Front of a Magnetic Half-Space

x

m

−d
O

y

µr

1 2

Fig. 5.3

The plane x = 0 divides the space into two half-

spaces, labeled 1 and 2, respectively. We have vac-

uum in half-space 1, while half-space 2 is filled by

a medium of magnetic permittivity µr. A magnetic

dipole m, parallel to the y axis, is located in vacuum

at position x = −d. Find

a) the magnetic field B in the whole space,

b) the force acting on the magnetic dipole.

5.4 Magnetic Levitation

In a given region of space we have a static magnetic field, which, in a cylindrical

reference frame (r,φ,z), is symmetric around the z axis, i.e., is independent of φ,

and can be written B = B(r,z). The field component along z is Bz(z) = B0z/L, where

B0 and L are constant parameters.

a) Find the radial component Br close to the z axis.

A particle of magnetic polarizability α (such that it acquires an induced magnetic

dipole moment m = αB in a magnetic field B), is located close to the z axis.

b) Find the potential energy of the particle in the magnetic field.

c) Discuss the existence of equilibrium positions for the particle, and find the fre-

quency of oscillations for small displacements from equilibrium either along z or r

(let M be the mass of the particle).

5.5 Uniformly Magnetized Cylinder

A magnetically “hard” cylinder of radius R and height h, with R ≪ h, carries a

uniform magnetization M parallel to its axis.
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a) Show that the volume magnetization current density Jm is zero inside the cylin-

der, while the lateral surface of the cylinder carries a surface magnetization current

density Km, with |Km| = |M|.

b) Find the magnetic field B inside and outside the cylinder, at the limit h→∞.

c) Now consider the opposite case of a “flat” cylinder, i.e., h≪ R, and evaluate the

magnetic field B0 at the center of the cylinder.

d) According to the result of c), limR/h→∞B0 = 0. Obtain the same result using the

equivalent magnetic charge method.

5.6 Charged Particle in Crossed Electric and Magnetic Fields

B +

−

S h
UV radiation

V
e−

Fig. 5.4

A particle of electric charge q and

mass m is initially at rest in the pres-

ence of a uniform electric field E and a

uniform magnetic field B, perpendicu-

lar to E.

a) Describe the subsequent motion of

the particle.

b) Use the above result to discuss the

following problem. We have a parallel-plate capacitor with surface S , plate sepa-

ration h and voltage V , as in Fig. 5.4. A uniform magnetic field B is applied to

the capacitor, perpendicular to the capacitor electric field, i.e., parallel to the plates.

Ultraviolet radiation causes the negative plate to emit electrons with zero initial

velocity. Evaluate the minimum value of B for which the electrons cannot reach the

positive plate.

5.7 Cylindrical Conductor with an Off-Center Cavity

a
b

J

h

Fig. 5.5

An infinite cylindrical conductor of radius a has a

cylindrical cavity of radius b bored parallel to, and

centered at a distance h < a − b from the cylinder

axis as in Fig. 5.5, which shows a section of the

conductor. The current density J is perpendicular to,

and uniform over the section of the conductor (i.e.,

excluding the cavity!). The figure shows a section of

the conductor. Evaluate the magnetic field B, show-

ing that it is uniform inside the cavity.
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5.8 Conducting Cylinder in a Magnetic Field

A conducting cylinder of radius a and height h≫ a rotates around its axis at constant

angular velocity ω in a uniform magnetic field B0, parallel to the cylinder axis.

h

ωB0

a

Fig. 5.6

a) Evaluate the magnetic force acting on the con-

duction electrons, assuming ω = 2π × 102 s−1 and

B = 5× 10−5 T (the Earth’s magnetic field), and the

ratio of the magnetic force to the centrifugal force.

Assume that the cylinder is rotating in stationary

conditions. Evaluate

b) the electric field inside the cylinder, and the vol-

ume and surface charge densities;

c) the magnetic field B1 generated by the rotation

currents inside the cylinder, and the order of magni-

tude of B1/B0 (assume a ≈ 0.1m).

5.9 Rotating Cylindrical Capacitor

a

−Q

ω

b

z

h

Q

Fig. 5.7

The concentric cylindrical shells of a cylindrical

capacitor have radii a and b > a, respectively, and

height h ≫ b. The capacitor charge is Q, with +Q

on the inner shell of radius a, and −Q on the outer

shell of radius b, as in Fig. 5.7. The whole capacitor

rotates about its axis with angular velocity ω = 2π/T .

Boundary effects are negligible.

a) Evaluate the magnetic field B generated by the

rotating capacitor over the whole space.

b) Evaluate the magnetic forces on the charges of the

two rotating cylindrical shells, and compare them to

the electrostatic forces.

5.10 Magnetized Spheres

a) A sphere of radius R has a uniform and permanent magnetization M. Calculate

the magnetic field inside and outside the sphere. (Hint: see Problem 3.3.)

b) A sphere of radius R has a total charge Q uniformly distributed on its surface.

The sphere rotates with angular velocity ω. Calculate the magnetic field inside and

outside the sphere.

http://dx.doi.org/10.1007/978-3-319-63133-2_3
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c) A sphere of radius R has a magnetic permeability µr and is located in an external,

uniform magnetic field B0. Calculate the total magnetic field inside and outside

the sphere, discussing the limit of a perfectly diamagnetic material (µr = 0), as a

superconductor.



Chapter 6

Magnetic Induction and Time-Varying Fields

Topics. Magnetic induction. Faraday’s law. Electromotive force. The slowly varying

current approximation. Mutual inductance and self-inductance. Energy stored in an

inductor. Magnetically coupled circuits. Magnetic energy. Displacement current and

the complete Maxwell’s equations.

Basic equations In the presence of a time-varying magnetic field, Equation (1.5) is

modified into the exact equation

∇×E = −bm∂tB , (6.1)

so that the line integral of ∇×E around a closed path C is

∮

C

E ·dℓ = −bm

∫

S

∂tB ·dS (6.2)

Thus, for a fixed path, the line integral of E equals the time derivative of the flux of

the time-varying field B through a surface delimited by the contour C.

The electromotive force (emf) E in a real circuit having moving parts is the work

done by the Lorentz force on a unit charge over the circuit path,

E =

∮

circ

(E+bmV×B) ·dℓ ≡ −bm
d

dt
Φcirc(B) , (6.3)

where V is the velocity of the circuit element; now in (6.3) the flux Φcirc(B) of B

through the circuit may vary because of both the temporal variation of B and of the

circuit geometry. Equation (6.3) is the general Faraday’s law of induction.

For a system of two electric circuits, the magnetic flux through each circuit can

be written as a function of the currents flowing in each circuit,

Φ2 = L1I1+M21I2 , Φ1 = L2I2+M12I1 , (6.4)
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where the terms containing the (self-)inductance coefficients Li are the contribution

to flux generated by the circuit itself, and the terms containing the mutual inductance

coefficients M21 = M12 give the flux generated by one circuit over the other.

Finally, for time-varying fields the complete Maxwell’s equation replacing (5.3)

is

∇×B = 4πkm J+
km

ke
∂tE =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

4π

c
J+

1

c
∂tE (Gaussian),

μ0J+μ0ε0∂tE (SI.)
(6.5)

6.1 A Square Wave Generator

B

ωt

O
a

y

x

ω

Fig. 6.1

We have a uniform magnetic field B = B ẑ in the

half space x < 0 of a Cartesian coordinate system,

while the field is zero for x > 0. A semicircular

loop of radius a and resistance R lyes in the xy

plane, with the center of the full circumference at

the origin O of our coordinate system, as in Fig.

6.1. The loop rotates around the z axis at constant

angular velocity ω.

First, assume that the self-inductance of the coil

is negligible and evaluate

a) the current circulating in the coil;

b) the torque exerted by the magnetic forces on the

coil, and the mechanical power needed to keep the

coil in rotation. Compare this to the electric power dissipated in the coil.

c) Now consider the presence of the self-inductance of the coil, and discuss how it

affects the answer to point a).

6.2 A Coil Moving in an Inhomogeneous Magnetic Field

a
R

z

B(r, z)

Fig. 6.2

A magnetic field has rotational symmetry around

a straight line, that we choose as the longitudinal

axis, z, of a cylindrical reference frame (r,φ,z). The

z component of the field on the z axis, Bz(0,z), is

known and equals Bz(0,z) = B0 z/L, where L is a

constant. A circular coil has radius a, resistance R,

and axis coinciding with the z axis of our reference

frame. The coil performs a translational motion at

constant velocity v = v ẑ, and its radius a is assumed

to be small enough that the magnetic field is always

approximately uniform over the surface limited by

the coil.

http://dx.doi.org/10.1007/978-3-319-63133-2_5
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a) Find the current I flowing in the coil.

b) Find the power P dissipated by the coil due to Joule heating, and the correspond-

ing frictional force f on the coil.

c) Calculate f as the resultant magnetic force on the loop carrying the

current I.

6.3 A Circuit with “Free-Falling” Parts

In the presence of the Earth’s gravitational field g, two high-conducting bars are

located vertically, at a distance a from each other. A uniform, horizontal magnetic

field B is perpendicular to the plane defined by the vertical bars. Two horizontal

bars, both of mass m, resistance R/2 and length a, are constrained to move, without

friction, with their ends steadily in contact with the two vertical bars. The resistance

of the two fixed vertical bars is assumed to be much smaller than R/2, so that the

net resistance of the resulting rectangular circuit is, with very good approximation,

always R, independently of the positions of the two horizontal bars.

R 2

R 2

B

R 2

R 2

1

2

g

aa

B

Fig. 6.3

First, assume that the upper horizontal

bar is fixed, while the lower bar starts a

“free” fall at t = 0. Let’s denote by v =

v(t) the velocity of the falling bar at time

t, with v(0) = 0.

a) Write the equation of motion for the

falling bar, find the solution for v(t)

and show that, asymptotically, the bar

approaches a terminal velocity vt.

b) Evaluate the power dissipated in the

circuit by Joule heating when v(t) = vt,

and the mechanical work done per unit

time by gravity in these conditions.

Now consider the case in which, at t = 0,

the upper bar already has a velocity v0 � 0

directed downwards, while the lower bar

starts a “free” fall.

c) Write the equations of motion for both

falling bars, and discuss the asymptotic behavior of their velocities v1(t) and v2(t),

and of the current in the circuit I(t).
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6.4 The Tethered Satellite

M

r

h

R

Fig. 6.4

The Earth’s magnetic field at the Earth’s sur-

face roughly approximates the field of a mag-

netic dipole placed at the Earth’s center. Its

magnitude ranges from 2.5 × 10−5 to 6.5 ×

10−5 T (0.25 to 0.65 G in Gaussian units),

with a value Beq ≃ 3.2×10−5 T at the equator.

A satellite moves on the magnetic equatorial

plane with a velocity v ≃ 8km/s at a constant

height h ≃ 100km over the Earth’s surface, as

shown in the figure (not to scale!). A tether

(leash, or lead line), consisting in a metal cable of length ℓ = 1 km, hangs from the

satellite, pointing to the Earth’s center.

a) Find the electromotive force on the wire.

b) The satellite is traveling through the ionosphere, where charge carriers in outer

space are available to close the circuit, thus a current can flow along the wire.

Assume that the ionosphere is rigidly rotating at the same angular velocity as the

Earth. Find the power dissipated by Joule heating in the wire and the mechanical

force on the wire as a function of its resistance R.

6.5 Eddy Currents in a Solenoid

˜

µr

I0 cosωt

R

σ z

Fig. 6.5

A long solenoid consists of a helical coil

of n turns per unit length wound around a

soft ferromagnetic cylinder of radius R and

length ℓ≫ R. The ferromagnetic material has

a relative magnetic permittivity μr, and an

electrical conductivity σ. An AC current I =

I0 cosωt flows in the coil.

a) Find the electric field induced in the

solenoid.

b) Explain why the cylinder warms up and evaluate the dissipated power.

c) Evaluate how the induced currents affect the magnetic field in the solenoid.

(Boundary effects and the displacement current are assumed to be negligible).
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6.6 Feynman’s “Paradox”

A non-conducting ring of radius R is at rest on the xy plane, with its center at the

origin of the coordinate system. The ring has mass m, negligible thickness, and an

electric charge Q distributed uniformly on it, so that the ring has a linear charge

density λ = Q/(2πa). The ring is free to rotate around its axis without friction.

B

B

R

x

y

λ

a

I(t)

Fig. 6.6

A superconducting circular ring of radius a≪

R, coaxial to the charged ring and carrying an

electric current I0, also lies on the xy plane, as

in Fig. 6.6. At time t = 0 the superconducting

loop is heated above its critical temperature,

and switches to normal conductivity. Conse-

quently, its current decays to zero according

to a law I = I(t).

a) Neglecting self-induction effects, evaluate

the angular velocity ω = ω(t) of the charged

ring as a function of the current I(t) in the

smaller ring. Evaluate the final angular veloc-

ity ωf , and the final angular momentum Lf , of the charged ring.

b) Evaluate the magnetic field at the ring center, Bc, generated by the rotation of the

ring.

c) Discuss how the results of a) are modified by taking the “self-inductance” L of

the charged ring into account.

This is one of the possible versions of the so-called Feynman’s disc paradox

[2], presented in Vol. II, Section 17-4, of The Feynman’s Lectures on Physics. The

apparent paradox arises because the initial total mechanical angular momentum of

the system is zero, no external torque is applied, and one could (wrongly) expect the

final total angular momentum to be zero, i.e., no rotation of the ring. This conclusion

is wrong, of course, for reasons further discussed in Prob. 8.8.

6.7 Induced Electric Currents in the Ocean

A fluid flows with uniform velocity v in the presence of a constant and uniform

magnetic field B perpendicular to v. The fluid has an electrical conductivity σ and

volumetric mass density ̺.

a) Evaluate the electric current density J induced in the fluid.

b) Give a numerical estimate of |J| for the terrestrial oceans, knowing that the Earth’s

magnetic field has an average value B ≃ 0.5G = 5×10−5 T, the conductivity of sea

water is σ ≃ 4Ω−1m−1 (σ ≃ 3.6× 1010 s−1cm−1 in Gaussian units), and a typical

value of the flow velocity is v = 1m/s.

c) Due to the presence of the induced current, the magnetic force tends to slow down

the fluid. Estimate the order of magnitude for the time constant of this effect.

http://dx.doi.org/10.1007/978-3-319-63133-2_8
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6.8 A Magnetized Sphere as Unipolar Motor
R

V
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+
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ω
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z

a
O

Fig. 6.7

A magnetized, non-conducting sphere has radius a,

mass m and permanent, uniform magnetization M

throughout its volume. An electric circuit is formed

by pasting a conducting wire along a half meridian,

from the pole P to the equator, and another conduct-

ing wire around the whole equator of the sphere, as

shown in Fig. 6.7. The circuit is closed by two brush

contacts (the white arrows in Fig. 6.7) connecting the

pole P, and a point A of the wire on the equator of

the sphere, to a voltage source of electromotive force

V . The resulting circuit has resistance R.

a) Evaluate the torque on the sphere when a current I flows in the circuit.

b) If the sphere is free to rotate without friction around the z axis of a cylindrical

coordinate system, parallel to M and passing through the center O of the sphere, it

reaches asymptotically a terminal angular velocity ωt. Evaluated ωt and the charac-

teristic time of the system.

6.9 Induction Heating

Consider a homogeneous material of electrical conductivity σ and relative mag-

netic permeability μr, both real, positive and independent of frequency. The electric

permittivity is εr = 1.

a) Show that, if the displacement current density ∂tE/(4πke) can be neglected, the

magnetic field B inside the material obeys the equation

∂tB = α∇
2B , (6.6)

and determine the value of the real constant α.

The material fills the half-space x > 0 in the presence of a uniform oscillating

magnetic field B0 = ŷ B0 cos(ωt) = ŷ Re
(

B0 e−iωt
)

in the half-space x < 0.

b) Evaluate the magnetic field B(x, t) for x > 0, assuming that the displacement cur-

rent is negligible. Discuss under what conditions the result is a good approximation

for the case of a finite slab of the material.

c) Evaluate the power dissipated in the medium by Joule heating.
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6.10 A Magnetized Cylinder as DC Generator
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Fig. 6.8

A long hard-iron cylinder has height h, radius

a ≪ h, and permanent, uniform magnetiza-

tion M throughout its volume. The magneti-

zation is parallel to the cylinder axis, which

we choose as the z axis of a cylindrical coor-

dinate system (r,φ,z).

a) Show that the magnetic field inside the

cylinder, far from the two bases, is B0 ≃

4π(km/bm)M, or B0 ≃ μ0M in SI units, B0 =

4πM in Gaussian units. Show that the magni-

tude of the z component of the field at the two

bases is Bz ≃ B0/2.

b) Two brush contacts (the white arrows in

Fig. 6.8) connect the center of the upper base

of the cylinder, A, and a point on the equator

of the cylinder, B, to a voltmeter. The cylinder

is kept in rotation around the z axis with constant angular velocity ω. Evaluate the

electromotive force measured by the voltmeter.

This problem is taken from an example of [1], Section 88, page 379.

6.11 The Faraday Disk and a Self-Sustained Dynamo

R

B

I

a A
h O

ω

Fig. 6.9

A perfectly conducting disk, of radius a and

thickness h ≪ a, rotates at constant angular

velocity ω (parallel to the disk axis), in the

presence of a uniform and constant magnetic

field B parallel to ω.

a) Evaluate the electric field E in the disk in

steady state conditions, and the correspond-

ing potential drop between the center and the

boundary of the disk (hint: the total force on

charge carriers must be zero at equilibrium).

b) We now form a closed circuit by connecting the center of the disk to a point of

the circumference by brush contacts (white arrows in the figure), as in Fig. 6.9. Let

R be the total resistance of the resulting circuit. Calculate the external torque needed

to keep the disk in rotation at constant angular speed.

c) Finally, we place the rotating disk at the center of a long solenoid of radius b > a

and n turns per unit length. The disk and the solenoid are coaxial, as shown in Fig.

6.10.
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ω
a

B

B

R
b

Fig. 6.10

The two brush contacts of point b) are now

connected to the ends of the solenoid coil,

so that the rotating disk provides the current

circulating in the turns. The total resistance

of the disk-solenoid circuit is R. The circu-

lating current is thus due to the disk rotation

and to the presence of the magnetic field B,

that the current itself generates by circulating

in the solenoid (self-sustained dynamo). Find

the value of ω for steady-state conditions.

This is an elementary model for a dynamo

self-sustained by rotation, such as the gener-

ation mechanism of the Earth’s magnetic field [3].

6.12 Mutual Induction between Circular Loops

b

y

a ω
O
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B

A

Fig. 6.11

The centers of two circular conducting loops

A and B, of radii a and b ≫ a, respectively,

are located at the origin O of a Cartesian ref-

erence frame. At time t = 0 both loops lie on

the xy plane. While the larger loop remains at

rest, the smaller loop, of resistance R, rotates

about one of its diameters, lying on the x

axis, with angular velocity ω, as shown in

Fig. 6.11. A constant current I circulates in

the larger loop.

a) Evaluate the current IA induced in loop A,

neglecting self-inductance effects.

b) Evaluate the power dissipated in loop A due to Joule heating.

c) Evaluated the torque needed to keep loop A in rotation, and the associated

mechanical power.

d) Now consider the case when loop A is at rest on the xy plane, with a constant

current I circulating in it, while loop B rotates around the x axis with constant

angular velocity ω. Evaluate the electromotive force induced in B, neglecting self-

inductance effects.
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6.13 Mutual Induction between a Solenoid and a Loop
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Fig. 6.12

A conducting loop of radius a and

resistance R is located with its cen-

ter at the center of solenoid of radius

b > a and n turns per unit length, as in

Fig. 6.12. The loop rotates at constant

angular velocity ω around a diame-

ter perpendicular to the solenoid axis,

while a steady current I flows in the

solenoid.

z
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ω

Fig. 6.13

a) Evaluate the flux of the magnetic

field through the rotating coil as a

function of time.

b) Evaluate the torque exerted by the

external forces on the loop in order

to keep it rotating at constant angular

velocity.

Now assume that the solenoid is dis-

connected from the current source,

and that the rotating loop is replaced

by a magnetic dipole m, still rotating

at constant angular velocity ω, as in Fig. 6.13.

c) Evaluate the electromotive force induced in the solenoid.

6.14 Skin Effect and Eddy Inductance in an Ohmic Wire

A long, straight cylindrical wire of radius r0 and conductivity σ (which we assume

to be real and constant in the frequency range considered) carries an alternating

current of angular frequency ω. The impedance per unit length of the wire, Zℓ, can

be defined as the ratio of the electric field at the wire surface to the total current

through the wire cross section. Evaluate Zℓ as a function of ω.
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6.15 Magnetic Pressure and Pinch effect for a Surface Current

K

a

z

Fig. 6.14

A current I flows on the surface of a cylinder of

radius a and infinite length, in the direction parallel

to the axis ẑ. The current layer has negligible thick-

ness, so that we can write I = 2πaK, with K = Kẑ the

surface current density. Calculate

a) the magnetic field B in the whole space,

b) the force per unit surface P on the cylinder surface

c) the variation of magnetic field energy (per unit

length) dUm associated to an infinitesimal variation

of the radius da. Explain why P � −(2πa)−1dUm/da

and how to calculate P correctly from the energy

variation.

Notice: for point b) it might be useful to show first

that for a magnetostatic field we have

J×B =
1

4πkm

[

(B ·∇)B−
1
2
∇B2
]

. (6.7)

6.16 Magnetic Pressure on a Solenoid

A current source supplies a constant current I to a solenoid of radius a, length h≫ a,

so that boundary effects are negligible, and n coils per unit length.

a) Evaluate the magnetic pressure on the solenoid surface directly, by computing

the magnetic force on the coils.

b) Now evaluate the magnetic pressure on the solenoid surface by evaluating the

variation of the magnetic energy of the system for an infinitesimal increase da of

the radius of the solenoid, and the corresponding work done by the current source

in order to keep I constant.
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6.17 A Homopolar Motor
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Fig. 6.16

A homopolar motor is a direct current electric motor

consisting of a circuit carrying a direct current I in

the presence of a static magnetic field. The circuit is

free to rotate around a fixed axis, so that the angle

between the current and the magnetic field remains

constant in time in each part of the circuit. The

resulting electromotive force is continuous, and the

homopolar motor needs no device, like a commuta-

tor, to switch the current flow. But it still requires

slip rings (or brush contacts) to operate. “Homopo-

lar” means that the electrical polarity of the conduc-

tor (the direction of the current flow at each point of

the circuit) and the magnetic field do not change in

time, and the motor does not require commutation. A

simple practical realization of a homopolar motor is

shown in Figs. 6.15 and 6.16, based on a Wikipedia

entry.

The idea is the following: an electrochemical cell

drives a DC current into the double circuit shown in

the figures, while a magnetic field is generated gen-

erated by the permanent magnet cylindrical located

at the bottom of the cell, in electrical contact with its

negative pole, as shown in Fig. 6.16. The magnetic

field has rotational symmetry around the z axis and

is constant in time, in spite of the magnet rotation,

and the circuit is free to rotate around the z axis. The

magnetic forces on the current-carrying circuit exert a torque, and the circuit starts

to rotate.

The dimensions, mass and resistance of the circuit (the mass includes battery and

magnet), the voltage of the battery and the magnetic field strength generated by the

magnet at each point of the circuit are known. Find the torque acting on the circuit,

and the angular velocity of the system as a function of time,
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Chapter 7

Electromagnetic Oscillators
and Wave Propagation

Topics Harmonic oscillators. Resonances. Coupled oscillators, normal modes and

eigenfrequencies. Basics of the Fourier transform. Electric circuits:

impedances, simple LC and RLC circuits. Waves. The wave equation. Monochro-

matic waves. Dispersion. Wavepackets. Phase velocity and group velocity. Trans-

mission lines.

Useful formulas for this chapter:

Fourier transform of the Gaussian function

∫ +∞
−∞

e−(αk)2

eikxdk =

√
π

α
e−x2/4α2

, (7.1)

where in general α is a complex number with Re(α) > 0.
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7.1 Coupled RLC Oscillators (1)

C0

C1LR R C1

B

L

I1 I2

A

Fig. 7.1

Consider an electrical circuit consist-

ing of two identical resistors R, two

identical inductors L, two identical

capacitors C1, and a capacitor C0, all

arranged in two meshes as in Fig. 7.1.

Let I1 and I2 be the current intensities

flowing in the left and right mesh of

the circuit, respectively, as shown in

the figure. Initially, assume that I1 and

I2 are flowing in the absence of voltage sources, and assume R = 0.

a) Find the equations for the time evolution of I1 and I2. Describe the normal modes

of the system, i.e., look for steady-state solutions of the form

I1(t) = A1e−iωt , I2(t) = A2e−iωt , (7.2)

determining the possible values for ω. Find a mechanical equivalent of the circuit.

b) Now consider the effect of the nonzero resistances R in series with each of the

two inductances L. Find the solutions for I1 and I2 in this case.

c), Evaluate I1 and I2 as functions of ω if a voltage source V = V0 e−iωt is inserted

into the left mesh of the circuit.

7.2 Coupled RLC Oscillators (2)

CL RR

B

L
A

C

L0

I1 I2

Fig. 7.2

An electrical circuit consists of two

identical resistors R, two identical

inductors L, two identical capacitors

C, and an inductor L0, all arranged in

two meshes as in Fig. 7.2. Let I1 and I2

be the currents flowing in the left and

right mesh of the circuit, respectively,

as shown in the figure.

a) Initially, assume that the currents

are flowing in the absence of sources, and assume R = 0. Find the equations for

the time evolution of I1 = I1(t) and I2 = I2(t). Determine the normal modes of the

circuit.

b) Now assume R � 0. Show that now the modes of the system are damped, and

determine the damping rates.
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7.3 Coupled RLC Oscillators (3)

R R RL L L

C C
I3I2I1

A

B

D

E

Fig. 7.3

An electrical circuit consists

of three identical resistors R,

three identical inductors L,

and two identical capacitors C,

arranged in three meshes as in

Fig. 7.3. Let I1, I2, and I3 be the

currents flowing in the three

meshes, as in the figure. Ini-

tially, assume R = 0.

a) Write the equations for the time evolution of In(t). Find a mechanical system with

three degrees of freedom and the same equations of motion as those for In(t).

b) Determine the normal oscillation modes of the system and their frequencies.

c) Now assume R � 0, and determine the decay rate of the normal modes.

7.4 The LC Ladder Network

InIn−2 In+1

. . . . . .

In−1

L C Qn−1 Qn+1Qn

A

B

F

E G

D

a

Fig. 7.4

An LC ladder network is

formed by N inductors L, and

N capacitors C, arranged as

shown in Fig. 7.4. We denote

by In = In(t) the current in

the nth inductor. Resistance

effects are assumed to be neg-

ligible. The distance between

two neighboring nodes is a.

a) Find the equations for the time evolution of In. Which is a mechanical equivalent

of the system?

b) Show that solutions exist in the form of propagating monochromatic waves

In =C ei(kna−ωt) (7.3)

and find the dispersion relation between k and ω.

c) For a given value of ω, find the allowed values of k with the boundary conditions

I0 = IN = 0.

d) Discuss the limit to a continuum system, N→∞, n→∞, a→ 0, with na→ x. In

this case inductance and capacity are continuously distributed, i.e., defined per unit

length.
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7.5 The CL Ladder Network

Vn

. . .L

C

Qn−1 Qn
Qn+1

Vn−1 Vn+1

In−1 In In+1

. . .

Fig. 7.5

Consider an infinite ladder network of

identical capacitors C and inductors

L, arranged as shown in Fig. 7.5. Let

Qn = Qn(t) be the charge on the nth

capacitor, Vn = Vn(t) the voltage drop

on the nth inductor, and In = In(t) =

dQn/dt is the current flowing in the

nth mesh, across the nth capacitor, i.e., between the network nodes at Vn−1 and

Vn.

a) Show that the currents In satisfy the coupled equations

L
d2

dt2
(In+1−2In+ In−1) =

In

C
. (7.4)

b) Show that the solutions of (7.4) have the form

In = Aei(kna−ωt) , (7.5)

with a the distance between two adjacent network elements, and determine the dis-

persion relation ω = ω(k).

7.6 Non-Dispersive Transmission Line

R

d

L = 1/GCLR

x x + x

Fig. 7.6

The “elementary cell”

scheme of a transmis-

sion line is sketched in

the figure. In addition

to the inductance L and

capacitance C typical of

the ideal “LC” trans-

mission line, there is a resistance R in series with L, which accounts for the finite

resistivity of the two conductors which form the line. In addition, we assume a finite

leakage of current between the two conductors (i.e., in the direction “transverse”

to the propagation) which is modeled by a second resistance RL in parallel to C.

The corresponding conductance is G = 1/RL. In the limit of a continuous system

with homogeneous, distributed properties, we define all quantities per unit length

by replacing R with Rℓdx, L with Lℓdx, C with Cℓdx and G with Gℓdx (it is proper

to use G as a quantity defined per unit length instead of RL because the latter is

proportional to the inverse of the length of the line).
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a) Show that the current intensity I = I(x, t) satisfies the equation

(∂2
x −LℓCℓ∂

2
t )I = (RℓCℓ +LℓGℓ)∂tI+RℓGℓI = 0 . (7.6)

b) Study the propagation of a monochromatic current signal of frequency ω, i.e.,

search for solutions

I = I0eikx−iωt , (7.7)

for x > 0 with the boundary condition I(0, t) = I0e−iωt, and determine the dispersion

relation k = k(ω).

c) Find the condition on the line parameters for which a wavepacket traveling along

the lines undergoes attenuation of the amplitude but no dispersion. This condition

corresponds to solutions having the general form

I(x, t) = e−κx f (x− vt) , (7.8)

where f (x) is an arbitrary differentiable function. Find the expression for v and κ.

7.7 An “Alternate” LC Ladder Network

L1 L2 L1 L2

C C C
I2n I2n+1I2n−1 I2n+2

Fig. 7.7

Consider an “alternate” LC ladder network comprising identical capacitors C and

inductors of value alternatively L1 and L2, as shown in Fig. 7.7. Let I2n be the current

flowing in the mesh of the nth inductor of value L2, and I2n+1 the current flowing in

the n-th inductor of value L1.
a) Show that the currents satisfy the equations

L2
d2I2n

dt2
=

1

C
(I2n−1 −2I2n + I2n+1) , L1

d2I2n+1

dt2
=

1

C
(I2n −2I2n+1 + I2n+2) . (7.9)

What is a mechanical equivalent of this network?

b) Search for solutions of (7.9) of the form

I2n = Ie ei [2nka−ωt] , I2n+1 = Io ei [(2n+1)ka−ωt] , (7.10)
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where Ie and Io (the subscripts “e” and “o” stand for even and odd, respectively)

are two constants, and determine the dispersion relation ω = ω(k). Determine the

allowed frequency range for wave propagation (for simplicity, assume L2≪ L1).

7.8 Resonances in an LC Ladder Network

Consider the semi-infinite LC ladder network shown in Fig. 7.8. Let In = In(t) be the

current flowing in the n-th mesh of the circuit. An ideal current source provides the

input current

I(t) = Ise
−iωt, (7.11)

where

a) Assuming ω < 2ω0, evaluate In(t) as a function of Is and ω.

b) Now find In(t) assuming ω > 2ω0. Hint: search for a solution of the form

In(t) = Aαne−iωt, (7.12)

determining the dependence of α on ω and ω0.

L

CI(t) I0 I1 I2 In

Fig. 7.8

L

CI(t) IN−1I1 I2I0

Fig. 7.9

Now assume that our LC ladder is finite, comprising N meshes numbered from

0 to N − 1, as in Fig. 7.9. Evaluate In(t) both for the case ω > 2ω0 and for the case

ω < 2ω0, determining for which values of ω resonances are observed.

7.9 Cyclotron Resonances (1)

Consider a particle of charge q and mass m in the presence of a constant, uniform

magnetic field B= B0 ẑ, and of a uniform electric field of amplitude E0, rotating with

frequency ω in the (x,y) plane, either in clockwise or in counterclockwise direction

(Fig. 7.10 shows the counterclockwise case).
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Fig. 7.10

a) Describe the motion of the particle as a function

of B, E, and ω, and show that, given B, a resonance

is observed for the appropriate sign and value of ω.

b) Evaluate the solution of the equations of motion

at resonance in the absence of friction.

c) Now assume the presence of a frictional force f =

−mγv, where v is the velocity of the particle. Find

the steady-state solution of the equations of motion,

and calculate the power dissipated by friction as a

function of ω.

7.10 Cyclotron Resonances (2)

Consider a particle of charge q and mass m in the presence of a constant uniform

magnetic field B = B0ẑ, and of an oscillating uniform electric field E = E0x̂cosωt.

a) Write the equations of motion (assuming no friction) and determine the resonance

frequency of the system (hint: show that the equations for the velocity components

vx and vy can be separated into two uncoupled equations of the forced harmonic

oscillator type)

b) Now assume the presence of a frictional force f = −mγv where γ≪ ω and γ≪
qB0/m. Find the steady state solution of the equations of motion and the spectrum

of the absorbed power (hint: the equations for vx and vy cannot be separated in this

case, but seeking a solution in the form v = v0e−iωt, with v0 a complex vector, will

work).

7.11 A Quasi-Gaussian Wave Packet

x

t t + 2L

Fig. 7.11

Let us consider a wave packet of Gaussian

profile propagating with velocity v along

the x axis in a non-dispersive medium,

with dispersion relation ω(k) = kv. In

these conditions, the wave packet’s pro-

file remains constant, and the packet is

described by the function g(x − vt) (Fig.

7.11)
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g(x− vt) =
√
π

A

L
eik0(x−vt)e−(x−vt)2/4L2

=

∫ +∞
−∞

g̃(k)eik(x−vt)dk, (7.13)

where L, A and k0 are constant parameters, and g̃(k) = Ae−(k−k0)2L2
is the Fourier

transform of g. Now consider a second wave packet described by a function f ,

whose Fourier transform is

f̃ (k) = g̃(k)eiφ(k) = Ae−(k−k0)2L2

eiφ(k) , (7.14)

where the “phase perturbation” φ(k) is a smooth function, that can be approximated

by its Taylor polynomial expansion of degree 2 around k = k0,

φ(k) ≃ φ(k0)+φ′(k0)(k− k0)+
1

2
φ′′(k0)(k− k0)2 , (7.15)

where φ′ and φ′′ are the first and second derivatives of φ. The second wave packet

can be considered as an “attempt” to build up a Gaussian wave packet from its

spectral components, but with some error on the relative phases of the components

themselves. Find the width of the wave packet and discuss its shape in order to show

its deviations from the Gaussian profile.

7.12 A Wave Packet along a Weakly Dispersive Line

A transmission line extends from x = 0 to x = +∞. A generator at x = 0 inputs a

signal

f (t) = Ae−iω0te−t2/τ2 , (7.16)

where A and τ are constant and ω0τ≫ 1, i.e., the signal is “quasi-monochromatic”.

The dispersion relation of the transmission line can be written

ω = ω(k) = kv (1+bk) , (7.17)

where v and b are known constants, and we assume k > 0.

a) Find the expression f (x, t) for the propagating signal, i.e., for the wave packet

traveling along the line, assuming b = 0.

From now on, assume dispersive effects to be small but not negligible, i.e.,

assume bk0≪ 1, where k0 = k(ω0) according to (7.17).

b) Within the above approximation, write the phase and group velocities as functions

of ω0 to the lowest order at which dispersive effects are present.
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c) Give an estimate of the instant tx when the “peak” of the signal reaches the posi-

tion x, and of the corresponding length of the wave packet.

d) Now find the expression of the wave-packet shape as a function of (x, t), by

calculating the integral

f (x, t) =

∫
eik(ω)x−iωt f̃ (ω)dω, (7.18)

where f̃ (ω) is the Fourier transform of the wave packet. As a reasonable approxi-

mation, keep only factors up to the second order in (k− k0)2, for instance use

k(ω) ≃ k(ω0)+ k′(ω0)(ω−ω0)+
1

2
k′′(ω0)(ω−ω0)2. (7.19)



Chapter 8

Maxwell Equations and Conservation Laws

Topics Maxwell’s equations. Conservation laws: energy, momentum and angular

momentum of the electromagnetic field. Poynting’s theorem. Radiation pressure.

Basic equations of this chapter:

(Note: Gaussian cgs units are used in this chapter unless otherwise specified.)

Maxwell’s equations

∇ ·E = 4πρ , (8.1)

∇ ·B = 0 , (8.2)

∇×E = −
1

c
∂tB , (8.3)

∇×B =
4π

c
J+

1

c
∂tE . (8.4)

Energy conservation (Poynting’s) theorem

∂tu+∇ ·S = −J ·E , (8.5)

where

u =
1

8π

(

E2+B2
)

(8.6)

is the energy density of the EM field, and

S =
c

4π
E×B (8.7)

is the Poynting (also named Poynting-Umov) vector.

c© Springer International Publishing AG 2017
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Momentum conservation theorem:

∂tg+∇ ·T = −

(

ρE+
1

c
J×B

)

, (8.8)

where

g =
1

4πc
(E×B) =

S

c2
(8.9)

is the momentum density of the EM field, and T is Maxwell’s stress tensor with

components

Ti j =
1

4π

[

1

2
(E2+B2)δi j−EiE j−BiB j

]

. (8.10)

Thus, ∇ ·T is a vector with components

(∇ ·T)i =

j=3
∑

j=1

∂ jTi j . (8.11)

Angular momentum density of an EM field

ℓ = r×g = r×
S

c
. (8.12)
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8.1 Poynting Vector(s) in an Ohmic Wire

A constant and uniformly distributed current density J = σE flows inside an infinite

straight wire of radius a and conductivity σ.

a) Calculate the Poynting vector S = (c/4π)E×B and discuss the energy conserva-

tion in the wire.

b) The Poynting vector occurs in Poynting’s theorem only through its divergence,

since the theorem only requires that the flux of the Poynting vector through any a

closed surface describes the net flow of electromagnetic energy. Show that, conse-

quently, S′ = ϕJ, where ϕ is the electrostatic potential, is also a suitable choice for

S (hint: substitute E = −∇ϕ into (8.7) and manipulate the result).

8.2 Poynting Vector(s) in a Capacitor

a

h E

Fig. 8.1

A plane capacitor consists of two par-

allel circular plates of radius a, at a

distance h ≪ a from each other. The

electric field inside the capacitor is

slowly varying in time, E = E(t) ẑ, for

instance, assume E = E0 t/τ. Bound-

ary effects are negligible (Fig. 8.1).

a) Evaluate the magnetic field B inside

the capacitor.

b) Calculate the Poynting vector S= (c/4π)E×B, and show that the flux of S though

any surface enclosing the capacitor equals the time variation of the energy associated

to the electromagnetic field.

c) Show that an alternative Poynting vector is

S′ =
1

4π
ϕ∂tE , (8.13)

where ϕ is the electric potential (E = −∇ϕ). Verify that also the flux of S′ through

the closed surface of point b) equals the variation of the energy in the volume inside

the surface [hint: proceed as in point b) of Problem 8.1].

8.3 Poynting’s Theorem in a Solenoid

A time-dependent current, I = I(t) = I0 t/τ, flows through the coils of an infinitely

long, cylindrical solenoid. The solenoid has radius a and n turns per unit length.

a) Find the magnetic and electric fields, B and E, inside the solenoid.
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b) Verify the law of energy conservation (Poynting’s theorem), for a closed internal

cylindrical surface, coaxial to the solenoid.

c) Now verify Poynting’s theorem for an external, coaxial cylindrical surface

(remember that B = 0 outside an infinite solenoid).

8.4 Poynting Vector in a Capacitor with Moving Plates

−

+

(−Q0)

(V0)

(+Q0)

h(t)

a

Fig. 8.2

A plane capacitor consists of two circular

metallic plates of radius a, parallel to each

other. One plate is kept at rest while the other

moves at constant velocity v, so that the dis-

tance between the plates is h = h(t) = h0 + vt.

In the following we consider only the case in

which h ≪ a at any time t, so that bound-

ary effects are negligible. We also assume

that v is small enough to ensure the valid-

ity of the slowly varying current approxi-

mation7.11 A Quasi-Gaussian Wave Packet

(Fig. 8.2).

Considering both the case of electrically isolated plates having opposite charges

±Q0, and the case of plates connected through a voltage source keeping a constant

electric potential drop V0 between them, calculate

a) the force F needed to keep v constant,

b) the rate of change of the electrostatic energy U,

c) the magnetic field between the plates,

d) the Poynting vector S and its flux through a cylindrical surface enclosing, and

coaxial with, the capacitor; use this last result to discuss energy conservation in the

system.

8.5 Radiation Pressure on a Perfect Mirror

A perfect mirror is defined as a medium inside which E = 0 and B = 0. Thus, an EM

wave cannot penetrate the mirror surface and will be reflected by it.

Find the radiation pressure Prad, i.e., the cycle–averaged force per unit surface

exerted by a plane wave incident on the surface of a perfect plane mirror, as a func-

tion of the intensity I of the wave by each of the following three methods:

a) Consider the reflection of a square wave packet of arbitrary, but finite, duration.

Determine Prad from the difference between the total momentum of the incident

wave packet and the momentum of the reflected wave packet.
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b) Calculate the force on the mirror directly, from the knowledge of the EM fields

and of the charge and current densities on the mirror surface.

c) Determine Prad from Maxwell’s stress tensor.

8.6 A Gaussian Beam

In optics, a Gaussian beam is a beam of monochromatic electromagnetic radiation

whose transverse magnetic and electric field amplitude profiles are given by the

Gaussian function. Gaussian beams are important because they are a very good

approximation of the radiation emitted by most laser sources. Here we consider

a linearly-polarized Gaussian beam propagating along the z-axis and whose trans-

verse profile is symmetrical around such axis. The origin of the coordinate systems

is chosen so that the beam has minimum width on the z = 0 plane. We assume that,

close to the z= 0 plane, the transverse components of the EM fields can be written as

Ex = E0(r)cos(kz−ωt) = E0 e−r2/r2
0 cos(kz−ωt),

By = B0(r)cos(kz−ωt) = B0 e−r2/r2
0 cos(kz−ωt), (8.14)

where r =
√

x2+ y2 < r0 and k = ω/c. The parameter r0 is called the waist of the

beam.

a) Show that, in addition to the transverse components (8.14), longitudinal compo-

nents Ez and Bz must exist, and give their expression.

b) Compute the Poynting vector of the beam S, and its average over a period 〈S〉,

showing which components are vanishing.

c) Verify that the fields (8.14) do not satisfy the wave equation in vacuum, hence

they are only an approximate expression, as mentioned above. Explain in which

range of z, depending on the value of kr0, the approximate expressions are accurate.

8.7 Intensity and Angular Momentum of a Light Beam

A circularly polarized monochromatic light beam of frequency ω propagates along

the z direction. The beam has a finite width in the plane perpendicular to z. We

assume that in a region of space, close to the “waist” (i.e., to the plane where the

beam has minimal width), the transverse components of the EM fields can be written

approximately as

Ex = +E0(r)cos(kz−ωt) , Ey = −E0(r) sin(kz−ωt) ,

Bx = E0(r) sin(kz−ωt) , By = E0(r)cos(kz−ωt) , (8.15)

where r =
√

x2+ y2, k = ω/c, and E0(r) is a known real function.
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a) Write the intensity I = I(r), defined as the “energy flow along z”, i.e., I(r) = S z =

S · ẑ where S is the Poynting vector.

b) Show that, in addition to the transverse components of the fields, also longitudinal

components (Ez, Bz) must exist, and give their expression.

c) Evaluate the S x and S y component of S, and discuss the result.

d) Show that the density of angular momentum (8.12) of the beam can be written as

ℓz = ℓz(r) = −
r

2cω
drI , (8.16)

and compute the quantity

Lz =

∫ ∞

0

ℓz(r)2πr dr (8.17)

as a function of the total power of the beam W =
∫ ∞

0
I(r)2πr dr.

8.8 Feynman’s Paradox solved

B0

a

h

σ
=

Q
/
(2

π
a
h
)

λ
=

Q
/
h

Fig. 8.3

The system in Fig. 8.3 is composed by a non-

conducting cylindrical surface of height h and

radius a, over which there is a net charge

Q uniformly distributed with surface density

σ = Q/(2πah), and a wire of same length

oriented along the cylinder axis and having

charge −Q distributed with uniform linear

density λ = −Q/h, so that the system is glob-

ally neutral. The cylindrical surface is free to

rotate around its axis without friction, and has

moment of inertia I per unit length. The sys-

tem is at rest in the presence of an external

uniform magnetic field Bext, parallel to the system axis. Assume that boundary

effects can be neglected.

Starting at time t = 0, the external magnetic field is reduced from its initial value

Bext = B0 to zero at a time t f ≫ a/c, according to some temporal law Bext = Bext(t).

a) Initially assuming that the field generated by the motion of the charges on the

cylinder is negligible, evaluate the angular velocity ω = ω(t) of the cylinder as a

function of time during the decay of Bext, and the corresponding mechanical angular

momentum Lc of the cylinder.

b) Now take the field generated by rotating charges into account, and evaluate how

the results of a) change.

c) Consistently with Eqs. (8.8–8.9), we introduce the angular momentum of a given

distribution of electromagnetic fields as
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LEM =

∫

r×gd3r , (8.18)

where g = E×B/4π is the electromagnetic momentum density. Use Eq. (8.18) to

check the conservation of the total angular momentum for the system (thus solving

the “paradox” as outlined in Problem 6.6).

8.9 Magnetic Monopoles

Assume that an experiment gives evidence of the existence of “magnetic monopoles”,

i.e., of point-like particles with a net magnetic charge qm, such that the magnetic

field Bm generated by such charge is

Bm = α
qm

r2
r̂ , (8.19)

while in the presence of an “external” magnetic field Bext the force on the particle

is f = qmBext. Thus, for example, the interaction force between two particles with

magnetic charges qm1 and qm2 is given by

f1→2 = α
qm1qm2

r2
12

r̂12 , f2→1 = −f1→2 . (8.20)

where r12 is the distance vector directed from charge 1 to charge 2. We also assume

that conservation of the total magnetic charge holds.

a) Determine, both in SI and Gaussian units, the expressions for the coefficient α

and the dimensions of the magnetic charge qm with respect to the electric charge

qe. (Hint: we may assume that the field generated by two magnetic charges +qm

and −qm, separated by a distance h, is equivalent to the field of a magnetic dipole

m = qmh at distances r≫ |h|.)

b) Complete Maxwell’s equations in order to take the presence of magnetic monopoles

into account.

c) Now consider a beam of magnetic monopoles of radius a, of uniform density and

infinite length. The number density of the particles of the beam is n, and all particles

have the same magnetic charge qm and the same velocity v. Find the electric and

magnetic fields generated by the beam.

http://dx.doi.org/10.1007/978-3-319-63133-2_6


Chapter 9

Relativistic Transformations of the Fields

Topics Relativistic covariance of Maxwell’s equations. Four-vectors in electromag-

netism: four-current, four-potential. The electromagnetic four-tensor. Lorentz trans-

formations of the fields.

Basic equations of this chapter:

Relation of four-current and four-potential to densities and potentials in three-

dimensional space

Jµ ≡ (ρc,J) , Aµ = (φ,A) . (9.1)

Lorentz transformations of a four-vector Kµ = (K0,K) from the frame S to the

frame S ′ moving with relative velocity v = βc with respect to S :

K′0 = γ(K0−β ·K) , K′
‖
= γ(K‖−βK0) , K′⊥ =K⊥ , (9.2)

where the subscripts “‖” and “⊥” denote the directions parallel and perpendicular to

β, respectively, and γ = 1/
√

1−β2.

Compact three-dimensional formulas for the transformation of the EM fields are

E′
‖
= E‖ , E′⊥ = γ(E⊥+β×B) , B′

‖
= B‖ , B′⊥ = γ(B⊥−β×E) , (9.3)

or, equivalently

E′ = γ (E+β×B)−
γ2

γ+1
β(β ·E) , (9.4)

B′ = γ (B−β×E)−
γ2

γ+1
β(β ·B) . (9.5)

The three-dimensional “Newtonian” force transforms as

c© Springer International Publishing AG 2017
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F′
‖
= F‖−

VF · v⊥/c
2

1−Vv‖/c2
, F′⊥ =

F⊥

γ(1−Vv‖/c2)
, (9.6)

where V is the boost velocity, and v‖ and v⊥ are the components of the particle

velocity parallel and perpendicular to V, respectively. We have F = dp/dt in the S

frame and F′ = dp′/dt′ in the S ′ frame.

9.1 The Fields of a Current-Carrying Wire

I

S
r

vq

Fig. 9.1

In the laboratory frame S , a constant current I

flows in an infinitely long wire. The wire has

no net charge density. A test charge q moves

with a velocity v parallel to the current at a

distance r from the wire, as shown in Fig. 9.1.

a) Find the force F acting on q in the labora-

tory frame. Then evaluate the force F′ acting

on the charge in the reference frame S ′ where

the charge is at rest, applying the appropri-

ate Lorentz transformation. What can be inferred on the EM fields in S ′ from the

expression of F′?

b) Use the Lorentz transformations to obtain the charge and current densities of the

wire in S ′, and the related EM fields. Evaluate the scalar and vector potentials in S ′.

Compare the results to what obtained from the direct transformation rules for the

EM field.

c) The answers to points a) and b) imply that in S ′ there is a net charge density on

the wire. Recover this result by calculating the linear densities of electrons (flowing

with velocity ve in S ) and ions (at rest in S ) in S ′ via the Lorentz transformations

for velocity and length. (this last point corresponds to the one presented by E.M.

Purcell in Ref. [1].)

9.2 The Fields of a Plane Capacitor

O x

z
y

Lh

Q

−Q

L

S

S

Fig. 9.2

In the laboratory frame S , a plane capaci-

tor has parallel square plates of area A = L2,

located at a distance h≪ L from each other,

so that the boundary effects can be assumed

to be negligible. The plates have electric

charges ±Q, uniformly distributed over their

surfaces, with surface charge density ±σ =

±Q/A, respectively (Fig. 9.2).

Evaluate, in a reference frame S ′ moving with respect to S with velocity v = βc

parallel to the capacitor plates,
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a) the electric and magnetic fields in the region between the plates;

b) the sources of the fields;

c) the force per unit surface and the total force on each plate, comparing the results

to the corresponding values in S .

9.3 The Fields of a Solenoid

I

I

n

q

R

Fig. 9.3

In the laboratory frame S a constant current I flows

in an infinite solenoid of radius R and n turns per

unit length. At a given instant t = 0 a test particle of

charge q is located inside the solenoid, with a veloc-

ity v perpendicular to the axis of the solenoid, as

shown in Fig. 9.3.

a) Find the electromagnetic fields and the force on

the particle both in S , and in the frame S ′ where the

particle is instantaneously at rest (v′ = 0).

b) Assuming v/c≪ 1, evaluate the sources of the fields in S ′ up to the first order in

v/c.

9.4 The Four-Potential of a Plane Wave

Consider a monochromatic plane wave, propagating in vacuum along the x axis of

the Cartesian laboratory frame S , linearly polarized along ŷ, and of frequency ω.

a) Show that the electric field E = E(x, t) and the magnetic field B = B(x, t) of the

wave can be obtained from a suitable four-potential Aµ = (Φ,A) = (0,0,Ay,0).

Now consider the same wave observed in a frame S ′, moving with velocity v = v ŷ

with respect to S .

b) Evaluate the frequency ω′ and the wave vector k′ of the wave in S ′. Calculate the

electric field E′ = E′(r′, t′) and the magnetic field B′ = B′(r′, t′) in S ′ as functions

of E in the S frame.

c) Verify that the wave is linearly polarized in S ′ and show that E′ and B′ can be

obtained from a four-potential A′µ = (0,A′), where A′ = A′(r′, t′).

d) Find the four-potential Ā′µ obtained from Aµ through a Lorentz transformation.

Verify that E′ and B′ can be obtained also from Ā′µ.

e) Show that A′µ and Ā′µ are related by a gauge transformation.

9.5 The Force on a Magnetic Monopole

Assume that an experiment has given evidence for the existence of magnetic

monopoles, i.e., point-like particles which, in the presence of a magnetic field B,

are subject to a force

Fm = qmB , (9.7)
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where qm is the magnetic charge of the monopole. We assume that these particles

have no electric charge.

a) Show that the force exerted by an electric field E on a monopole moving in the

laboratory frame with velocity v is

Fe = −qm
v

c
×E . (9.8)

b) The “Lorentz force” on a magnetic monopole is the sum of (9.7) and (9.8). Use

this expression to study the motion of a magnetic monopole of mass m in either an

electric field E or in perpendicular E and B fields, where the fields are both constant

and uniform, and E > B. For simplicity assume a non-relativistic motion. Compare

the results to those of Problem 5.6, point a).

9.6 Reflection from a Moving Mirror

An electromagnetic wave of frequency ω and electric field amplitude Ei, linearly

polarized along the y axis, is perpendicularly incident on a perfect conductor whose

bounding surface lies on the yz plane. The perfect conductor behaves as a perfect

mirror, i.e., we have E = 0 and B = 0 inside the material (x > 0).

a) Evaluate the the field of the reflected wave and the total electromagnetic field.

The mirror is now set in motion with respect to the laboratory frame S , with a

constant velocity v = x̂v parallel to the x axis.

b) Find the frequencies and the fields of the incident and reflected waves in the S ′

frame, where the mirror is at rest.

c) Find the frequency and the fields of the reflected wave in the S frame.

d) Discuss the continuity of the fields at the moving mirror surface.

9.7 Oblique Incidence on a Moving Mirror

k
r ,ω

r

k i,ω
i

θr

θi

Fig. 9.4

In the laboratory frame S , a perfectly reflecting mir-

ror moves with constant velocity v, perpendicular to

its surface. In S , the wave vector ki of an incident

EM wave makes an angle θi with the normal to the

mirror surface, as in Fig. 9.4. The incident wave has

frequency ωi. Find

a) the frequency ω′
i

of the incident wave, the inci-

dence angle θ′
i
, and the reflection angle θ′r in the in

the S ′ frame, where the mirror is at rest;

b) the frequency ωr of the reflected wave, and the

reflection angle θr, in the S frame. What happens if

cosθi � v/c?

http://dx.doi.org/10.1007/978-3-319-63133-2_5


9.8 Pulse Modification by a Moving Mirror 77

9.8 Pulse Modification by a Moving Mirror

N

Fig. 9.5

In the laboratory frame S we have an EM square

wave packet of amplitude Ei, comprising N com-

plete oscillations of frequency ωi, therefore of dura-

tion τi = 2πN/ωi. Assume that N ≫ 1, so that the

packet is “quasi-monochromatic”. The wave packet

impinges perpendicularly on a perfect mirror. In the

laboratory frame, the mirror itself is moving with

constant velocity v perpendicularly to its surface

(Fig. 9.5).

a) Determine the form, duration and amplitude of the reflected wave packet.

b) Compare the total energies of the incident and reflected wave packets, and deter-

mine the amount of mechanical work W done by the mirror during the reflection

stage (consider all quantities per unit surface).

c) Show that W is equal to the integral over time and volume of J ·E, in agreement

with Poynting’s theorem.

9.9 Boundary Conditions on a Moving Mirror

x

y

z

Ei

x(t)

k

Fig. 9.6

The reflecting surface of a perfect

mirror is parallel to the yz plane of a

laboratory Cartesian reference frame

S . The mirror is translating with con-

stant velocity v parallel to the x axis,

as in Fig. 9.6. A plane monochromatic

wave of frequency ωi, amplitude Ei,

and wave vector ki = x̂ωi/c, linearly

polarized along the y axis, impinges

onto the mirror.

a) Show that in the laboratory frame S both total (i.e., incident + reflected) fields

E and B are discontinuous at the mirror surface, lying on the plane x = x(t), with

dx/dt = v.

b) The EM fields can be derived from a vector potential A(x, t). Show that the bound-

ary conditions for the EM fields at the mirror surface are equivalent to the condition

d

dt
A[x(t), t] = 0 , (9.9)

which states that the value of the vector potential at the surface is constant (i.e.,

time-independent) in the laboratory frame.
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c) As a consequence of (9.9), we can assume A[x(t), t] ≡ 0. Use this boundary con-

dition to obtain the frequency (ωr) and amplitude (Er) of the reflected wave in the

laboratory frame.

Reference

1. E.M. Purcell, Electricity and Magnetism (Berkeley Physics Course—Vol. 2, Section 5.9), 2nd

edn. (McGraw-Hill Book Company, New York, 1984)



Chapter 10

Radiation Emission and Scattering

Topics The radiation field. Multipole expansion. Electric dipole radiation. Magnetic

dipole radiation.

Basic equations of this chapter:

Fields in the radiation zone of a point-like source at r = 0 having an electric dipole

moment p(t):

E(r, t) =

[

p̈(tret)× r̂
]

× r̂

rc2
, B(r, t) = r̂×E (10.1)

where tret = t− r/c.

Instantaneous radiation power from the electric dipole source and its angular distri-

bution

Prad =
2

3c3
|p̈|2 ,

dPrad

dΩ
=

3Prad

4π
sin2 θ , (10.2)

where θ is the angle between p and r, and the infinitesimal solid angle dΩ =

2πsinθdθ.

Analogous formulas for the fields and the power of a magnetic dipole m(t):

E(r, t) = −
[m̈(tret)× r̂]

rc2
, B(r, t) = r̂×E , (10.3)

Prad =
2

3c3
|m̈|2 ,

dPrad

dΩ
=

3Prad

4π
sin2 θ . (10.4)

10.1 Cyclotron Radiation

An electron moves in the xy plane in the presence of a constant and uniform

magnetic field B = B0 ẑ. The initial velocity is v0 ≪ c, so that the motion is non-

c© Springer International Publishing AG 2017
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relativistic and the electron moves on a circular orbit of radius rL = v0/ωL and fre-

quency ωL = eB0/mec (Larmor frequency).

a) Describe the radiation emitted by the electron in the dipole approximation spec-

ifying its frequency, its polarization for radiation observed along the z axis, and

along a direction lying in the xy plane, and the total irradiated power Prad. Discuss

the validity of the dipole approximation.

b) The electron gradually loses energy because of the emitted radiation. Use the

equation Prad = −dU/dt, where U is the total energy of the electron, to show that the

electron actually spirals toward the “center” of its orbit. Evaluate the time constant

τ of the energy loss, assuming τ≫ ω−1
L , and provide a numerical estimate.

c) The spiral motion cannot occur if we consider the Lorentz force fL = −(e/c)v×B

as the only force acting on the electron. Show that a spiral motion can be obtained

by adding a friction force ffr proportional to the electron velocity.

10.2 Atomic Collapse

In the classical model for the hydrogen atom, an electron travels in a circular orbit

of radius a0 around the proton.

a) Evaluate the frequency ω of the radiation emitted by the orbiting electron, and

the emitted radiation power, both as functions of a0.

b) Use the results of point a) to show that, classically, the electron would collapse

on the nucleus, and find the decay time assuming a0 = 0.53×10−8 cm (Bohr radius,

actually obtained from quantum considerations) .

10.3 Radiative Damping of the Elastically Bound Electron

The motion of a classical, elastically bound electron in the absence of external fields

is described by the equation

d2r

dt2
+η

dr

dt
+ω2

0r = 0 , (10.5)

where the vector r is the distance of the electron from its equilibrium position, η is

a friction coefficient, and ω0 is the undamped angular frequency. We assume that at

time t = 0 the electron is located at r(0) = s0, with zero initial velocity.

a) As a first step, find the solution of (10.5) assuming η = 0, and evaluate the cycle-

averaged emitted radiation power Prad due to the electron acceleration.

b) Assuming the oscillation amplitude to decay due to the radiative energy loss,

estimated the decay time τ using the result of point a) for the emitted power Prad.

Determine under which conditions τ is much longer than one oscillation period.
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Now assume η � 0, with η≪ ω0, in Eq.(10.5). In the following, neglect quantities

of the order (η/ω0)2 or higher.

c) Describe the motion of the electron and determine, a posteriori, the value of η

that reproduces the radiative damping.

10.4 Radiation Emitted by Orbiting Charges

Two identical point charges q rotate with constant angular velocity ω on the circular

orbit x2+ y2 = R2 on the z = 0 plane of a Cartesian reference frame.

a) Write the most general trajectory for the charges both in polar coordinates ri =

ri(t), φi = φi(t) and in Cartesian coordinates xi = xi(t), yi = yi(t) (where i = 1,2 labels

the charge) and calculate the electric dipole moment of the system.

b) Characterize the dipole radiation emitted by the two-charge system, discussing

how the power depends on the initial conditions, and finding the polarization of the

radiation emitted along the x̂, ŷ and ẑ directions.

c) Answer questions a) and b) in the case where the charges are orbiting with oppo-

site angular velocity.

d) Now consider a system of three identical charges on the circular orbit with the

same angular velocity. Find the initial conditions for which the radiation power is

either zero or has its maximum.

e) Determine whether the magnetic dipole moment gives some contribution to the

radiation, for each of the above specified cases.

10.5 Spin-Down Rate and Magnetic Field of a Pulsar

α

m

ω

R

M

Fig. 10.1

A pulsar is a neutron star with mass M ≈ 1.4M⊙ ≈

2.8×1033 g (where M⊙ is the Sun mass), and radius

R ≃ 10km = 106 cm. The star rotates with angular

velocity ω and has a magnetic moment m, which is,

in general, not parallel to the rotation axis. [1]

a) Describe the radiation emitted by the pulsar, and

find the total radiated power, assuming that the angle

between the magnetic moment and the rotation axis

is α, as in Fig. 10.1.

b) Find the “spindown rate” (decay constant of the

rotation) of the pulsar, assuming that energy loss is

due to radiation only.
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c) Explain how, from the knowledge of mass, radius, rotation period T , and time

derivative dT/dt of the pulsar one can estimate the magnetic field at the pulsar sur-

face. Give a numerical approximation based on the results of observations [3] which

give T = 7.476551± 3 s and Ṫ = (2.8± 1.4)× 10−11 ≃ 10−3 s/year (for simplicity

assume that m is perpendicular.

10.6 A Bent Dipole Antenna

+a

−a

I
I

+a x

0

0

I I

(b)

z
(a)

Fig. 10.2

A dipole antenna consists of two identical con-

ductive elements, usually two metal rods, each

of length a and resistance R. The driving cur-

rent is applied between the two halves of the

antenna, so that the current flows as shown

in Fig. 10.2a). For a “short” antenna (a≪ λ =

2πc/ω) the current can be approximately spec-

ified as [2]

I = I(z, t) = Re

[

I0

(

1−
|z|

a

)

e−iωt

]

. (10.6)

The dependence of the current oscillation

amplitude on z is shown in Fig. 10.3. Calculate

a) the cycle-averaged the dissipated power Pdiss;

b) the linear charge density qℓ on the rods of the antenna, and the antenna electric

dipole moment p;

c) the cycle-averaged radiated power Prad and the ratio Prad/Pdiss.

I0

0−a +aI 0
(1

−
|z

|/
a
)

z

Fig. 10.3

d) Find the directions along which there no

radiation is observed.

Now assume that the upper rod of the dipole

antenna is bent by 90◦, so that it is parallel

to the x axis, as shown in Fig. 10.2b), with-

out perturbing either the current or the charge

density anywhere in the two rods.

e) Answer questions a), b) and c) again for

the bent antenna, pointing out the differences

with the straight antenna.
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10.7 A Receiving Circular Antenna

a I

ε

Fig. 10.4

A receiving circular antenna is a circular coil of

radius a and resistance R. The amplitude of the

received signal is proportional to the current induced

in the antenna by an incoming EM wave (Fig. 10.4).

a) Assume that the incoming signal is a monochro-

matic, linearly polarized wave of wavelength λ≫ a,

and electric field amplitude E0. Find how the antenna

must be oriented with respect to the wave vector k

and to the polarization in order to detect the maxi-

mum signal, and evaluate the signal amplitude.

b) In a receiving linear antenna the signal is approximately proportional to E‖ℓ,

where E‖ is the component of the electric field of the wave parallel to the antenna,

and ℓ is the length of the antenna. Old portable TV sets were provided with both a

linear and a circular antenna, typical dimensions were ℓ ≃ 50cm and a ≃ ℓ/2. Which

antenna is best suited to detect EM waves with λ in the 102−103 cm range?

c) Calculate the power Prad scattered by the antenna, and the ratio Prad/Pdiss, where

Pdiss is the power dissipated in the antenna by Joule heating.

10.8 Polarization of Scattered Radiation

An EM wave impinges on a particle that acquires an electric dipole moment p = αE,

where E is the electric field of the wave at the position of the particle. Assume that

the size of the particle is much smaller than the wavelength of the incoming wave.

a) Find the polarization of the scattered radiation as a function of the polarization

of the incoming wave, and of the angle between the directions of observation and

propagation.

b) If the incoming radiation is unpolarized, what can be said about the polarization

of the scattered radiation?

10.9 Polarization Effects on Thomson Scattering

An electron is in the field of an elliptically polarized plane wave of frequency ω

propagating along the z axis of a Cartesian reference frame. The electric field of the

wave can be written as

E = E0
[

x̂cosθcos(kz−ωt)+ ŷsinθ sin(kz−ωt)
]

, (10.7)
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where θ is a constant real number with 0 � θ � π/2. such that we have linear polar-

ization along the x axis for θ = 0, linear polarization along the y axis for θ = π/2,

and circular polarization for θ = π/4.

First, neglecting the effects of the magnetic force −ev×B/c,

a) characterize the radiation scattered by the electron by determining the frequency

and the polarization observed along each axis (x, y, z), and find a direction along

which the radiation is circularly polarized;

b) calculate the total (cycle-averaged) scattered power and discuss its dependence

on θ;

Now consider the effect of the magnetic force on the scattering process.

c) Evaluate the −ev×B/c term by calculating the B field from (10.7) and using the

result of point a) for v. Discuss the direction and frequency of the magnetic force

and its dependence on θ as well.

d) Discuss how the scattering of the incident wave is modified by the magnetic

force by specifying which new frequencies are observed, in which direction and

with which polarization, and the modification of the scattered power.

10.10 Scattering and Interference
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Fig. 10.5

A monochromatic plane wave prop-

agates along the x axis of a Carte-

sian coordinate system. The wave is

linearly polarized in the ẑ direction,

and has wavelength λ. Two identical,

point-like scatterers are placed on the

x axis at x = ±d/2, respectively, as in

Fig. 10.5. The dipole moment of each

scatterer is p = αE, where E is the

electric field of the incoming wave at

the scatterer position. The intensity Is of the scattered radiation is measured on the

y = L plane, with both L≫ d and L≫ λ.

a) Evaluate the phase difference Δφ between the two scattered waves in a generic

point P ≡ (x,L,0), with L a constant, as a function of the observation angle θ =

arctan(x/L), as shown in Fig. 10.5.

b) Study the scattered intensity distribution Is = Is(θ) as a function of kd, where k is

the wave vector of the incoming wave. Determine for which values of kd interfer-

ence fringes appear.
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10.11 Optical Beats Generating a “Lighthouse Effect”
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Fig. 10.6

Two oscillating dipoles, p− and p+, are

located at (0,−d/2,0) and (0,+d/2,0), respec-

tively, in a Cartesian reference frame. The

two dipoles are parallel to the z axis and

oscillate, with equal amplitude, at slightly

different frequencies ω± = ω0 ± δω/2, with

δω≪ ω0. In complex representation we have

p± = p0 e−iω±t. The distance between the two

dipoles is d = λ0/2 = πc/ω0. The radiation

emitted by the dipoles is observed at a point

P at a distance r from the origin, with r≫ λ0,

on the z = 0 plane. Let φ be the angle between

r and the x axis, as shown in Fig. 10.6.

a) Determine the direction of the electric field in P and its dependence on φ and ω±,

up to the first order in δω/ω0.

The wave intensity in P is measured by two detectors with different temporal reso-

lutions: the first detector measures the “instantaneous” flux averaged over an inter-

val Δt such that 2π/ω0 ≪ Δt ≪ 2π/δω, while the second detector averages over

Δt′≫ 2π/δω.

b) Determine the dependence on the angle φ and the time t of the fluxes measured

with the two detectors.

c) How do the above results change if the observation point is located in the x = 0

plane?

10.12 Radiation Friction Force

An accelerated point charge emits radiation. Considering for definiteness an electron

performing a periodic (non-relativistic for simplicity) motion in an oscillating exter-

nal field, there is a finite amount of energy leaving the electron as radiation, but on

the average the external field produces no work. Thus, to account self-consistently

for the energy lost as radiation, it is necessary to modify the Newton-Lorentz force

by adding a new “friction” term Frad so that the mechanical work done by Frad

equals the radiated energy.1

We thus write for the electron

me
dv

dt
= −e

(

E+
v

c
×B

)

+Frad , (10.8)

1From another viewpoint, Frad aims to describe the back-action or reaction of the self-generated

EM fields on the accelerated charge.
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and look for a suitable expression for Frad starting from the condition

∫ t+T

t

Frad(t) · v(t)dt = −

∫ t+T

t

Prad(t)dt , (10.9)

where T is the period of the electron motion and Prad(t) is the instantaneous radiated

power, which is given by the Larmor formula

Prad(t) =
2e2

3c2

∣

∣

∣

∣

∣

dv

dt

∣

∣

∣

∣

∣

2

. (10.10)

a) Show by direct substitution of the expression for Frad

Frad = meτ
d2

v

dt2
(10.11)

into (10.9), that the equation is verified, and find the expression of the constant τ,

estimating its numerical value.

b) Determine the steady state solution of (10.8), where Frad is given by (10.11), for

an electron in a uniform, oscillating electric field

E(t) = Re
(

−eE0 e−iωt
)

. (10.12)

Compare the result with what obtained using the simple classical model an electron

subject to a frictional force

me
dv

dt
= Fext−meηv . (10.13)
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Chapter 11

Electromagnetic Waves in Matter

Topics Wave equation in continuous media. Classical model of the electron, bound

and free electrons. Frequency-dependent conductivity σ(ω) and dielectric permit-

tivity ε(ω) for harmonic fields. Relation between σ(ω) and ε(ω). Transverse and

longitudinal waves. The refraction index. Propagation of monochromatic waves in

matter. Dispersion relations. Reflection and transmission at a plane interface: Snell’s

law, Fresnel’s formulas, total reflection, Brewster’s angle. Anisotropic media.

Basic equations of this chapter:

Wave equation for the electric field:

∇2E−
1

c2
∂2

t E−∇(∇ ·E) =
4π

c2
J =

4π

c2
∂2

t P . (11.1)

(Notice that J = ∂tP.)

Definition of σ(ω), χ(ω) and ε(ω) for harmonic fields E(r, t) = Re
[

Ẽ(r)e−iωt
]

,

J(r, t) = Re
[

J̃(r)e−iωt
]

, P(r, t) = Re
[

P̃(r)e−iωt
]

:

J̃ = σ(ω)Ẽ , P̃ = χ(ω)Ẽ , (11.2)

ε(ω) = 1+4πχ(ω) , χ(ω) =
iσ(ω)

ω
(ω � 0) . (11.3)

Dispersion relation in a medium and refraction index n(ω):

k2c2

ω2
= ε(ω) = n

2(ω) . (11.4)
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11.1 Wave Propagation in a Conductor at High and Low

Frequencies

In a classical treatment, a metal has ne conduction electrons per unit volume, whose

equations of motion in the presence of an external electric field E(r, t) are

me
dv

dt
= −eE(r, t)−meηv , v =

dr

dt
, (11.5)

where −e and me are electron charge and mass, respectively, and η is a constant

describing friction.

a) Determine the complex conductivity of the metal, σ = σ(ω), as a function of the

angular frequency ω of the electric field, and the values of ω for which σ is either

purely real or purely imaginary. Discuss these limits for a good conductor, whose

DC conductivity (i.e., its conductivity for static fields) has values of the order of

σDC ∼ 5×1017 s−1.

Now consider a monochromatic, plane EM wave, linearly polarized along the y axis

and traveling in the positive direction along the x axis of a Cartesian coordinate

system. The wave is incident on a conductor filling the x > 0 half-space, while we

have vacuum in the x < 0 half-space.

b) Consider both cases of σ purely real and purely imaginary, and determine the

frequency ranges in which the wave is evanescent inside the metal.

c) Find the time-averaged EM energy flux through the metal surface and show that

it is equal to the amount of energy dissipated inside the metal.

11.2 Energy Densities in a Free Electron Gas

A plane, monochromatic, transverse electromagnetic wave propagates in a medium

containing ne free electrons per unit volume. The electrons move with negligible

friction. Calculate

a) the dispersion relation of the wave, the phase (vϕ) and group (vg) velocities, and

the relation between the amplitudes of the electric (E0) and magnetic (B0) fields;

b) the EM energy density uEM (averaged over an oscillation period) as a function of

E0;

c) the kinetic energy density uK (averaged over an oscillation period), defined as

uK = neme〈v
2〉/2, where v is the electron oscillation velocity, and the total energy

density u = uEM+uK.

d) Assume that the medium fills the half-space x > 0, while we have vacuum in the

half-space x < 0. An EM wave, propagating along the x axis, enters the medium.

Assume that both vg and vϕ are real quantities. Use the above results to verify the

conservation of the energy flux, expressed by the relation
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c(ui−ur) = vgut , (11.6)

where ui, ur and ut are the total energy densities for the incident, reflected and trans-

mitted waves, respectively.

11.3 Longitudinal Waves

Consider a longitudinal monochromatic plane wave, propagating in a medium along

the x axis of a Cartesian reference frame. “Longitudinal” means that the electric field

E of the wave is parallel to the wavevector k. Assume that the electric and magnetic

fields of the wave are

E = E(x, t) = x̂ E0 eikx−iωt , B ≡ 0 , (11.7)

respectively, and that the optical properties of the medium are described by a given

frequency-dependent dielectric permittivity εr(ω).

a) Show that the possible frequencies for the wave (11.7) correspond to zeros of the

dielectric permittivity, εr(ω) = 0.

b) Find the charge and current densities in the medium associated to the presence of

the wave fields (11.7).

c) Assuming that the optical properties of the medium are determined by ne classical

electrons per unit volume, bound to atoms by an elastic force −meω
2
0
r, determine

εr(ω) and the dispersion relation for the longitudinal wave.

11.4 Transmission and Reflection by a Thin Conducting Foil

x
0

ki
Ei

kr

kt

d

Fig. 11.1

A plane wave of frequency ω = 2πc/λ strikes

at normal incidence a thin metal foil of thick-

ness d ≪ λ. At the limit of an infinitely thin

foil, the volume electron density in space can

be approximated as nv(x)= nedδ(x), where ne

is the volume electron density in the conduc-

tor, so that ned is the surface electron density

on the foil, and δ(x) is the Dirac delta func-

tion. Analogously, the volume current den-

sity in space can be approximated as J(x, t) =

K(t)δ(x), where K(t) is the surface current

density on the foil.

a) Prove the following relations for the field

components parallel to the foil surface
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E‖(0
+)−E‖(0

−) = 0, B‖(0
+)−B‖(0

−) =
4π

c
K . (11.8)

b) Evaluate the EM field in the whole space as a function of the foil conductivity

σ, with σ, in general, a complex scalar quantity. Assume a linear dependence of the

current density J on the electric field E, using the complex notation J = Re
(

J̃e−iωt
)

.

c) Now use the classical equation of motion for the electrons in the metal

me
dv

dt
= −eE−meηv , (11.9)

where η is a damping constant, to obtain an expression for σ, and evaluate the cycle-

averaged absorbed power at the limits ν≫ ω and ν≪ ω, respectively.

d) Verify the conservation of energy for the system by showing that the flux of EM

energy into the foil equals the absorbed power.

11.5 Anti-reflection Coating

0 d x

ki

kr

1 2

ktk+

k−

Fig. 11.2

A monochromatic plane EM wave of angular fre-

quency ω travels in vacuum (x< 0) along the x direc-

tion of a Cartesian coordinate system. On the plane

x = 0 the wave strikes normally a semi-infinite com-

posite medium. The medium comprises a first layer,

between the planes x = 0 and x = d, of real refractive

index n1, followed by a semi-infinite layer filling the

half-space x> d, of real refractive index n2, as shown

in Fig. 11.2.

We want to determine the conditions on n1 and d

in order to have a total transmission of the incident wave, so that there is no reflected

wave in the vacuum region. Proceed as follows:

a) write the general solution for the EM wave in each region of space;

b) write the relations between the amplitudes of the EM fields in each region due to

matching conditions at the two interfaces;

c) having determined from point b) the relation between n1, n2 and d necessary to

the absence of reflection, find the values of n1 and d for which a solution exists in

the n2 = 1 case.

d) How does the answer to point c) change if n2 � 1?
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11.6 Birefringence and Waveplates
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Fig. 11.3

The refractive index of anisotropic crystals

depends on both the propagation direction

and the polarization of the incoming EM

wave. We choose a Cartesian reference frame

such that the x = 0 plane separates the inves-

tigated medium from vacuum. The wave vec-

tor of the incident wave, ki, lies in the xy

plane and forms an angle θi with the x axis,

as shown in Fig. 11.3. In this context we con-

sider a material whose refractive index has

the values ns for a wave polarized perpendic-

ularly to the incidence xy plane (S polariza-

tion, from German senkrecht, perpendicular),

and np for waves whose electric field lies in the xy plane (P polarization, from par-

allel). Here, both ns and np are assumed to be real and positive, with np > ns. The

treatment of the opposite case, ns > np, is straightforward.

a) Assume that the incoming wave is linearly polarized, and that its electric field

forms an angle ψ= π/4 with the z axis, so that its polarization is a mixture of S and P

polarizations. The incident ray splits into two refracted rays at different angles, θt± =

θt±α, as shown in Fig. 11.3, where kt+ corresponds to S , and kt− to P polarization.

Show how the values of ns and np can be obtained from the measurements of θt
and α. Assume that np = n̄+ δn, and n− = n̄− δn, with δn/n̄ ≪ 1, and keep only

first-order therms in δn/n̄.

y

z

Ei

d

φ x
ki

Fig. 11.4

b) Now assume normal incidence (θi =

0), and that the electric field of the

linearly polarized incoming wave, Ei,

still forms an angle ψ = π/4 with the

ẑ axis, as in Fig. 11.4. The crystal has

a thickness d ≫ λ. Find the values of

d such that the light exiting the crys-

tal is either circularly polarized, or

linearly polarized, but rotated by π/2

with respect to the polarization of the

incident light. Neglect the difference between the reflection coefficients for S and P

polarizations.

11.7 Magnetic Birefringence and Faraday Effect

An EM plane wave of frequency ω travels in a medium in the presence of a static

uniform magnetic field B0 = B0 ẑ, where ẑ is the z unit vector of a Cartesian reference
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frame. B0 is much stronger than the magnetic field of the wave. The direction of the

wave propagation is also parallel to ẑ. The medium contains ne bound electrons per

unit volume, obeying the classical equations of motion

me
d2r

dt2
= −e

(

E+
v

c
×B

)

−meω
2
0 r , v =

dr

dt
. (11.10)

where me and −e are the electron mass and charge, respectively.

a) Show that the propagation of the wave depends on its polarization by evaluating

the refractive index for circular polarization, either left-handed or right-handed.

b) Now consider the propagation of a linearly polarized wave. Assume the electric

field at z = 0 to be given by Ei(z = 0, t) = x̂ Ei e−iωt, and a relatively weak magnetic

field so that ω≫ωc and terms of order higher than ωc/ωmay be neglected. Find the

electric field at the position z = ℓ, showing that the polarization has rotated (Faraday

effect).

11.8 Whistler Waves

Lightnings excite transverse EM signals which propagate in the ionosphere, mostly

in the direction parallel to the Earth’s magnetic field lines.

a) Show that, in a frequency range to be determined, and depending on the wave

polarization, the dispersion relation for such signals has the form

ω = αk2 , (11.11)

with α a constant depending on the free electron density ne and the magnetic field

B0 (both assumed to be uniform for simplicity). Give a numerical estimate for the

frequency range, knowing that typical values are ne ≈ 105 cm−3, and B0 ≈ 0.5 G.

b) Determine the group and phase velocities following from (11.11) as functions of

ω, and compare them to c.

c) Suppose that a lightning locally excites a pulse having a frequency spectrum

extending from a value ω1 to ω2 = 2ω1, within the frequency range determined

at point a). Assuming the pulse to be “short” (in a sense to be clarified a posteri-

ori), estimate the pulse length after propagation over a distance L ≃ 104 km. Try to

explain why these signals are called whistlers.

(Refer to [1], Sect. 7.6, and to Problem 11.7 for the propagation of EM waves along

a magnetic field).
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11.9 Wave Propagation in a “Pair” Plasma

A “pair” plasma is composed by electrons and positrons with equal density n0 (pair

annihilation is neglected).

a) In the absence of external fields, find the dispersion relation for transverse EM

waves, determining cut-off and/or resonance frequencies, if any.

b) Find and discuss the dispersion relation as in a), but for waves propagating along

the direction of an external, static magnetic field B0 (see also Problem 11.7).

11.10 Surface Waves

A homogeneous medium fills the x > 0 half-space of a Cartesian reference frame,

while we have vacuum for x< 0. The dielectric permittivity of the medium, ε= ε(ω),

assumes real values in the frequency range of interest. A monochromatic EM wave

propagates along the y-direction, parallel to the interface between the medium and

vacuum. Inside the medium, the magnetic field of the wave has the z-component

only, given by

Bz = B0 e−qx cos(ky−ωt) = Re
(

B0 e−qxeiky−iωt
)

(x > 0) , (11.12)

where q is a real and positive quantity.

a) Using the wave equation for B inside the dielectric medium, find a relation

between q, k and ω.

b) Write the expression for the electric field E inside the medium.

c) Calculate the Poynting vector S and specify the direction of the time-averaged

EM energy flow.

x

y

ε1 ε2

Fig. 11.5

Now consider two different homogeneous media

of dielectric permittivities ε1 and ε2, respectively,

filling the x < 0 and x > 0 half-spaces. A linearly-

polarized EM wave propagates along the y-axis on

the x = 0 interface, with the magnetic field given by

B = Re
[

ẑ Bz(x)eiky−iωt
]

, (11.13)

where

Bz(x) =

{

B1 e+q1 x , x < 0

B2 e−q2 x , x > 0
. (11.14)

d) Using the boundary conditions for Bz at the x = 0 surface, find the relation

between B1 and B2.
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e) Using the continuity of Ey at the x= 0 surface, find the relation between q1 and q2.

Show that ε1 and ε2 must have opposite sign in order to have q1,2 > 0, i.e., vanishing

fields for |x| → ∞.

f) From the results of points a) and e) find the dispersion relation ω = ω(k) as a

function of ε1 and ε2, showing that wave propagation requires ε1+ε2 < 0.

g) If medium 1 is vacuum (ε1 = 1), how should medium 2 and the wave frequency

be chosen in order to fulfill the condition found at point f)?

11.11 Mie Resonance and a “Plasmonic Metamaterial”

A plane, monochromatic wave of frequencyω impinges on a a small sphere of radius

a≪ λ = 2πc/ω. The sphere is made of a material whose dielectric function ε = ε(ω)

a

λ

Fig. 11.6

can be written as

ε = 1−
ω2

p

ω2−ω2
0
+ iωη

(11.15)

where, according to the model of the elastically

bound electron, ωp is the plasma frequency, ω0 is

the resonance frequency of bound electrons, and η is

a damping constant.

a) Find the induced field and polarization inside the

sphere, and discuss any resonant behavior. (Hint:

have a look back at Problem 3.4)

b) Assume that the EM wave is propagating inside

a material where there are ns metallic (ω0 = 0)

nanospheres per unit volume, with nsλ
3 ≫ 1≫ λ/a. Find the macroscopic polar-

ization of the material and discuss the propagation of the wave as a function of the

frequency ω.
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12.1 The Coaxial Cable

b

a

z

−λ , −I

λ , I

Fig. 12.1

A coaxial cable consists of two coaxial, infi-

nitely long conductors: an inner cylinder of

radius a, and an outer cylindrical shell of

internal radius b > a. In general, if there is

a charge per unit length λ on the inner con-

ductor, there is an opposite charge −λ on the

outer conductor. Similarly, if a total current

I flows through the inner conductor, an oppo-

site “return” current −I flows in the outer one.

We use a cylindrical coordinate system (r,φ,z) with the cable axis as z axis, and,

at first, we assume that the region a < r < b is filled by an insulating medium of

dielectric permittivity ε = 1 and magnetic permeability µ = 1.

a) Evaluate the capacitance and inductance per unit length of the cable.

b) Describe the propagation of a current signal I(z, t) and of an associated linear

charge signal λ(z, t) along the cable, remembering the results of Problem 7.4. How

are I(z, t) and λ(z, t) related to each other?

c) For given I(z, t) and λ(z, t), find the electric field E and the magnetic field B in

the space between the conductors, assuming that both E and B are transverse, i.e.

perpendicular to the direction of propagation (such configuration is called TEM

mode).

d) Now consider a semi-infinite cable with an ideal source imposing the voltage V(t)

between the inner and outer conductors at the end of the cable. Show that the work

done by the generator equals the flux of the Poynting vector through the cable (far

enough from the end, so that we may neglect boundary effects).

e) How do the preceding answers change if the medium between the internal and

external conductors has real and positive values for ε and µ, but different from unity?

12.2 Electric Power Transmission Line

Consider a thin, infinite straight wire along the z axis of a cylindrical coordinate

system (r,φ,z). The wire is located in a medium of relative electric permittivity

εr = 1 and relative magnetic permeability µr = 1. Assume a current I = I(z, t) to flow

in the wire, with

I = I(z, t) = I0 eikz−iωt . (12.1)

a) Calculate the linear charge density λ = λ(z, t) on the wire.

b) Assume that the electric and magnetic fields have only their radial and azimuthal

components, respectively,

Eφ = Ez = 0, Er = Er(r)eikz−iωt, Br = Bz = 0, Bϕ = Bϕ(r)eikz−iωt. (12.2)

http://dx.doi.org/10.1007/978-3-319-63133-2_7
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Calculate Er and Bϕ as functions of I0 and ω, and use Max-

well’s equations to evaluate the phase velocity of the signal

vϕ = ω/k.

h

d

P

Fig. 12.2

c) A high voltage transmission line comprises two straight

parallel wires, at a constant distance d = 5 m and typical

height over the ground h = 30 m. The two wires have oppo-

site current intensities ±I(z, t) given by (12.1), where typi-

cally I0 = 103 A and ω = 2π×50 s−1. Calculate the electric

and magnetic fields on the symmetry plane between the two

wires, and evaluate their magnitude on the ground.

12.3 TEM and TM Modes in an “Open” Waveguide
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Fig. 12.3

An “open” waveguide comprises two par-

allel, perfectly conducting planes, between

which the waves propagate. Let us choose a

Cartesian coordinate system (x,y,z) such that

the two conducting planes are at y = ±a/2,

respectively, as in Fig. 12.3. An EM wave

of frequency ω propagates in the waveguide

along x̂. The magnetic field of the wave is

directed along ẑ and has the form

Bz(x,y, t) = B0 cos(kyy)eikx x−iωt . (12.3)

a) Find the relations between ω, kx and ky.

b) Find the expression for the electric field E = E(x,y, t) of the EM wave.

c) Find how the possible values for ky are determined by the boundary conditions

on E, and discuss the existence of cut-off frequencies.

d) Find the flux of energy along the direction of propagation x̂, showing that it is

proportional to the group velocity of the wave.

12.4 Square and Triangular Waveguides

a
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y
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Fig. 12.4

a

x

y
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z

Fig. 12.5

A waveguide has perfectly conduct-

ing walls and a square section of side

a, as shown in Fig. 12.4. We choose

a Cartesian coordinate system (x,y,z)

where the interior of the waveguide

is delimited by the four planes x = 0,

x = a, y = 0 and y = a. Consider the
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propagation along ẑ of a wave of frequency ω, whose electric field E(x,y,z, t) is

perpendicular to ẑ (a TE mode). Assume that the electric field can be written as

E(x,y,z, t) = Ẽ(x,y)eikzz−iωt , (12.4)

where Ẽ(x,y) on x and y only.

a) Assume that E is parallel to x̂, i.e. E = x̂ Ex, and determine the lowest value of

ω for which the TE mode can propagate in the waveguide, and the corresponding

expressions for the electric and magnetic fields.

b) Determine the lowest frequency and the EM fields for a waveguide delimited

by the conducting planes x = 0, y = 0, and y = x, whose cross section is the right

isosceles triangle shown in Fig. 12.5.

12.5 Waveguide Modes as an Interference Effect

An electric dipole p = p ŷ is located at the origin of a Cartesian coordinate system

(x,y,z), between two infinite, perfectly conducting planes located at y = ±a, respec-

tively, as shown in Fig. 12.6.
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−a
O p

n̂

Fig. 12.6

a) Find the the electrostatic potential between the

two conducting planes, using the method of images.

Now assume that the dipole is oscillating, in com-

plex notation p = p0 e−iωt, and consider the emitted

radiation in the region between the two conducting

planes, at large distances from the dipole, i.e., with

both |x| ≫ λ and |x| ≫ a.

b) Find in which directions n̂, lying in the z = 0

plane, we observe constructive interference between

the waves emitted by the dipole and its images, and

the corresponding constraints on the possible values of the oscillation frequency ω.

Now consider two types of waves, labeled “0” and “1”, respectively, propagating

between the two conducting planes with their wavevectors k0,1 lying in the z = 0

plane. Assume that the only nonzero component of the magnetic field of both waves

is parallel to ẑ (TM waves), and that the magnetic fields have the form

B0 = ẑ B0 eik0x x−iωt , B1 = ẑ B1 sin(k1yy)eik1x x−iωt . (12.5)

c) Find the relation between the components of the wavevectors and ω for both

waves.

d) Find the expressions for the electric fields E0,1 of the waves corresponding to the

magnetic fields (12.5).
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e) Verify (or impose when appropriate) that for the expressions found in d) the com-

ponent of E parallel to the planes vanishes at their surface, and the related constraints

on k = (kx,ky). What is the relation with the orders of interference found at point b)?

12.6 Propagation in an Optical Fiber
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Fig. 12.7

Figure 12.7 represents a simple model for an

optical fiber. In a Cartesian reference frame

(x,y,z) the space between the planes y=±a/2

is filled by a material of a real and positive

refractive index n> 1 (in the frequency range

of interest), while we have vacuum (n= 1) in

the regions y > a/2 and y < −a/2. A mono-

chromatic electromagnetic wave of frequency

ω propagates parallel to x̂ inside the fiber. We

assume that the only nonzero component of the electric field E of the wave is par-

allel to z (i.e. perpendicular to the plane of the figure). Further, we assume that

the wave is the superposition of two plane waves with wavevectors k1 ≡ (kx,ky,0) ≡

k(sinθ,cosθ,0), and k2 ≡ (kx,−ky,0)≡ k(sinθ,−cosθ,0), where θ is the angle of inci-

dence shown in the figure. We have, in complex notation,

E = ŷ Ez(x,y, t) = ŷ
(

E1 eik1·r−iωt +E2 eik2·r−iωt
)

= ŷ
(

E1 eikx x+ikyy−iωt +E2 eikx x−ikyy−iωt
)

. (12.6)

a) Find the relation between k and ω, and the range of θ for which the wave propa-

gates without energy loss through the boundary surfaces at y = ±a/2.

b) The amplitude reflection coefficient r= Er/Ei is the ratio of the complex amplitude

of the reflected wave to the amplitude of the incident wave, at the surface separating

two media. In the case of total reflection we have r= eiδ, with δ a real number. Show

that, in our case, we have

kya+δ = mπ , with m ∈ N , (12.7)

and write the equation for the cut-off frequencies of the fiber. Find the values of ky

explicitly at the nsinθ≫ 1, θ→ π/2 limit.

c) How do the results change if E lies in the xy plane?
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12.7 Wave Propagation in a Filled Waveguide

A waveguide has rectangular cross section and perfectly conducting walls. We

choose a Cartesian reference frame where the waves propagate parallel to the x axis,

and the conducting walls lie on the y = ±a/2 and z = ±a/2 planes, as in Fig. 12.8.

The waveguide is uniformly filled with a medium having refractive index n=n(ω).

xy

z

b

z

y

b

a aO O

Fig. 12.8

a) Consider the propagation of

a TE mode of frequency ω, for

which the electric field is E =

ẑ Ez(y)eikx−iωt. Find the general

expression for Ez(y) and the dis-

persion relation ω=ω(k). Deter-

mine the cut-off frequencies for

the particular case in which the

filling medium is a gas of free

electrons, i.e., a plasma, with plasma frequency ωp. In this case we have for the

refractive index n
2(ω) = 1−ω2

p/ω
2.

b) Now assume that the medium fills only the x > 0 region of the waveguide. A

monochromatic wave of the lowest frequency that can propagate in both regions

(x < 0 and x > 0) travels in the guide from x = −∞. Find the amplitudes of the

reflected and transmitted waves at the x = 0 interface.

12.8 Schumann Resonances

h R

Earth

Ionosphere

Fig. 12.9

The system formed by the Earth and the ionosphere

can be considered as a resonant cavity. The cavity is

delimited by two conducting, concentrical spherical

surfaces: the Earth’s surface (radius R⊕ ≃ 6400 km)

and to the lower border of the ionosphere, located at

an altitude h ≃ 100 km above, as shown in Fig. 12.9,

obviously out of scale. Inside this “cavity” there

are standing electromagnetic waves of particular fre-

quencies, called Schumann resonances.

We want to estimate the typical frequency ω of these resonances, assuming that

both the Earth and the ionosphere are perfect conductors, and thus completely reflect

the electromagnetic waves in the resonant frequency range.

h
L

yE

z

Lx

Fig. 12.10

In order to avoid mathematical complications due

to the spherical geometry of the problem, we choose

a simplified, flat model consisting in a rectangular

parallelepiped with two square, conducting bases of

side L, and height h. In a Cartesian reference frame,

the base standing for the Earth surface lies on the

z = 0 plane, while the base standing for the surface
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at the bottom of the ionosphere lies on the z = h plane, as shown in Fig. 12.10.

We choose L = 2πR⊕, and, in order to reproduce somehow spherical geometry, we

impose periodic boundary conditions on the lateral surface of the parallelepiped,

namely

E(0,y,z, t) = E(L,y,z, t) , E(x,0,z, t) = E(x,L,z, t) , (12.8)

where E is the field of the wave, the same conditions are assumed for the magnetic

field of the wave. We assume εr = 1 and µr = 1 in the interior of our parallelepiped.

Further, we assume a TE mode with an electric field of the form

E = ẑ E0 eikx x+ikyy−iωt . (12.9)

a) Find the possible values of kx, ky, ω and give a numerical estimate of ω and the

corresponding wavelength for the lowest frequency mode.

b) The low-frequency conductivity of sea water is σ ≃ 4.4 Ω−1m−1. Discuss if

approximating the surface of the oceans as a perfect conductor is reasonable at the

frequency of the Schumann resonances .
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Additional Problems

13.1 Electrically and Magnetically Polarized Cylinders

a

µr

h B0

a
h

Fig. 13.1

Let us consider a cylinder of relative magnetic per-

meabilty μr, located in a uniform magnetic field B0

parallel to the cylinder axis, and the analogous prob-

lem of a cylinder of relative electric permittivity εr
located in a uniform electric field E0 parallel to the

cylinder axis. In both cases the cylinder has radius a

an height h.

a) First, consider “long” cylinders, with a≪ h. Eval-

uate the magnetic field Bi, and, respectively, the elec-

tric field Ei, inside the cylinders, neglecting bound-

ary effects.

b) Now evaluate the internal magnetic and electric

fields in the case of “flat” cylinders, a ≫ h, again

neglecting boundary effects.

c) Evaluate the fields of point a) at the next order of

accuracy, taking the boundary effects at the lowest

nonzero order in a/h into account.

d) Evaluate the fields of point b) at the lowest nonzero order in h/a.

13.2 Oscillations of a Triatomic Molecule

2q −q−q

M

kk

mm

xcx1
xx2

Fig. 13.2

A triatomic symmetric linear molecule, like

CO2, can be schematized as a central point

mass M, of charge 2q, and two identical point

masses m, each of charge −q, which, when

the molecule is at rest, are located symmetri-
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cally around M, as shown in Fig. 13.2. In the case of longitudinal small-amplitude

vibrations, the interactions between the three masses (including the electrostatic

forces) can be described as two identical springs, each of rest length ℓ and elas-

tic constant k, located as in the figure.

Let x1 and x2 be the positions of the two lateral masses, and xc the position of

the central mass. We want to study the longitudinal vibrations of the molecule in its

center-of-mass reference frame, defined by the condition

xcm =
mx1+mx2+Mxc

2m+M
= 0 . (13.1)

When the molecule is at rest we have thus

x1 = −ℓ , xc = 0 , x2 = ℓ . (13.2)

a) Find the normal longitudinal oscillation modes of the molecule, and their

frequencies.

b) The molecule emits radiation because the charged masses oscillate around their

equilibrium positions. If the electric dipole term is dominant, the frequency of only

one of the normal modes is observed in the spectrum of the emitted radiation.

Explain why, and evaluate the observed frequency.

c) Assume that, initially, the molecule is “excited” by locating the masses at x1 =

−ℓ+ d1, x2 = ℓ+ d2, and xc such that xcm = 0. Then, at t = 0, the three masses are

simultaneously released. Find the power radiated at t > 0.

13.3 Impedance of an Infinite Ladder Network

Vn
InI0 I1

V1 V2 Vn+1
In−1

V0

Z1 Z1 Z1 Z1

Z2 Z2 Z2 Z2

Z0

Fig. 13.3

Consider the (semi-)infinite ladder of Fig. 13.3, where each (identical) section con-

tains a “horizontal” impedance Z1 = Z1(ω), and a “vertical” impedance Z2 = Z2(ω).

a) Calculate the input impedance Z0 of the semi-infinite network. How can a real,

finite network be terminated after N sections, so that its impedance has also the

value Z0?

b) Let Vn be the voltage at the nth node. Find the relation between Vn and Vn+1 and,

from this, the dependence of Vn on n and on the input voltage V0. Discuss the result

for the case of a purely resistive network (Z1 = R1, Z2 = R2).
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Now consider the case of an LC network, with Z1 = −iωL and Z2 = −1/iωC, in the

presence of an input signal V0(t) = V0e−iωt.

c) Find the frequency range in which signals can propagate in the network. Show

that there is a cut-off frequency ωco, such that the signal is damped if ω > ωco, and

evaluate the damping factor.

d) Discuss the case of a CL network, with Z1 = −1/iωC and Z2 = −iωL.

13.4 Discharge of a Cylindrical Capacitor
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A cylindrical capacitor has internal radius a, exter-

nal radius b > a, and height h ≫ b. For t < 0, the

two cylindrical plates have charges ±Q0, respec-

tively, and are disconnected. At t = 0 the plates

are connected through a resistor R as in Fig. 13.4.

We assume that during the discharge i) the slowly-

varying current approximation holds, ii) the surface

charge density on the plates remains uniform, iii) we

can neglect the effects of the external circuit and the

resistance of the plates, iv) other boundary effects are

negligible. We use a cylindrical coordinate system

(r,φ,z) with the capacitor axis as z axis, and the ori-

gin at the center of the capacitor.

a) Calculate the current I = I(z, t) flowing on the

plates, and the magnetic field B = φ̂Bφ(r,z, t) inside

the capacitor, for |z| ≪ (h/2).

b) Calculate the Poynting vector S for |z| ≪ (h/2),

and verify that its flux through a cylindrical surface

coaxial to the capacitor equals the time variation of the electrostatic energy inside

the surface.

c) Discuss the validity of the slowly varying current approximation and of the

assumption of uniform charge distribution over the plates.

13.5 Fields Generated by Spatially Periodic Surface Sources

Evaluate the electromagnetic fields and potentials generated by the following three

surface charge and/or current densities, located on the y = 0 plane of a Cartesian

coordinate system,

a) a static surface charge density σ = σ0 coskx;

b) a static surface current density K = ẑ K0 coskx;
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c) a time-dependent surface current density K = ẑ K0 e−iωt coskx, discussing for

which values of ω (for fixed k) the fields are propagating.

d) In case c), calculate the time- and space-averaged power dissipated per unit sur-

face on the y = 0 plane

W =
k

2π

∫ +π/k

−π/k
〈K(x, t) ·E(x,y = 0, t)〉dx , (13.3)

and find for which values of ω we have W = 0. Discuss the result with respect to the

findings of point c).

13.6 Energy and Momentum Flow Close to a Perfect Mirror

Consider a plane EM wave, propagating along the x axis of a Cartesian coordinate

system, of frequency ω and elliptical polarization, with electric field

Ei =
E0√
1+ ǫ2

[

ŷcos(kx−ωt)− ẑǫ sin(kx−ωt)
]

, (13.4)

where k = ω/c, and ǫ is a real parameter, 0 < ǫ < 1, characterizing the eccentricity

of the polarization ellipse. The normalization factor 1/
√

1+ε2 has been chosen so

that the intensity of the wave is I = cE2
0
/8π for any value of ε. The wave is incident

on a plane, perfect mirror located at x = 0.

a) Evaluate the Poynting vector S = S(x, t) in front of the mirror, including the con-

tribution of the reflected wave. Find the value of ǫ for which S = 0 everywhere, and

the corresponding angle between the total electric (E) and magnetic (B) fields.

b) Find the force per unit surface on the mirror Fx = Txx, where Txx = T11(x = 0−)

is the (1,1) component of the stress tensor at x = 0−. Show that, in general, Fx has

both a steady and an oscillating component, and find the frequency of the latter. For

which value of ǫ the oscillating component is missing?

13.7 Laser Cooling of a Mirror
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Fig. 13.5

A plane mirror has surface area A, finite

thickness, mass M, and its two opposite sur-

faces are perfectly reflecting. At t = 0 the mir-

ror lies on the x = 0 plane of a Cartesian coor-

dinate system, as in Fig. 13.5. Two plane EM

waves of intensities I1 and I2, respectively,

are impinging at normal incidence on the two

surfaces.
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a) Find the total force on the mirror and the direction of its acceleration if I1 > I2.

Now assume that the two waves have equal intensities, I1 = I2 = I, and that the

mirror is moving with velocity v = x̂v.

b) Evaluate the force on the mirror, in the system where the mirror is at rest.

c) Discuss the motion of the mirror under the action of the force found at point b),

at the limit v≪ c.

13.8 Radiation Pressure on a Thin Foil

An EM wave of frequency ω, traveling along the x axis of a Cartesian coordinate

system, is impinging normally on a very thin foil of thickness d and surface A (see

Problem 11.4, in particular Fig. 11.1). The foil is perfectly conducting in a frequency

range containing ω. As shown in the solution of Problem 11.4, the (complex) trans-

mission and reflection coefficients of the foil are

t =
1

1+η
, r = − η

1+η
, where η = i

ω2
pd

2ωc
, (13.5)

and ωp is the plasma frequency of the foil.

a) Show that the radiation pressure on the thin foil is

Prad =
2RI

c
, (13.6)

where I is the intensity of the wave and R ≡ |r|2.

b) Now assume that the foil is moving with velocity v = βcx̂ in the laboratory frame.

Assuming R = 1 (a perfectly reflecting foil), evaluate the force on the foil.

c) How does the answer to b) change if R = R(ω) < 1?

13.9 Thomson Scattering in the Presence of a Magnetic Field

In a Cartesian reference frame, an electron moves in the presence of a uniform

and constant magnetic field B0 = ẑ B0 and of a monochromatic plane EM wave,

propagating along ẑ, of electric field

E(z, t) = ŷ Ei eikz−iωt , (13.7)

with Ei≪ B0.

a) Describe the motion of the electron in steady state conditions, neglecting friction

and the effect of the magnetic field of the wave.

http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
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b) Calculate the power radiated by the electron. Discuss the dependence of the emit-

ted spectrum on ω, and the angular distribution of the emitted radiation at the limits

ω≪ ωc and ω≫ ωc, where ωc = eB0/me is the cyclotron frequency of the electron

in the presence of B0.

13.10 Undulator Radiation

In a Cartesian laboratory reference frame S ≡ (x,y,z), we have a static magnetic

field B. In a certain region of space, free of charges and currents, the magnetic field

is independent of z, and its y and z components can be written as

By = b(y)cos(kx) , Bz ≡ 0 , (13.8)

where b(y) is an even function of y. The field is generated by sources located outside

the region of interest, at finite values of |y|.
a) Show that, in the region of interest, we must have

By = B0 cos(kx)cosh(ky) , (13.9)

and determine the expression for Bx.

Now assume that, in the laboratory frame S , an electron enters our magnetic field

region with initial velocity v = x̂v.

b) Describe the electron motion in the frame S ′, moving at the velocity v relative

to the laboratory frame S , and discuss the emitted radiation. (Assume the electron

motion to be non-relativistic and keep only linear terms in the equation of motion.)

c) Determine the frequency of the radiation emitted in the directions both parallel

and antiparallel to v, as observed in S . In which directions the radiation intensity is

zero in S ′?

13.11 Electromagnetic Torque on a Conducting Sphere

A plane, monochromatic, circularly polarized electromagnetic wave, of wavelength

λ = 2πc/ω and amplitude E0, impinges on a small metallic sphere of radius a≪ λ.
We assume that ω is low enough so that the metal can be considered as an Ohmic

conductor, of conductivity σ independent of frequency.

a) Evaluate the dipole moment induced on the sphere.

b) Show that the EM wave exerts a torque on the sphere.
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13.12 Surface Waves in a Thin Foil

A very thin conductive foil is located between the x = −ℓ and x = +ℓ planes of a

Cartesian coordinate system. A surface wave propagates along both sides of the

foil, in the y-direction. The fields of the surface wave have only the following non-

zero components: Ex, Ey, and Bz, all of them independent of z. We know that the

electric field component parallel to the propagation direction is

Ey(x,y, t) = E0 e−q|x|ei(ky−ωt) , (13.10)

where the frequency ω is such that λ = 2πc/ω ≫ ℓ. In these conditions, the foil

can be treated, with good approximation, as the superposition of a surface charge

σ(y,z, t), and a surface current K(y,z, t), all lying on the x = 0 plane.

Starting from (13.10) and Maxwell’s equations in vacuum, evaluate

a) the field components Ex and Bz, specifying their parity with respect to x̂, and the

surface current K(y,z, t),

b) the Poynting vector and the time-averaged flux of electromagnetic energy asso-

ciated to the surface wave,

c) the relations between q, k, and ω.

Now assume that, in the relevant frequency range, the relation between the

current density J and the electric field E in the foil can be written (for harmonic

fields) as

J = 4πi
ω2

p

ω
E , (13.11)

where ωp is the plasma frequency of the foil. Equation (13.11) characterizes of an

ideal conductor in the high-frequency regime (Problem 11.1)

d) Using (13.11) and the boundary conditions for the fields of a thin foil discussed

in Problem 11.4, obtain an additional relation between q, k, and ω.

e) By combining the results of points d) and e) find the dispersion relation ω = ω(k)

and discuss its limits of validity.

13.13 The Fizeau Effect

A plane electromagnetic wave of frequency ω and wavevector k = x̂k propagates

in a homogenous medium, while the medium itself is moving with velocity u = x̂u

(thus parallel to k) in the laboratory frame. The refractive index of the medium is

real and positive, n > 0, in the rest frame of the medium. Assume u≪ c, and answer

the following questions evaluating all results up to the first order in β = u/c.

First, assume a non-dispersive medium, with n independent of frequency.

a) Evaluate the phase velocity of the wave, vϕ, in the laboratory frame.

http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
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Now assume that the medium is dispersive, with n depending on frequency accord-

ing to a known law n = n(ω), defined in the rest frame of the medium.

b) Evaluate the phase velocity in the laboratory frame in this case, showing that

now

vϕ ≃
c

n(ω)
+βc

(

1− 1

n
2(ω)

+
ω

n(ω)
∂ωn(ω)

)

+O(β2) . (13.12)

Hint: use the first-order Doppler effect for evaluating the relation between the fre-

quency in the laboratory frame and the frequency observed in the rest frame of the

medium.

c) Use (13.12) to show that, in a medium containing free electrons moving with

negligible friction (a simple metal or an ideal plasma), the phase velocity does not

depend on β up to to first order [1].

13.14 Lorentz Transformations for Longitudinal Waves

Consider a longitudinal wave with fields

E = E(x, t) = x̂ E0 ei(kx−ωt) , B ≡ 0 , (13.13)

in the (Cartesian) laboratory frame S . We have shown in Problem (11.3) that the

phase velocity of this wave, vϕ = ωL/kL is undetermined, and can have arbitrary

values.

Find the frequency, wavevector and fields of the wave in a frame S ′, moving with

velocity v with respect to S , for the three following cases:

a) v = vϕ x̂, with vϕ < c;

b) v = (c2/vϕ)x̂, with vϕ > c;

c) v = V ŷ with V < c.

13.15 Lorentz Transformations for a Transmission Cable

A transmission cable can be schematized as an infinite straight conducting wire.

We choose a cylindrical coordinate system (r,φ,z) with the z axis along the wire.

A monochromatic charge and current signal, of frequency ω, propagates along the

cable, with total current I and linear charge density λ given by, in complex notation,

I = I(z, t) = I0 eikz−iωt , λ = λ(z, t) = λ0 eikz−iωt . (13.14)

The cable is located in a uniform medium of real dielectric permittivity ε > 1, and

magnetic permeability μ = 1, in the frequency region of interest.

http://dx.doi.org/10.1007/978-3-319-63133-2_11
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a) Find the relation between I0 and λ0.

b) Evaluate the electric and magnetic fields in the medium, E(r,z, t) and B(r,z, t),

assuming that they are in a TEM mode, i.e.,

E(r,z, t) = E(r)eikz−iωt , B(r,z, t) = B(r)eikz−iωt , (13.15)

with E · ẑ = 0 and B · ẑ = 0. Evaluate the dispersion relation between the frequency

ω and the wave vector k.

c) Show that the fields and their sources are independent of time in a reference frame

S ′, moving at the phase velocity ẑvϕ = ẑ (ω/k) relative to the laboratory frame S

where the wire is at rest. Show that, in S ′, we have E′ = 0 and I′ = 0, while λ′ � 0

and B′ � 0. Explain this apparently surprising result.

13.16 A Waveguide with a Moving End

x0

( )
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a

Fig. 13.6

Two perfectly conducting plane sur-

faces located at y=±a/2, respectively,

form a waveguide. The waveguide is

terminated at x = 0 by a perfectly con-

ducting wall, as shown in Fig. 13.6.

Consider the propagation of a mono-

chromatic TE10 wave along the x axis.

The electric field of the wave has only

the z component. In complex notation

we have Ez(x,y, t) = Ez(y)eikx−iωt, where ω and k are related by the dispersion rela-

tion of the TE10 mode.

a) Find the total electric and magnetic fields inside the waveguide.

Now assume that the end of the waveguide moves with constant velocity v = v x̂.

b) Assuming v < kc2/ω, determine the frequency ωr and the wavevector kr of the

reflected wave. Verify that ωr and kr are related by the dispersion relation of the

TE10 mode.

c) What happens in the v > kc2/ω case?

13.17 A “Relativistically” Strong Electromagnetic Wave

We consider a circularly polarized, plane electromagnetic wave propagating parallel

to the z axis of a Cartesian reference frame. The wave fields are

E = E0
[

x̂cos(kz−ωt)− ŷsin(kz−ωt)
]

, (13.16)

B = E0
[

x̂sin(kz−ωt)+ ŷcos(kz−ωt)
]

. (13.17)
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We assume that the field is strong enough that electrons oscillate at relativistic veloc-

ities not much smaller than c. The relativistically correct equation of motion for an

electron in the presence of the intense wave is

dp

dt
= −e

(

E+
v

c
×B

)

, (13.18)

where p = meγv, and γ = 1/
√

1− v2/c2 =
√

1+p2/(mec)2.

We want to study the propagation of such a “relativistic” wave in a medium with

free electrons (ions are considered at rest).

a) Show that it is self-consistent to assume that the electron motion occurs on the

xy plane. Do this in two steps. First we assume that, at t = 0, the z component of the

momentum of the electrons is zero, pz = 0. Then solve the equations of motion in

steady state conditions and verify the consistency of the assumption a posteriori.

b) Show that the Lorentz factor γ is time-independent, and give its expression.

c) Calculate the refraction index for a medium with free electron density ne.

d) Find the dispersion relation and the cut-off frequency for the electromagnetic

wave, comparing the result with the “non-relativistic” case of low field amplitudes.

13.18 Electric Current in a Solenoid
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Fig. 13.7

A solenoid is made by winding a thin con-

ducting wire of radius a and conductivity σ

around a non-conducting cylinder of radius

b ≫ a and height h ≫ b. Thus the solenoid

coil has a pitch

θ = arctan

(

a

πb

)

≪ 1 , (13.19)

since the wire moves in the ẑ direction by a step of length 2a at every turn of length

2πb. The solenoid is located in an external uniform electric field E = Eẑ.

a) Evaluate the magnetic field B both inside (r < b) and outside (r > b) the solenoid,

neglecting boundary effects.

b) Calculate the flux of the Poynting vector S = cE×B/4π through a cylindrical

surface external and coaxial to the solenoid, and compare its value with the power

dissipated by Joule heating.
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13.19 An Optomechanical Cavity
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We have a one-dimensional cavity limited

by two perfectly conducting plane surfaces

located at x = ±d/2, respectively, as in

Fig. 13.8. The electromagnetic field inside the

cavity has frequency ω, peak amplitude of the

electric field E0, and is linearly polarized par-

allel to the walls.
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Fig. 13.9

a) Find the possible values for ω and write

the most general form of the electromagnetic

field.

b) Calculate the electromagnetic energy per

unit surface U inside the cavity.

c) Calculate the radiation pressure P on the

walls as a function of E0, and the ratio U/P.

d) Now assume that the two cavity walls are

finite squares, each of mass M and surface

S ≫ d2. Each cavity wall is connected to an

external fixed wall by a spring of Hooke’s

constant K, as shown in Fig. 13.9. Neglect-

ing boundary effects, evaluate the relation

between frequency and amplitude of the elec-

tromagnetic modes of the cavity.

13.20 Radiation Pressure on an Absorbing Medium

In an appropriate Cartesian reference frame we have vacuum in the x < 0 half-space,

while the x > 0 half-space is filled with a medium of complex refractive index

n = n1+ in2 , (13.20)

with n1 > 1≫ n2. A monochromatic plane wave of frequency ω and intensity Ii,

propagating in the positive x direction, is incident on the x = 0 plane. Calculate

a) the power absorbed by the medium, Wabs, showing that Wabs = (1−R) Ii, where

R is the reflection coefficient (R = |r|2 where r is the usual amplitude coefficient for

the reflected wave as defined in the Fresnel formulas);

b) the pressure on the medium, Prad, showing that Prad = (1+R) Ii/c.
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13.21 Scattering from a Perfectly Conducting Sphere

In a Cartesian reference frame (x,y,z), a linearly polarized, plane monochromatic

electromagnetic wave has electric field

E(x, t) = ŷ E0 cos(kx−ωt) , where k =
ω

c
, (13.21)

and impinges on a metallic sphere of radius a≪ λ = 2π/k, located at the origin of

the reference frame. We further assume that the sphere is “perfectly conducting” at

the frequency of the wave, so that the total electric field can be assumed to be zero

over the whole volume of the sphere.

a) Find the power scattered by the sphere in the electric dipole approximation, and

the corresponding scattering cross section.

b) Assuming that the sphere is also perfectly diamagnetic (B = 0 inside the sphere),

find the contribution of the magnetic dipole term to the scattering cross section.

13.22 Radiation and Scattering from a Linear Molecule

E1

x

k E0z

y

p0

θ

Fig. 13.10

A simple model for a polar linear molecule, neglecting vibrations, is a one-

dimensional rigid rotor associated to an electric dipole moment p0. The molecule

has moment of inertia I about any rotational axis passing through its barycenter and

perpendicular to the molecule. Let us consider a polar linear molecule located in a

uniform and constant electric field E0, parallel to the x axis of a Cartesian coordinate

system (right part of Fig. 13.10).

a) Find the equilibrium positions of the molecule, and discuss the motion when the

molecule at time t = 0 is slightly displaced from its stable equilibrium position.

b) Describe the radiation emitted by the molecule during small amplitude oscilla-

tions, and estimate the damping time of such oscillations.

Now assume that a monochromatic plane wave, linearly polarized along the y

axis, of frequency ω and electric field amplitude E1, is propagating along the x axis.

Also assume that the length of the molecule, d, is much smaller than the wavelength,

d≪ λ = 2πc/ω = 2π/k.

c) Describe the motion of the molecule in these conditions.

d) Calculate the power scattered by the molecule and its scattering cross section.
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13.23 Radiation Drag Force

The classical motion of a particle of charge q and mass m, under the simultaneous

action of an electric field E and a magnetic field B, is described by the equation

d2r

dt2
=

dv

dt
=

q

m

(

E+
v

c
×B

)

−ηv , (13.22)

where η is a damping coefficient.

Given a Cartesian reference frame (x,y,z), consider the motion of the particle in

the presence of a plane, monochromatic electromagnetic wave propagating along

the x axis. The wave is linearly polarized along y with electric field amplitude E0,

has frequency ω and wave vector k = x̂ω/c. Assume the velocity of the particle to

be much smaller than c, so that, as a first order approximation, we can neglect the

v×B/c term.

a) Solve (13.22) in steady-state conditions.

b) Calculate the cycle-averaged power Pabs absorbed by the particle, i.e., the work

made by the electromagnetic force over an oscillation period.

c) Calculate the cycle-averaged power Prad radiated by the particle, and obtain an

expression for the damping coefficient η assuming that all the absorbed power is

re-emitted as radiation, Prad = Pabs.

d) Now use the result of point b) to evaluate the effect of the term v×B/c. The

cycle-averaged force along x, which accelerates the particle in the wave propagation

direction, is

Fx =

〈

q

(

v

c
×B

)

x

〉

. (13.23)

Calculate Fx and the Pabs/Fx ratio.

e) Assume that instead of a point particle we have a small sphere of radius a, such

that ka≪ 1, containing N ≫ 1 particles (plus a neutralizing background). Find the

force on the sphere and the related acceleration as a function of N (neglect any

collective effect such as screening of the electromagnetic field inside the sphere).

Reference

1. I. Lerche, On a curiosity arising from Fizeau’s experiment. Am. J. Phys. 43, 910 (1975)



Chapter S-1

Solutions for Chapter 1

S-1.1 Overlapping Charged Spheres

δ

r+
r−

O− O+

Fig. S-1.1

a) The electrostatic field at any point in space

is the sum of the fields generated by each

charged sphere (superposition principle). The

field generated by a single uniformly charged

sphere at its interior is E(r) = 4πke̺0r/3,

where ̺0 is the charge density and r is the

position vector relative to the center of the

sphere. Thus, the two spheres generate at

their interiors the fields E± = ±4πke̺0r±/3,

respectively, r± being the position vectors rel-

ative to the two centers. We assume that the

centers are located on the x axis at points O+ ≡ (+δ/2,0,0) and O− ≡ (−δ/2,0,0).

We thus have r± = r ± δ/2, where r is the position vector relative to the origin

O ≡ (0,0,0). The total field in the overlap region is

Ein = +
4πke

3
̺0

(

r−
δ

2

)

−
4πke

3
̺0

(

r+
δ

2

)

= −
4πke

3
̺0 δ . (S-1.1)

The internal field Ein is thus uniform and proportional to −δ.
b) The electrostatic field generated by a uniformly charged sphere, with vol-

ume charge density ̺0, outside its volume equals is the field of a point charge

Q = 4πR3̺0/3 located at its center. Thus, the electrostatic field in the outer region

(outside both spheres) is the sum of the fields of two point charges ±Q located at

O+ and O−, respectively. If R≫ δ, this is equivalent to the field of an electric dipole

of moment

p = Qδ =
4πR3

3
̺0 δ (S-1.2)
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located at the origin and lying on the x axis. The external field is thus

Eext(r) = ke
3r̂ (p · r̂)−p

r3
, (S-1.3)

where r = r r̂ is the vector position relative to the origin.

In the two transition “shell” regions, of net charge densities ±̺0, the field is the

sum of the inner field of one sphere and of the outer field of the other. We omit to

write down the expression for brevity (Fig. S-1.1).

S-1.2 Charged Sphere with Internal Spherical Cavity

r

Oa d
r

Ob

Fig. S-1.2

a) Once again we use the superposition

principle. Our charged sphere with an inter-

nal spherical cavity can be thought of as

the superposition of two uniformly charged

spheres: a sphere of radius a centered in Oa,

with charge density ̺, and a smaller sphere

of radius b centered in Ob, with charge den-

sity−̺. The electric field everywhere in space

is the sum of the fields generated by the

two spheres. The field generated by a uni-

formly charged sphere at its inside is E =

(4πke/3)̺r, where r is the distance from the center of the sphere. The total field

inside the cavity at a point of vector position r relative to Oa, and vector position r′

relative to Ob, is thus

Ecav =
4πke

3
̺ (r− r′) =

4πke

3
̺d , (S-1.4)

uniform and parallel to the straight line passing through Oa and Ob. If d = 0 we

obtain E = 0, as expected from Gauss’s law and symmetry considerations.

b) In an external field E0 the total force on the system is the sum of the forces that

E0 would exert on the two point charges Qa = 4πa3̺/3 and Qb = −4πb3̺/3, located

in Oa and Ob, respectively, so that

F =
4π

3
̺ (a3−b3)E0 . (S-1.5)

c) Since the vector sum of the forces is different from zero, the torque depends on

our choice of the origin. The torque about the center of the sphere Oa is

τ = d×F = −4π

3
̺b3d×E0 . (S-1.6)
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Let us introduce a reference system with the x axis passing through Oa and Ob, and

the origin in Oa. We denote by ̺m = α̺ the mass density, with α some constant

value. Our coordinate origin is thus the location of the center of mass of the cavity-

less sphere of radius a and mass Mtot = 4πa3̺m/3, while x = d is the location of the

center of mass of a sphere of radius b and mass Mb = 4πb3̺m/3. Let us denote by

xc the center of mass of the sphere with cavity, of mass Mc = 4π(a3 −b3)̺m/3. We

have

0 =
Mcxc+Mb d

Mtot
, thus xc = −d

Mb

Mc
= −d

b3

a3−b3
. (S-1.7)

The torque about the center of mass xc is thus

τc =
b3d

a3−b3

4π

3
̺a3 x̂×E0−

(

d+
b3d

a3−b3

)

4π

3
̺b3 x̂×E0 = 0 , (S-1.8)

as was to be expected, since each charged volume element d3r is subject to the force

̺E0 d3r, and acquires an acceleration

a =
̺E0 d3r

̺md3r
=

E0

α
, (S-1.9)

equal for each charged volume element (Fig. S-1.2).

S-1.3 Energy of a Charged Sphere

a) We can assemble the sphere by moving successive infinitesimal shells of charge

from infinity to their final location. Let us assume that we have already assembled

a sphere of charge density ̺ and radius r < R, and that we are adding a further shell

of thickness dr. The assembled sphere has charge q(r) = ̺(4πr3/3), and its potential

ϕ(r,r′) at any point at distance r′ ≥ r from the center of the sphere is

ϕ(r,r′) = ke
q(r)

r′
= ke ̺

4πr3

3

1

r′
. (S-1.10)

The work needed to move the new shell of charge dq = ̺4πr2dr from infinity to r

is

dW = ϕ(r,r′)dq = ke ̺
4πr3

3

1

r
̺4πr2dr = ke

(4π̺)2

3
r4dr . (S-1.11)

The total work needed to assemble the sphere is obtained by integrating dW from

r = 0 (no sphere) up to the final radius R
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U0 = ke
(4π̺)2

3

∫ R

0

r4dr = ke
(4π̺)2R5

15
=

3ke

5

Q2

R
, (S-1.12)

where Q = (̺4πR3)/3 is the total charge of the sphere.

b) The electric field everywhere in space is, according to Gauss’s law,

E(r) = ke Q×

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r

R3
, r ≤ R

1

r2
, r ≥ R ,

(S-1.13)

and the integral of the corresponding energy density uE = E2/(8πke) over the whole

space is

U0 =

∫ ∞

0

E2(r)

8πke
4πr2 dr =

k2
e Q2

2ke

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∫ R

0

(

r

R3

)2

r2dr+

∫ ∞

R

(

1

r2

)2

r2dr

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= ke
Q2

2

(

1

5R
+

1

R

)

=
3ke

5

Q2

R
. (S-1.14)

c) The electrostatic potential of the sphere everywhere in space is

ϕ(r) = keQ×

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−
r2

2R3
+

3

2R
, r ≤ R

1

r
, r > R

(S-1.15)

where the constant 3keQ/(2R) appearing for r≤R is needed for ϕ(r) to be continuous

at r = R. Since ̺ = 0 for r > R, we need only the integral of ̺ϕ/2 inside the sphere

U0 =
1

2

∫ R

0

̺keQ

(

− r2

2R3
+

3

2R

)

4πr2 dr = ke
Q

4

Q

R3/3

(

−R2

5
+R2

)

=
3ke

4

Q2

R3

4R2

5
=

3ke

5

Q2

R
. (S-1.16)

All methods, including b) and c), lead to the correct result, as expected. However,

a comparison between methods b) and c) shows that it is incorrect to interpret the

“energy density” of the electric field as the “energy stored in a given region of space

per unit volume”. If we give this meaning to quantity E2/(8πke), as in b), we con-

clude that the energy is spread over the whole space. If, on the other hand, we

assume the energy density to be 1
2
̺ϕ, as in c), the energy is “stored” only inside the

volume of the sphere, i.e., “where the charge is”. Thus, the concept of energy den-

sity is ambiguous, while the total electrostatic energy of the system is a well defined

quantity, at least in the absence of point charges.
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S-1.4 Plasma Oscillations

0

−en

+en

ρ

xδ

h h
+

δ

Fig. S-1.3

a) Assuming δ > 0, the collective rigid dis-

placement of the conduction electrons due to

the external field gives origin to the charge

density

̺(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 , x < 0 ,

+en , 0 < x < δ,

0 , δ < x < h ,

−en , h < x < h+δ ,

0 , x > h+δ .

(S-1.17)

The electrostatic field E(x) generated by this charge distribution is obtained by inte-

grating the equation ∇ ·E = ∂xEx = 4πke̺ with the boundary condition E(−∞) = 0:

δ h0

h
+

enδ

δ x

E

Fig. S-1.4

Ex(x) = 4πenke

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 , x < 0 ,

x , 0 < x < δ,

δ , δ < x < h ,

h+δ− x , h < x < h+δ ,

0 , x > h+δ .

(S-1.18)

If we assume a negative displacement −δ (with δ > 0) the charge density and the

electric field are

̺(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 , x < −δ ,
−en , −δ < x < 0 ,

0 , 0 < x < h−δ ,
+en , h−δ < x < h ,

0 , x > h .

Ex(x) = 4πenke

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 , x < −δ ,
−x−δ , −δ < x < 0 ,

−δ , 0 < x < h−δ ,
x−h−δ , h−δ < x < h ,

0 , x > h .

(S-1.19)

The plots are obtained from Figs. S-1.3 and S-1.4, respectively, by flipping around

the x axis and translating by δ towards the negative x values.

b) The electrostatic energy of the system, in the case of a positive displacement,

can be evaluated by integrating the “energy density” u = E2
x/(8πke) over the whole

space:

Ues =

∫

E2
x

8πke
d3r =

L2

8πke

∫

h+δ

0

E2
x dx

=
L2

8πke

(4πen)2

[∫ δ

0

x2 dx+

∫

h

δ

δ2 dx+

∫

h+δ

h

(h+δ− x)2 dx

]

= 2πke(enL)2

[

δ3

3
+δ2(h−δ)+ δ

3

3

]

= 2πke(enL)2

(

hδ2− δ
3

3

)

, (S-1.20)
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where, due to the symmetry of the problem, we used d3r = L2 dx. Exactly the same

result is obtained for a negative displacement by −δ. The δ appearing in the last line

of (S-1.20) is actually to be interpreted as the absolute value |δ|.
c) At the limit δ≪ h we can neglect the third-order term in δ of (S-1.20), and approx-

imate Ues ≃ 2πke(enL)2
hδ2, which is the potential energy of a harmonic oscillator.

The force on the “electron slab” is thus

F = −∂Ues

∂δ
= −4πke(enL)2

hδ , (S-1.21)

where δ can be positive or negative. The equation of motion for the electrons is

Mδ̈ = F ≡ −Mω2δ , (S-1.22)

where M = menL2
h is the total mass of the conduction-electron slab. We thus have

ω2 =
4πkene2

me
≡ ω2

p , (S-1.23)

where ωp is called the plasma frequency, and is an intrinsic property of the given

conductor, dependent only on the density of free electrons.

S-1.5 Mie Oscillations

a) In Problem 1.1 we showed that the electric field is uniform and equal to

−4πke ̺0 δ/3, with ̺0 = ene, in the region where the conduction-electrons sphere

overlap,

R
a c

δ

b

Fig. S-1.5

Eint = −
4πke

3
eneδ . (S-1.24)

We assume that the displacement δ is suffi-

ciently small for the volumes a (only conduc-

tion electrons) and c (only ion lattice) of Fig.

S-1.5 to be negligible compared to the over-

lap volume b, an order of magnitude for δ

is found in (S-2.4) of Solution S-2.1. Assuming further that conduction electrons

behave like a “rigid” body, oscillating in phase with the same displacement δ = δ(t)

from their rest positions, the equation of motion for the single electron is

me
d2
δ

dt2
= −eEint = −e

4πke

3
eneδ = −me

ω2
p

3
δ , (S-1.25)

http://dx.doi.org/10.1007/978-3-319-63133-2_1
http://dx.doi.org/10.1007/978-3-319-63133-2_15
http://dx.doi.org/10.1007/978-3-319-63133-2_15
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where ωp is the plasma frequency (S-1.23). Thus, the displacement of each conduc-

tion electron from its rest position is

δ(t) = δ(0)cos

(

ωp√
3

t

)

, (S-1.26)

where δ(0) is a constant and ωp/
√

3 is called the Mie frequency. This type of motion

is known as Mie oscillation (or surface plasmon of the sphere).

b) The electrostatic energy of the system is given by the integral

Ues =

∫

E2

8πke
d3r . (S-1.27)

For δ approaching 0, the electric field is given by (S-1.24) inside the sphere (r < R),

and by (S-1.3), i.e., an electric dipole field, outside the sphere (r > R). Thus we

can split the integral of (S-1.27) into the sum of two terms, corresponding to the

integration domains r < R and r > R, respectively

Ues = U in
es +Uout

es =
1

8πke

(∫

r<R

E2 d3r+

∫

r<R

E2 d3r

)

. (S-1.28)

For r < R the field is uniform and we immediately find

U in
es =

1

8πke

(

ke
4π

3
eneδ

)2
4π

3
R3 = ke

8π2

27
(eneδ)

2R3 . (S-1.29)

For evaluating the contribution of the outer region, we substitute

d3r = r2 sinθdr dθdφ, and E2 =

(

ke p

r3

)2

(3cos2 θ+1) , (S-1.30)

where p=Qδ = δene 4πR3/3 (see Problem 1.1), into the second integral at the right-

hand side of (S-1.28)

Uout
es = 2π

1

8πke
k2

e p2

∫ +∞

R

r2 dr

∫ π

0

sinθdθ
3cos2 θ+1

r6
, (S-1.31)

and obtain

Uout
es = ke

p2

3R3
= ke

4π

9
(eneδ)

2 4π

3
R3 = ke

16π2

27
(eneδ)

2R3 , (S-1.32)

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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thus Uout
es = 2U in

es. For the total energy we have finally

Ues = U in
es +Uout

es = ke
8π2

9
(eneδ)

2R3 . (S-1.33)

The derivative of Ues with respect to δ gives the force associated to the displacement

of the electron sphere:

F = −∂Ues

∂δ
= −ke

16π2

9
R3 (ene)2δ . (S-1.34)

The equation of motion for the rigid sphere of electrons is M d2
δ/(dt2) = F, where

M = mene4πR3/3 is the total mass of electrons. Thus

d2
δ

dt2
= −ke

4πnee2

3me
δ ≡ −

ω2
p

3
δ , (S-1.35)

and we are back to the oscillations at the Mie frequency of (S-1.26).

S-1.6 Coulomb Explosions

a) The electric field has radial symmetry, E = E(r) r̂. According to Gauss’s law we

have 4πr2E(r) = 4πkeQint(r), where Qint(r) is the charge inside the sphere of radius

r. At t = 0 we have Qint = Q (r/R)3 for r < R, and Qint = Q for r > R, thus the electric

field inside and outside the cloud is, respectively,

E(r) = keQ×

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r

R3
, r ≤ R ,

1

r2
, r ≥ R .

(S-1.36)

Due to the spherical symmetry of the problem, we have E = −∂ϕ/∂r, where ϕ is the

electric potential, and the potential at t = 0 can be obtained by a simple integration:

ϕ(r) = keQ×

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

− r2

2R3
+

3

2R
, r ≤ R ,

1

r
, r ≥ R .

(S-1.37)

As in Equation (S-1.15) of Problem 1.3, the integration constants have been chosen

so that ϕ(∞)= 0 and ϕ(r) is continuous at r =R. The potential energy of a test charge

qt located at distance r from the center is thus qtϕ(r).

b) Under the action of the electric field, the test charge would move and convert all

its potential energy into kinetic energy if the field remained stationary during the

charge motion, i.e., if all the source charges of the field remained fixed. At t = 0 the

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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electric field inside the spherical cloud increases with r. Thus, the “outer” particles,

located at larger r, have a higher acceleration than the “inner” particles, located

at smaller r. After an infinitesimal time interval the “outer” particles will acquire a

higher velocity (we are assuming that all particles are at rest at t = 0), and will not be

overtaken by the “inner” ones. Moreover, also the acceleration has radial symmetry,

and thus any spherical shell preserves its shape in time. These arguments can be

iterated for any following time, proving the validity of our assumptions that the

particles do not overtake one another, and that the spherical symmetry is preserved.

Let us denote by rs(r0, t) the position of a particle initially located at r0. Since the

particles do not overtake one another, the charge inside a sphere of radius rs(r0, t) is

constant. The electric field intensity at rs(r0, t) can be evaluated by applying Gauss’s

law: from

4πr2
s (r0, t) E [rs(r0, t)] = 4πkeQ

(

r0

R

)3

(S-1.38)

we obtain

E [rs(r0, t)] = ke
Q

r2
s (r0, t)

(

r0

R

)3

, (S-1.39)

from which Equation (1.16) can be derived. The forces on the particles, and

thus their accelerations, increase with increasing r0, in agreement with our “non-

overtaking” result. Note that the electric field, and thus the force, at t = 0 is propor-

tional to r0, not to r3
0
, because we have r2

s (r0,0) = r2
0

at the denominator.

c) Each infinitesimal spherical shell expands from its initial radius r0 to its final

radius rs (r0,∞) =∞ under the action of the force (1.16). The final kinetic energy of

a particle belonging to the shell, Kfin(r0), equals the work done by the force on the

particle

Kfin(r0) =

∫

+∞

ri0

ke
qQ

r2
i

(

r0

R

)3

dr = ke
qQ

r0

(

r0

R

)3

= ke q Q
r2

0

R3
. (S-1.40)

Quantity Kfin(r0) is a monotonically increasing function of r0, thus its maximum

value Kmax is observed for r0 = R

Kmax = Kfin(R) = ke
qQ

R
. (S-1.41)

This means that the particles initially located at r0 = R, i.e., at the cloud surface,

acquire the maximum final kinetic energy.

d) The energy distribution, or energy spectrum, function f (K) is defined so that

the number dN of particles with kinetic energy in the interval (K,K + dK) equals

f (K)dK, therefore f (K)= dN/dK. A particle belonging to the shell r0 < rs < r0+dr0

at t = 0 has a kinetic energy in the interval (Kfin(r0),Kfin(r0)+dKfin) at t =∞, where

http://dx.doi.org/10.1007/978-3-319-63133-2_1
http://dx.doi.org/10.1007/978-3-319-63133-2_1
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dKfin =
2ke qQr0

R3
dr0 . (S-1.42)

On the other hand, at t = 0 the number of particles in the shell (r0,r0+dr0) is

dN = N
3

4πR3
4πr2

0 dr0 = N
3r2

0

R3
dr0 , (S-1.43)

and the number of particles in a given shell is constant during the motion, since

the particles do not overtake one another. Thus, inserting (S-1.40) and (S-1.41), we

obtain

f (Kfin) =
dN

dKfin

= N
3r2

0

R3

R3

2keqQr0
= N

3r0

2keqQ
=

3N

2K
3/2
max

√

Kfin , (S-1.44)

valid for Kfin ≤ Kmax.

The final total kinetic energy is

Ktot =

∫ Kmax

0

K f (K)dK =
3N

2K
3/2
max

∫ Kmax

0

K3/2dK =
3N

5
Kmax

=
3ke

5

NqQ

R
=

3ke

5

Q2

R
, (S-1.45)

which equals the total electrostatic energy stored in the charged sphere at t = 0

(Problem 1.3). Here we have substituted Nq = Q. Thus, all the electrostatic energy

stored in the initial configuration is eventually converted into kinetic energy.

It is a relatively common error to assume that the final kinetic energy of a par-

ticle initially in the shell r0 < rs < r0 + dr is equal to the potential energy of the

same particle at t = 0, i.e., that Kfin = qϕ (r0), where ϕ is given by (S-1.37). This is

obviously wrong, because a particle initially at r0 = 0 has the highest possible initial

potential energy, ϕ(0) = 3keQ/(2R), while it undergoes the lowest possible gain in

kinetic energy (zero)! Moreover, this behavior would not preserve the total energy

of the system, because the initial potential energy of the sphere is (see Problem 1.3)

U(0) =
1

2

∑

i

qϕ[ri(0)] , not U(0) =
∑

i

qϕ[ri(0)] .

The point is that while the field is electrostatic (∇×E = 0) at any time, it is time

dependent. Thus, ϕ can be defined for any value of t, but it cannot be used to evaluate

the final kinetic energy, because ϕ changes as the particles move.

The gain in kinetic energy equals the initial potential energy qϕ(R, t = 0) for the

particles initially at ri = R, i.e., for the most external ones. Only these particles are

accelerated by a field that can be treated as static, being simply equal to the field of

a point charge Q located at r = 0 at any time.

e) If we introduce the new variable x(t) = rs(r0, t)/r0, (1.16) becomes

http://dx.doi.org/10.1007/978-3-319-63133-2_1
http://dx.doi.org/10.1007/978-3-319-63133-2_1
http://dx.doi.org/10.1007/978-3-319-63133-2_1
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m
d2x

dt2
= ke

qQ

R3x2
, (S-1.46)

which is independent of r0. The solution of (S-1.46), x = x(t), with the initial con-

dition x(0) = 1, is thus valid for all the particles of the cloud. Thus, if two shells,

labeled 1 and 2, have initial radii r10 and r20, with r20 > r10, their subsequent radii

will be r1(t) = rs(r10, t) = r10 x(t) and r2(t) = rs(r20, t) = r20x(t). It will always be

r2(t) > r1(t), and the internal shell cannot overtake the external one. The number of

particles contained between the layers 1 and 2 is constant and equal to

δN12 =
N

R3

(

r3
20− r3

10

)

. (S-1.47)

Thus the particle density between the two layers at time t is

n(t) =
3

4π
[

r3
2
(t)− r3

1
(t)
] δN12 =

3N

4πR3

r3
20
− r3

10

(r3
20
− r3

10
) x3(t)

=
3N

4πR3
x−3(t) . (S-1.48)

This result does not depend on the particular choice of the two layers, and the parti-

cle density is uniform at any time t, and decreases with increasing time as x−3(t).

S-1.7 Plane and Cylindrical Coulomb Explosions

xO

E

a

2

E

−
a

2

Fig. S-1.6

a) The electric field is parallel to the x

axis and independent of the y and z coor-

dinates for symmetry reasons, thus we

have E(x,y,z)= E(x) x̂. Again for symme-

try reasons, the electric field is antisym-

metric with respect to the x = 0 plane, so

that E(−x) = −E(x). Thus it is sufficient

to consider the field for x ≥ 0. The charge

density at t = 0 is ̺(x) = qn0Θ(a/2− |x|),
whereΘ(x) is the Heaviside step function,

defined asΘ(x)= 1 for x> 0, andΘ(x)= 0

for x < 0. The electric field at t = 0 can

be evaluated by integrating the equation

∇ ·E = ∂xEx = 4πke̺(x), with the bound-

ary condition E(0) = 0, obtaining

E(x) = 4πke

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

qn0x , x <
a

2
,

qn0
a

2
, x >

a

2
.

(S-1.49)
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Since the particles are at rest at t=0, and the electric field increases with increasing

x, the particles cannot overtake one another. The motion of a particle initially at x0

is described by an equation xs = xs(x0, t). Let us consider a parallelepiped of base S

lying on the x = 0 plane and height xs(x0, t). The charge inside our parallelepiped is

constant in time since no particle can cross the moving base. We can apply Gauss’s

law to evaluate the electric field on the particle located at xs(x0, t)

E[xs(x0, t), t]S = 4πkeQin(t) = 4πkeQin(0) = 4πkeqn0x0S . (S-1.50)

Thus, the field accelerating each particle is constant in time, and equals

E(x0) = 4πkeqn0x0 , (S-1.51)

where x0 is the particle position at t = 0. The equation of motion is thus

m
d2xs(x0, t)

dt2
= qE(x0) = 4πkeq2n0x0 , (S-1.52)

with the initial conditions xs(x0,0) = x0 and ẋs(x0,0) = 0. The solution is

xs(x0, t) = x0+2πke
q2n0x0

m
t2 = x0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1+
ω2

p t2

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (S-1.53)

where ωp =
√

4πkeq2n0/m is the “plasma frequency” of the infinite charged layer

at t = 0 (see Problem 1.4). Thus, the acceleration of an infinitesimal plane layer of

thickness dx is proportional to its initial x coordinate, and more external layers are

faster than more internal ones. The velocity, and the kinetic energy, of each layer

grow indefinitely with time, which is not surprising since the system has an infinite

initial potential energy (Fig. S-1.6).

If we introduce the dimensionless variable ξ = xs/x0, its equation of motion

m
d2ξ

dt2
= qE(x0) = 4πkeq2n0, ξ(0) = 1 ,

dξ(0)

dt
= 0 , (S-1.54)

is independent of x0. Thus the position of any particle can be written in the form

xs(x0, t) = x0 ξ(t) , (S-1.55)

which shows that the particle density, and the charge density, remain uniform during

the explosion.

b) The case of the Coulomb explosion of a system of charged particles initially

confined, at rest, inside an infinite cylinder of radius a, is similar. We use cylindrical

coordinates (r,φ,z), and assume that the initial particle density is uniform and equal

to n0 for r < a, and zero for r > a. All particles have mass m and charge q. According

to Gauss’s law, at t = 0 the field at position (r0,φ,z), with r0 < a, is

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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E(r0) = 2πke n0qr0 . (S-1.56)

Again, the particles cannot overtake one another because the electric field increases

with increasing r0. A particle initially at r0 will move along the r coordinate accord-

ing to a law rs = rs(r0, t), with rs(r0,0) = r0. The field acting on the particle at time t

is

E(r0, t) =
2πke n0qr2

0

rs(r0, t)
, (S-1.57)

and its equation of motion is

m
d2rs(r0, t)

dt2
= q

2πke n0qr2
0

rs(r0, t)
. (S-1.58)

It is not possible to solve (S-1.58) for rs(r0, t) in a simple way, however, we can

multiply both sides by drs(r0, t)/dt, obtaining

m
drs(r0, t)

dt

d2rs(r0, t)

dt2
= 2πke n0 q2r2

0

1

rs(r0, t)

drs(r0, t)

dt
. (S-1.59)

Equation (S-1.59) can be rewritten

m

2

d

dt

[

drs(r0, t)

dt

]2

= 2πke n0 q2r2
0

d

dt
ln[rs(r0, t)] , (S-1.60)

which can be integrated with respect to time, leading to

m

2

[

drs(r0, t)

dt

]2

= 2πke n0 q2r2
0 ln [rs(r0, t)]+C

= 2πke n0 q2r2
0 ln

(

rs(r0, t)

r0

)

, (S-1.61)

where the integration constant C has been determined by the condition that the

kinetic energy of the particle must be zero at t = 0, when rs(r0, t) = r0. The first

side of (S-1.61) is the kinetic energy K(rs) at time t, when the particle is located at

rs(r0, t), which we can simply denote by rs. Thus we have the following, seemingly

time-independent equation for the kinetic energy of a particle initially located at r0

K(rs) = 2πke n0 q2r2
0 ln

(

rs

r0

)

. (S-1.62)

At the limit rs→∞, t→∞ , the integral diverges logarithmically. Again, this is due

to the infinite potential energy initially stored in the system.
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S-1.8 Collision of two Charged Spheres

a) The electrostatic energy of a uniformly charged sphere of radius R and total

charge Q is, according to the result of Problem 1.3,

U0 =
3

5
ke

Q2

R
, (S-1.63)

so that the initial energy of our system of two spheres is

Utot = 2U0 =
6

5
ke

Q2

R
. (S-1.64)

b) Let us denote by x the distance between the centers of the two spheres. When x

is such that the interaction energy Uint(x) is no longer negligible with respect to U0,

but still larger than 2R, the total potential energy Upot(x) of the system is

Upot(x) = 2U0+Uint(x) . (S-1.65)

As long as x � 2R the force between the spheres is identical to the force between
two point charges ±Q located at the centers of the spheres, and

Uint(x) = −ke
Q2

x
. (S-1.66)

Both the total momentum and the total energy of the system are conserved. Thus,
the velocities of the two sphere are always equal and opposite. As long as x � 2R

the total energy of the system Utot = 2U0 equals the sum of the potential and kinetic

energies of the system

Utot = 2
1

2
Mv2(x)+2U0+Uint(x) , (S-1.67)

where M is the mass of each sphere, and ±v(x) are the velocities of the two spheres.
Thus

6

5
ke

Q2

R
= Mv2(x)+

6ke

5

Q2

R
− ke

Q2

x
, and v(x) =

√

ke
Q2

Mx
. (S-1.68)

When x = 2R, the velocity is

v(2R) =

√

ke
Q2

2MR
. (S-1.69)

c) When the two spheres overlap completely, the charge density and the electrostatic

field are zero over the whole space, so that also the electrostatic energy is zero. This

means that all the initial energy has been converted into kinetic energy, i.e.,

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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2
1

2
Mv2(0) = 2U0 , (S-1.70)

from which we obtain

v(0) =

√

6

5
ke

Q2

MR
. (S-1.71)

S-1.9 Oscillations in a Positively Charged Conducting Sphere

a) At equilibrium, the remaining (1− f )N conduction electrons must be subject

to zero electric field. For symmetry reasons, this is possible only if they occupy a

spherical volume of radius b < a concentric with the conducting sphere, where the

where e is the elementary electric charge, and ne and ni are the conduction-electron

density and the ion density, respectively. Thus, we must have ne = ni, with total

charge density ̺ is zero. We thus have

̺(r) = e(ni−ne) = 0 for r < b , (S-1.72)

a

b

= 0

O

Fig. S-1.7

where

ni =
3N

4πa3
and ne =

3(1− f )N

4πb3
,

(S-1.73)

and we get

b = a
3
√

1− f , (S-1.74)

and

̺(r) =
3Ne

4πa3
for b < r < a . (S-1.75)

O δ

r
r

P

O

Ec

Fig. S-1.8

Note that the electric field is nonzero in the

spherical shell b< r < a. However, this region

is not conducting, since the conduction elec-

trons are confined in the inner region r < b

(Fig. S-1.7).

b) Now the conduction electron sphere is

rigidly displaced by an amount δ relative to

the metal sphere centered in O, so that its cen-

ter is in O′, as in Fig. S-1.8. The electric field
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in any point of space can be evaluated by superposition, adding the field generated

by the ion lattice, of charge density ̺i = eni and the field generated by the conduc-

tion electrons of charge density ̺e = −ene. The electric field Ec in a point P inside

the conduction-electron sphere, of vector position r relative to O, and r′ relative to

O′, is

Ec =
4πke

3
(̺ir−̺er′) =

4πke

3

3Ne

4πa3
(r− r′) =

keNe

a3
δ , (S-1.76)

spatially uniform uniform and parallel to δ.

c) Each conduction electron is subject to the force

Fc = −eEc = −
keNe2

a3
δ , (S-1.77)

proportional to the displacement from its equilibrium position. The equation of

motion for each electron is thus

me
d2
δ

dt2
= Fc = −

keNe2

a3
δ = −meω

2
M δ , (S-1.78)

where me is the electron mass, and ωM the oscillation frequency for the resulting

harmonic motion. The oscillation frequency is thus

ωM =

√

keNe2

mea3
, (S-1.79)

i.e., the Mie frequency of (S-1.26).

S-1.10 Interaction between a Point Charge and an Electric Dipole

The potential energy of an electric dipole p in the presence of an external electric

field E is

U = −p ·E = −pE cosθ , (S-1.80)

and, in our case, we have

E = ke
q

r2
r̂ , and U = −ke

qpcosθ

r2
. (S-1.81)

a) The force acting on the dipole is thus

F = −∇U = −2ke
qpcosθ

r3
r̂ . (S-1.82)
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Assuming that the point charge q is positive, the force is attractive if cosθ > 0,

repulsive if cosθ < 0.

b) The torque acting on the dipole is

τ = −∂θU ẑ = −ke
qpsinθ

r2
ẑ , (S-1.83)

where ẑ is the unit vector perpendicular to the plane determined by the vectors r and

p, pointing out of paper in Fig. 1.5. If q > 0, the torque tends to align p to r.

q

h

h
r1

r2

θ

r

q

−q

ψ1

ψ2

r

f1

f2

α1

Fig. S-1.9

Alternatively, we can think of

the dipole p as the limit approached

by a system of two opposite

charges q′ and −q′, at a distance 2h

from each other (as in Fig. S-1.9),

as h → 0 and q′ → ∞, the prod-

uct 2hq′ = p being constant. We

assume that the point charges q and

q′ are positive. The distances r1 of

q′ from q, and r2 of −q′ from q,

can be written, as functions of r, h,

and θ,

r1 =
√

r2+h2+2rhcosθ , r2 =
√

r2+h2−2rhcosθ , (S-1.84)

where we have used the law of cosines. The force f1 acting on the positive charge

q′ of the dipole is

f1 = ke
qq′

r2
1

r̂1 = ke
qq′

r2+h2+2rhcosθ
r̂1 , (S-1.85)

and the force f2 acting on −q′ is

f2 = −ke
qq′

r2
1

r̂2 = −ke
qq′

r2+h2−2rhcosθ
r̂2 , (S-1.86)

the minus sign meaning that the force is attractive for q > 0. Both angles ψ1 and ψ2

approach zero as h→ 0, and therefore

lim
h→0

r̂1 = r̂ , and lim
h→0

r̂1 = r̂ . (S-1.87)

Thus, the total force F acting on the dipole can be written

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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F = lim
h→0

q′→∞
2hq′=p

(f1 + f2) = lim
h→0

q′→∞
2hq′=p

r̂ke qq′
(

1

r2 +h2 +2rhcosθ
−

1

r2 +h2 −2rhcosθ

)

= lim
h→0

q′→∞
2hq′=p

r̂ke qq′
−4rhcosθ

(r2 +h2 +2rhcosθ)(r2 +h2 −2rhcosθ)

= −2ke
qpcosθ

r3
r̂ , (S-1.88)

in agreement with (S-1.82).

As h→ 0 and ψ1 → 0, the angle α1 approaches θ, and the limit of the torque of

f1 on the dipole is

τ1 = −ẑ lim
h→0

q′→∞
2hq′=p

h f1 sinα1 = −ẑ lim
h→0

q′→∞
2hq′=p

ke
qq′hsinα1

r2+h2+2rhcosθ
= −ke

qpsinθ

2r2
ẑ , (S-1.89)

analogously, the limit of the torque of f2 is

τ2 = −ke
qpsinθ

2r2
ẑ , (S-1.90)

and the total torque on the dipole is

τ = τ1+τ2 = −ke
qpsinθ

r2
ẑ , (S-1.91)

in agreement with (S-1.83).

S-1.11 Electric Field of a Charged Hemispherical surface

a

λ

xxO
dEx

dE

d

r

dE

θ P

Fig. S-1.10

We start from the electric field generated by

a ring of radius a and linear charge density λ

in a generic point P on its axis, at a distance x

from the center O of the ring. With reference

to Fig. S-1.10, the infinitesimal ring arc dℓ,

of charge λdℓ, generates a field dE in P. The

magnitude of dE is

dE = ke
λdℓ

a2+ x2
. (S-1.92)
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The field dE has a component dEx parallel to the ring axis, and a component dE⊥
perpendicular to the axis. We need only the parallel component

dEx = cosθdE = ke
λdℓ

a2+ x2

x
√

a2+ x2

= ke
λxdℓ

(

a2+ x2
)3/2
, (S-1.93)

because the perpendicular component cancels out because of symmetry when we

integrate over the whole ring. When we integrate, θ and r do not depend on the

position of dℓ, and the total field in P is

Ex = ke
λx

(

a2+ x2
)3/2

∫ 2πa

0

dℓ = ke
2πaλx

(

a2+ x2
)3/2

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

4πε0

2πaλx
(

a2+ x2
)3/2

SI

2πaλx
(

a2+ x2
)3/2

Gaussian,
(S-1.94)

which can be rewritten

E = x̂ke
Q x

(

a2+ x2
)3/2
, (S-1.95)

where Q = 2πaλ is the total charge of the ring.
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Fig. S-1.11

The charged hemispherical surface can be

divided into infinitesimal strips between “par-

allels” of colatitude θ and θ+dθ with respect

to the symmetry axis of the hemisphere, as in

Fig. S-1.11. Each infinitesimal strip is equiv-

alent to a charged ring of radius Rsinθ and

total charge dQ = σ2πR2 sinθdθ. The curva-

ture center of the hemisphere is located on the

axis of the rings, at a distance x=Rcosθ from

the center of each ring. Thus, the contribution

of each strip to the field at the center is

dE = ke
σ2πR2 sinθdθRcosθ
(

R2 sin2 θ+R2 cos2 θ
)3/2

= ke
σ2πR3 cosθ sinθdθ

R3
= keσ2πcosθ sinθdθ , (S-1.96)
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and the total field is

E = keσ2π

∫ π/2

0

cosθ sinθdθ = ke πσ, (S-1.97)

independent of the radius R.



Chapter S-2

Solutions for Chapter 2

S-2.1 Metal Sphere in an External Field

a) The total electric field inside a conductor must be zero in static conditions. Thus,

in the presence of an external field E0, the surface charge distribution of our sphere

must generate a field Ein = −E0 at its inside. As we found in Problem 1.1, a rigid

displacement −δ of the electron sphere (or “electron sea”) with respect to the ion

lattice gives origin to the internal uniform field (S-1.1)

Ein = −ke
4π

3
̺0 δ , (S-2.1)

where ̺0 = ene is the charge density of the “electron sphere”. The magnitude of the

displacement δ is thus

δ =
3E0

4πke̺0
. (S-2.2)

For a rough numerical estimate for ne, we can assume that each atom contributes a

single conduction electron (Z = 1). If M is the atomic mass of our atoms, M grams

of metal contain NA ≃ 6.0×1023 atoms (Avogadro constant), and occupy a volume

of M/̺m cm3, where ̺m is the mass density. Typical values for a metal are M ∼ 60

and ̺m ∼ 8 g/cm3, leading to

ne ∼
NA ̺m

M
∼ 1022 cm−3 , and ̺0 = ene ∼ 5×1012 statC/cm3 . (S-2.3)

In SI units we have ne ∼ 1029 m−3 and ̺0 ∼ 1.6× 10−10 C/m3. Substituting into

(S-2.2) and assuming E0 = 1000 V/m (0.003 statV/cm), we finally obtain

δ ∼ 10−15 cm . (S-2.4)

This value for δ is smaller by orders of magnitude than the spacing between the

atoms in a crystalline lattice (∼ 10−8 cm), therefore it makes sense to consider the
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charge as distributed on the surface. Formally, this is equivalent to take the limits

δ→ 0 and ̺0→∞, keeping constant the product

σ0 = ̺0 δ =
3E0

4πke
. (S-2.5)

b) According to Problem 1.1, the field generated by the charge distribution of the

metal sphere outside its volume equals the field of an electric dipole p = Qδ, where

Q = (4π/3)R3ene, located at the center of the sphere. Replacing δ by its value of

(S-2.2) we have for the dipole moment

p =
R3

ke
E0 . (S-2.6)

The field outside the sphere (r > R) is the sum of E0 and the field generated by p

E = E0+ [3(E0 · r̂) r̂−E0]

(

R

r

)3

. (S-2.7)

c) The external field at the surface of the sphere is obtained by replacing r by R in

(S-2.7)
Esurf = E0+3(E0 · r̂) r̂−E0 = 3(E0 · r̂) r̂ , (S-2.8)

which is perpendicular to the surface, as expected. The surface charge density is

σ =
1

4πke
Esurf · r̂ = ke

3

4π
E0 cosθ = σ0 cosθ , (S-2.9)

where σ0 = 3keE0/(4π), and θ is the angle between r̂ and E0.

S-2.2 Electrostatic Energy with Image Charges

In all cases, the conducting (half-)planes divide the whole space into two regions:

one free of charges (A), and one containing electrical charges (B),as shown in

Fig. S-2.1. Since the charge distribution is finite, the electric potential ϕ equals

y

xO q

a−a

(−q)

F

BA

Fig. S-2.1

zero at the boundaries of both regions, i.e., on

the conducting surfaces and at infinity. We can

thus use the uniqueness theorem for Poisson’s

equation. The potential ϕ (and therefore the

electric field E) is uniformly equal to zero in

region A. The potential problem in region B is

solved if we find an image charge distribution,

located in region A, that replicates the bound-

ary conditions of region B. The potential and

the electric field (and thus the forces on the real

charges) in region B are the same as if the image charges were real.

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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a) We introduce a reference frame with the x axis perpendicular to the conducting

plane, and passing through the charge. The origin, and the y and z axes, lie on the

plane. The charge is thus located at (x = a,y= 0,z= 0), and the potential problem for

x > 0 is solved by placing an image charge q′ =−q at (x =−a,y= 0,z = 0). The force

on the real charge is F = −ke q2/(4a2). The electrostatic energy Ues of the system

equals the work W done by the field when the real charge q moves from x = a to

x = +∞. Simultaneously, the image charge will move from x = −a to x = −∞, but no

additional work is needed for this, since what actually moves is the surface charge

on the conducting plane, which is constantly at zero potential. Thus we have

Ues =W =

∫ ∞

a

F dx = −ke
q2

4

∫ ∞

a

dx

x2
= −ke

q2

4a
. (S-2.10)

This is half the electrostatic energy Ureal of a system comprising two real charges,

q and −q, at a distance 2a from each other. The 1/2 factor is due to the fact that, if

two real charges move to infinity in opposite directions, the work done by the field

is

Wreal =

∫ +∞

+a

F dx−
∫ −∞

−a

(−F)dx = 2

∫ +∞

+a

Fx dx = −ke
q2

2a
, (S-2.11)

since the force acting on −q is the opposite of the force acting on q, and Ureal =Wreal.

The 1/2 factor can also be explained by evaluating the electrostatic energies for

our system, and for the system of the two real charges. In both cases, because of

the cylindrical symmetry around the x axis, the electrostatic field is a function of

the longitudinal coordinate x and of the radial distance r =
√

y2+ z2 only, i.e., E =

E(x,r). In the case of the two real charges we have

Ureal =
1

8πke

∫

d3r E2 =
1

8πke

∫ ∞

−∞
dx

∫ ∞

0

2πr dr E2(x,r)

= 2
1

8πke

∫ ∞

0

dx

∫ ∞

0

2πr dr E2(x,r) , (S-2.12)

since E(x,r) = −E(−x,r), so that E2(x,r) = E2(−x,r). In the case of the charge in

front of a conducting plane we have

Ues =
1

8πke

∫ ∞

0

dx

∫ ∞

0

2πr dr E2(x,r) , (S-2.13)

because E = 0 for x < 0 (in region A), while the field is the same as in the “real” case

for x > 0. Thus Ues = Ureal/2. The electrostatic energy includes both the interaction

energy between the charges, Uint, and the “self-energy”, Uself , of each charge. For

the “real” system we have

Ureal = Uself(q)+Uself(−q)+Uint(q,−q) = 2Uself(q)+Uint(q,−q) , (S-2.14)

since Uself(−q) = Uself(q). For the charge in front of the conducting plane we have
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Ues = Uself(q)+Uint(q,plane) , (S-2.15)

since there is only one real charge. Actually, the self-energy Uself approaches infinity

if we let the charge radius approach 0, but this issue is not really relevant here.

In any case, the divergence may be treated by assuming an arbitrarily small, but

non-zero radius for the charge. Since Ues = Ureal/2, we also have Uint(q,plane) =

Uint(q,−q)/2.

b) Again, we choose a reference frame with the x axis perpendicular to the conduct-

ing plane, so that q has coordinates (a,d/2,0) and −q has coordinates (a,−d/2,0).

The potential problem for the x > 0 half-space is solved by placing an image charge

−q at (−a,d/2,0), and an image charge q at (−a,−d/2,0). According to the argu-

ments at the end of point a), the electrostatic energy Ues of our system is one half of

the energy Ureal of a system of four charges, all of them real, at the same locations.

We can evaluate Ureal by inserting the four charges one by one, each interacting only

with the previously inserted charges.

Ureal = ke

(

−2
q2

d
−2

q2

2a
+2

q2

√
d2+4a2

)

. (S-2.16)

q

−qq
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Fig. S-2.2

The same result is obtained by evaluating the

work of the electric forces when the two real

charges are moved to infinite distance from the

plane, and infinite distance from each other.

This can be done in two steps. First we move

the charge at (a,d/2,0), then the charge at

(a,−d/2,0). When we move the first charge,

three forces are acting on it: F1, due to its own

image, which is simultaneously moving to −∞,

and F2 and F3, due to the second real charge and

to its image, at distances r2 and r3, respectively.

The total work on the first charge is thus

W =W1+W2+W3

=

∫ ∞

a

F1 ·dr+

∫ ∞

a

F2 ·dr+

∫ ∞

a

F3 ·dr ,

(S-2.17)

where r is the position vector of the first charge, and the first integral is the same as

the integral of (S-2.10) and equals −ke q2/(4a). The second integral can be rewritten,

in terms of the angle θ of Fig. S-2.3,
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W2 = −ke

∫ ∞

a

q2

r2
2

sinθdx

= −ke q2

∫ π/2

0

cos2 θ

d2
sinθ

d

cos2 θ
dθ

= −ke
q2

d

∫ π/2

0

sinθdθ

= −ke
q2

d
, (S-2.18)
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where we have used the facts that r2 = d/cosθ

and dx = (d/cos2 θ)dθ. The third integral of

(S-2.17) can be treated analogously, in terms of

the angle ψ of Fig. S-2.3,

W3 = ke

∫ ∞

a

q2

r2
3

sinψdx

= ke
q2

d

∫ π/2

ψ0

sinψdψ

= ke
q2

√
4a2+d2

, (S-2.19)

where ψ0 is the value of ψ when q is at x = a, i.e., ψ0 = arccos(d/
√

4a2+d2). Thus,

the work done by the electric field when the first charge is moved to infinity is

W = ke

(

− q2

4a
− q2

d
+

q2

√
4a2+d2

)

. (S-2.20)

We must still move the second real charge to infinity, this is done in the presence of

its own image charge only, and the work is −ke q2/(4a). We finally have

Ues =W − ke
q2

4a
= ke

(

− q2

2a
− q2

d
+

q2

√
4a2+d2

)

, (S-2.21)

i.e., one half of the value of Ureal of (S-2.16), as expected.
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c) We choose a reference frame with the

half planes (x = 0,y � 0) and (y = 0, x �

0) coinciding with the two conducting half-

planes. Thus, the real charge q is located

at (x = a,y = b,z = 0). If we add two

image charges q′
1
= q′

2
= −q at (−a,b,0) and

(a,−b,0), respectively, and an image charge

q′
3
= q at (−a,−b,0), the potential is zero on

the x= 0 and y= 0 planes, and at infinity. This
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solves the potential problem in the dihedral angle where the real charge is located.

Following the discussions of points a) and b), the electrostatic energy of this system

is one quarter of the energy of a system comprising four charges, all of them real,

in the same locations, since the energy density is zero in three quarters of the whole

space.

Ues =
1

4
ke

(

−q2

a
− q2

b
+

q2

√
b2+a2

)

. (S-2.22)

Alternatively, we can calculate the work done by the electric field when the real

charge is moved from (a,b,0) to (∞,∞,0).

S-2.3 Fields Generated by Surface Charge Densities

a) We use cylindrical coordinates (r,φ,z) with the origin O on the conducting plane,

and the z axis perpendicular to the plane and passing through the real charge q. The

real charge is located at (0,φ,z), and the image charge at (0,φ,−a), φ being irrelevant

when r = 0. The electric field on the conducting plane is perpendicular to the plane,

q−q aa

r

θ

O

Ereal

E

b

z

Eim

Fig. S-2.5

and depends only on r. At a generic point P ≡
(r,φ,0) on the plane the magnitude of the field

Ereal generated by the real charge is

Ereal = ke
q

b2
= ke

q

a2+ r2
. (S-2.23)

The field generated at P by the image charge,

Eim, has the same magnitude, the same z com-

ponent, but opposite r component of Ereal, as in

Fig. S-2.5. The total electric field in P is thus per-

pendicular to the plane and has magnitude

E(r) = 2Ereal
z (r) = −2ke

q

a2+ r2

a
√

(a2+ r2)
= −2ke

qa

(a2+ r2)3/2
. (S-2.24)

The surface charge density is thus

σ(r) =
1

4πke
E(r) = − 1

2π

qa

(a2+ r2)3/2
, (S-2.25)

and the annulus between r and r+dr on the conducting plain has a charge

dqind = σ2πr dr =
qar dr

(a2+ r2)3/2

= − 1

2π

q

a2
cos3θ2πa2 tanθ

dθ

cos2 θ
= −qsinθdθ , (S-2.26)
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since r = a tanθ. The total induced charge on the conducting plane is

qind =

∫ π/2

0

dqind = −q

∫ π/2

0

sinθdθ = −q . (S-2.27)
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b) In the problem of a real charge q located on the

z axis, at z = a, in front of a conducting plane, the

only real charges are q and the surface charge distri-

bution σ on the plane. What we observe is no field

in the half-space z < 0, while in the half-space z > 0

we observe a field equivalent to the field of q, plus

the field of an image charge −q located on the z axis

at z = −a. The field generated by the surface charge

distribution alone is thus equivalent to the field of a

charge −q located at z = +a in the half-space z− 0,

and to the field of a charge −q located at z = −a in the half-space z > 0. In the half

space z< 0, the field of the surface charge distribution and the field or the real charge

cancel each other. The discontinuity of the field at z = 0 is due to the presence of

a finite surface charge density on the conducting plane, which implies an infinite

volume charge density.

c) Let us introduce a spherical coordinate system (r, θ,φ) into Problem 2.4, with the

origin O at the center of the conducting sphere and the z axis on the line through

O and the real charge q. The electric potential outside the sphere, r � a, is obtained

from (S-2.31) by replacing a by r, and q′ and d′ by their values of (S-2.37). We have

ϕ(r, θ) = ke

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q
√

r2+d2−2dr cosθ
−

q
a

d
√

r2+
a4

d2
−2r

a2

d
cosθ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (S-2.28)
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independent of φ. The electric field at r = a+, on

the outer surface of the sphere, is

E⊥(a+, θ) = − ∂rV(r, θ)
∣

∣

∣

r=a
, (S-2.29)

and the surface charge density on the sphere is

σ(θ) =
1

4πke
E⊥(a+, θ) . (S-2.30)

The actual evaluation does not pose particular

difficulties, but is rather involved, and we neglect

it here. But we can use the same arguments as in

point b). The only real charges of the problem are the real charge q, and the surface

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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charge distribution of the sphere. There is no net field inside the sphere, and the

field for r > 0 is equivalent to the field of q, plus the field of an image charge −qa/d

located at z = a2/d. Thus, the surface charge distribution alone generates a field

equivalent to a charge −q located at z = d inside the sphere, and a field equivalent to

the field of the image charge −qa/d, located at z = a2/d, outside the sphere.

S-2.4 A Point Charge in Front of a Conducting Sphere

a) We have a conducting grounded sphere of radius a, and an electric charge q

located at a distance d > a from its center O. Again, the whole space is divided into

two regions: the inside (A) and the outside (B) of the sphere. The electrostatic poten-

tial is uniformly equal to zero in region A because the sphere is grounded. We try

to solve the potential problem in region B by locating an image charge q′ inside the

sphere, on the line through O and q, at a distance d′ from the center O. The problem

is solved if we can find values for q′ and d′ such that the electric potential ϕ is zero

everywhere on the surface of the sphere. This would replicate the boundary condi-

tions for region B, with ϕ = 0 both on the surface of the sphere and at infinity, and

r
r

P

a
θ

d

d

qq
A B

O

Fig. S-2.8

only the real charge q in between. Let us eval-

uate the potential ϕ(P) at a generic point P of

the sphere surface, such that the line segment

OP forms an angle θ with the line segment

Oq, as shown in Fig. S-2.8. We must have

0 = ϕ(P) = ke

(

q

r
+

q′

r′

)

= ke

(

q
√

a2+d2−2ad cosθ

+
q′

√
a2+d′2−2ad′ cosθ

)

, (S-2.31)

where r is the distance from P to q, r′ the distance from P to q′, and we have used

the cosine rule. We see that the sign of q′ must be the opposite of the sign of q. If

we take the square of (S-2.31) we have

q2(a2+d′2−2ad′ cosθ) = q′2(a2+d2−2ad cosθ) , (S-2.32)

which must hold for any θ. We must thus have separately

q2(a2+d′2) = q′2(a2+d2) , and (S-2.33)

2q2ad′ cosθ = 2q′2ad cosθ . (S-2.34)

Equation (S-2.34) leads to
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q′2 = q2 d′

d
, q′ = −q

√

d′

d
, (S-2.35)

which can be inserted into (S-2.33), leading to

dd′2− (a2+d′2)d′+a2d = 0 , (S-2.36)

which has the two solutions d′ = d and d′ = a2/d. The first solution is not acceptable

because it is larger than the radius of the sphere a (it actually corresponds to the

trivial solution of superposing a charge −q to the charge q). Thus we are left with

d′ = a2/d, which can be substituted into (S-2.35), leading to our final solution

q′ = q
a

d
, d′ =

a2

d
. (S-2.37)

If the sphere is isolated and has a net charge Q, the problem in region B is solved

by placing an image charge q′ at d′, as above, and a further point charge q′′ = Q−q′

in O, so that the potential is uniform over the sphere surface, and the total charge of

the sphere is Q. The case Q = 0 corresponds to an uncharged, isolated sphere.

b) The total force f on q equals the sum of the forces exerted on q by the image

charge q′ located in d′, q′′ = −q′ and Q, both located in O. Thus f = f′ + f′′ + f′′′,
with

f ′ = ke
qq′

(d−d′)2
= −ke

q2ad

(d2−a2)2
, f ′′ = ke

q2

d3
, f ′′′ = ke

qQ

d2
. (S-2.38)

with f ′′ = f ′′′ = 0 if the sphere is grounded.

c) The electrostatic energy U of the system equals the work of the electric field if

the real charge q is moved to infinity. When q is at a distance x from O we evaluate

the force on it by simply replacing d by x in (S-2.38). The work is thus the sum of

the three terms

W1 =

∫ ∞

d

f ′ dx = ke

[

q2a

2(x2−a2)

]∞

d

= −ke
q2a

2(d2−a2)
,

W2 =

∫ ∞

d

f ′′ dx = −ke

[

q2a

2x2

]∞

d

= ke
q2a

2d2
,

W3 =

∫ ∞

d

f ′′′ dx = ke
qQ

d
. (S-2.39)

Thus we have U =W1 for the grounded sphere, U =W1+W2 for the isolated charge-

less sphere, and U =W1+W2+W3 for the isolated charged sphere.

It is interesting to compare this result for the energy of the isolated chargeless

sphere with the electrostatic energy Ureal of a system comprising three real charges

q, q′, and −q′, located in d, d′ and O, respectively:
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Ureal = ke

∑

i< j

qiq j

ri j

= ke

(

qq′

d−d′
− qq′

d
− q′2

d′

)

= ke

(

− q2a

d2−a2
+

q2a

d2
− q2

d

)

. (S-2.40)

We see that U is obtained from Ureal by halving the interaction energies of the real

charge with the two image charges, and neglecting the interaction energy between

the two image charges.

S-2.5 Dipoles and Spheres

a) We consider the case of the grounded sphere first, so that its potential is zero. We

can treat the dipole as a system of two point charges ±q, separated by a distance 2h

as in Fig. S-2.9. Eventually, we shall let q approach ∞, and h approach zero, with

the product p = 2hq remaining constant. Following Problem 2.4, the two charges

induce two images

±q′ = ∓q
a

√
d2+h2

, (S-2.41)

respectively, each at a distance

d′ =
a2

√
d2+h2

(S-2.42)
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from the center of the sphere O, each lying on

the straight line passing through O and the cor-

responding real charge. Since we are interested

in the limit h→ 0 (thus, h≪ d), we can use the

approximations

±q′ ≃ ∓q
a

d
, and d′ =

a2

d
.

(S-2.43)

The two image charges are separated by a dis-

tance

2h′ = 2h
d′

d
= h

(

a

d

)2

, (S-2.44)

so that the moment of the image dipole is

p′ = 2q′h′ = −2qh

(

a

d

)3

= −p

(

a

d

)3

. (S-2.45)

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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The image dipole is antiparallel to the real dipole, i.e., the two dipoles lie on parallel

straight lines, but point in opposite directions. The sum of the image charges, which

equals the total induced charge on the sphere surface, is zero. Therefore this solution

is valid also for an isolated uncharged sphere.

b) Also in this case, we consider the grounded sphere first. Again, the dipole can be

treated as a system of two charges ±q, separated by a distance h= p/q. This time the

charge +q is at distance d from the center of the sphere O, while −q is at distance

d+h.

q q

h

d

d

+q −q

O

d

Fig. S-2.10

Thus, the images q′ of +q, and q′′ of −q, have

different absolute values, and are located at dif-

ferent distances from O, d′ and d′′, respectively.

We have

q′ = −q
a

d
= − p

h

a

d
, d′ =

a2

d
, (S-2.46)

q′′ = +q
a

d+h
= +

p

h

a

d+h
, d′′ =

a2

d+h
.

The absolute values of q′ and q′′ remain different

from each other also at the limits h→ 0,q→∞,

so that a net image charge q′′′ is superposed to the image dipole

q′′′ = lim
h→0

(q′+q′′) = lim
h→0
−p

a

h

h

d(d+h)
= −p

a

d2
. (S-2.47)

The moment of the image electric dipole can be calculated as the limit of the

absolute value of q′ times (d′−d′′)

p′ = lim
h→0
|q′| (d′−d′′) = lim

h→0

p

h

a

d

a2h

d(d+h)
= p

(

a

d

)3

, (S-2.48)

the same result is obtained by evaluating the limit of q′′(d′ − d′′). Thus the real

dipole p and the image dipole p′ lie on the same straight line and point in the same

direction. The image dipole is located at a distance a2/d from O.

Since a net charge q′′′ is needed to have zero potential on the surface of the

sphere, this solution is valid only in the case of a grounded sphere. The solution for

an isolated uncharged sphere requires an image charge −q′′′ = +pa/d2 at the center

of the sphere, so that the total image charge is zero and the surface of the sphere is

equipotential.

c) We start from the case of the grounded sphere, and use a Cartesian reference frame

with the origin located at the center of the sphere, O, the x axis passing through the

dipole p, and the y axis lying in the plane of the dipole. We denote by θ the angle

between the electric dipole p and the x axis, as in Fig. S-2.11. We can decompose

the dipole into the vector sum of its x and y components

px = pcosθ x̂ , and py = psinθ ŷ . (S-2.49)



148 S-2 Solutions for Chapter 2

θ

−θ

d

d

O

p

y

pa

x

Fig. S-2.11

Both components generate images located on

the x axis at a distance d′ = a2/d from O.

According to a) and b), py and py generate

the images

p′y = −
(

a

d

)3

psinθ ŷ

p′x =
(

a

d

)3

pcosθ x̂ , (S-2.50)

resulting in an image dipole p′, of modulus

p′ = p (a/d)3, forming an angle −θ with the x

axis, and superposed to a net charge q′′′ = +pcosθ (a/d2), since now it is the “tail”

of px which points toward O. In the case of an isolated uncharged sphere, we must

add a point charge −q′′′ in O, so that the net charge of the sphere is zero.

S-2.6 Coulomb’s Experiment

a) The zeroth-order solution is obtained by neglecting the induction effects, con-

sidering the charges as uniformly distributed over the surfaces of the two spheres.

Thus, at zeroth order, the force between the two spheres equals the force between

two point charges, each equal to Q, located at their centers. In order to evaluate

higher-order solutions, it is convenient to introduce the dimensionless parameter

α = (a/r) < 1, where a is the radius of the two spheres, and r the distance between

their centers. The solution of order n is obtained by locating inside each sphere

a point charge q of the same order of magnitude as Q at its center, plus increas-

ingly smaller point charges q′, q′′, . . . ,q(n) at appropriate positions, with orders of

magnitude |q′| ∼ αQ, |q′′| ∼ α2Q, . . . , |q(n)| ∼ αnQ. The charges must obey the nor-

malization condition q+q′+q′′+ · · ·+q(n) = Q.

q q

a

q

a
r

q

Fig. S-2.12

At the first order, the point charge q at the center of each sphere induces an image

charge q′ =−αq inside the other sphere, located at a distance a′ = a2/r = rα2 from its

center (see Problem 2.4), as shown in Fig. S-2.12. Thus, by solving the simultaneous

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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equations q′ = −αq, and q+q′ = Q, we obtain for the values of the two charges

q =
1

1−α Q , q′ = − α
1−α Q . (S-2.51)

q

r

q q

a a

q

q q

Fig. S-2.13

At the second order, the first-order charge q′ inside each sphere induces an image

charge q′′ inside the other sphere, located a distance a′′ from its center, as shown in

Fig. S-2.13. Since the distance of q′ from the center of the other sphere is r− a′ =
r (1−α2), we have

q′′ = −q′
a

r−a′
= −q′

α

1−α2
, a′′ =

a2

r−a′
= r

α2

1−α2
. (S-2.52)

Combining the above equation for q′′ with equations q′ = −αq and q+q′ +q′′ = Q,

we finally obtain

q = Q
1−α2

1−α+α3
, q′ = −Q

α (1−α2)

1−α+α3
, q′′ = Q

α2

1−α+α3
. (S-2.53)

Higher order approximations are obtained by iterating the procedure. Thus we

obtain a sequence of image charges q,q′,q′′,q′′′, . . . inside each sphere. At each

iteration, the new image charge is of the order of α times the charge added at the

previous iteration. Therefore, the smaller the value of α = a/r, the sooner one may

truncate the sequence obtaining a good approximation.

b) We obtain the first order approximation of the force between the two spheres

by considering only the charges of (S-2.51) for each sphere. To this approximation,

the force between the spheres is the sum of four terms. The first term is the force

between the two zeroth-order charges q, at a distance r from each other. The second

and third terms are the forces between the zeroth order charge q of one sphere and

the first-order charge q′ of the other. The distance between these charges is r−a′ =
r (1−α2). The fourth term is the force between the two first-order charges q′, at a

distance r− 2a′ = r (1− 2α2) from each other. Summing up all these contributions

we obtain
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F = ke
Q2

r2

1

(1−α)2

[

1− 2α

(1−α2)2
+

(

α

1−2α2

)2
]

. (S-2.54)

From the Taylor expansion, valid for x < 1,

1

(1− x)2
= 1+2x+3x2 +4x3+O(x4) , (S-2.55)

we obtain, to the fourth order,

1

(1−α2)2
= 1+2α2+3α4+O(α6), (S-2.56)

and

1

(1−2α2)2
= 1+4α2+12α4+O(x6) , (S-2.57)

so that

F = ke
Q2

r2

(

1+2α+3α2+4α3+ . . .
) (

1−2α+α2−4α3+ . . .
)

= ke
Q2

r2

[

1−4α3+O(α4)
]

, (S-2.58)

since all the terms of order α and α2 vanish. The first non vanishing correction to

the “Coulomb” force is thus at the third order in a/r,

F = ke
Q2

r2

(

1−4
a3

r3

)

. (S-2.59)

This result can be interpreted in terms of multipole expansions of the charge dis-

tributions of the spheres. The first two multipole moments of the charge distrib-

ution of each sphere are a monopole equal to the total charge Q, and an electric

dipole p = −q′a′r̂ = −(αQ)(α2r) r̂ = −α3Qr r̂, with r̂ pointing toward the center of

the opposite sphere. The contribution of the monopole moments to the total force

is Fmm = ke Q2/r2. Now we need the force exerted by the monopole terms of each

sphere on the dipole term of the other. The monopole of, say, the left sphere gen-

erates a field E(0) = ke Q/r2 at the center of the right sphere. We can consider the

dipole moment of the right sphere as the limit for h→ 0 of two charges, −q′ located

at r − h from the center of the left sphere, and q′ located at r, with q′h = |p|. The

force between the left monopole and the right dipole is thus

Fmd = lim
h→0

ke Qq′
[

− 1

(r−h)2
+

1

r2

]

≃ lim
h→0

ke Qq′
(

− 1

r2
− 2h

r3
+

1

r2

)

= − lim
h→0

ke Qq′
2h

r3
= −2ke

Qp

r3
= −2keα

3 Q2

r3
, (S-2.60)
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where we have used the first-order Taylor expansion of (r− h)−2. Adding the force

between the right monopole and the left dipole, the total force is thus

F = Fmm+2Fmd = ke
Q2

r2

(

1−4
a3

r3

)

, (S-2.61)

in agreement with (S-2.59). The same result can be obtained by applying the formula

for the force between a point charge and an electric dipole, F = (p ·∇)E. See also

Problem 1.10 on this subject.

From (S-2.59) we find that a ratio a/r ≃ 0.13 is enough to reduce the systematic

deviation from the pure inverse-square law below 1%.

S-2.7 A Solution Looking for a Problem

a) The total electric potential in a point of position vector r is the sum of the dipole

potential and of the potential of the external uniform electric field,

ϕ(r) = ke
p · r
r3
−Ez = ke

pcosθ

r2
−Er cosθ , (S-2.62)

where θ is the angle between r and the z axis. Note that it is not possible to take

the reference point for the electrostatic potential at infinity, since the potential of

our uniform electric field diverges for z→ ±∞. Thus we have chosen ϕ = 0 on the

xy plane, which is an equipotential surface both for the dipole and for the uniform

electric field. Now we look for a possible further equipotential surface on which

ϕ = 0. On this surface we must have

ϕ = ke
pcosθ

r2
−Er cosθ = 0 , (S-2.63)

and, in addition to the solution θ = π/2, corresponding to the xy plane, we have the

θ-independent solution

r = k
1/3
e

(

p

E

)1/3

≡ R , (S-2.64)

corresponding to a sphere of radius R. Note that the two equipotential surfaces inter-

sect each other on the circumference x2+y2 = R2 on the z = 0 plane. This is possible

because the electric field of the dipole on the intersection circumference is

Edip = ke
3(p · r̂) r̂−p

r3
= −ke

p

R3
= −E , (S-2.65)

so that the total field on the circumference is zero, i.e., the only field that can be

perpendicular to both equipotential surfaces.

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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b) We must find a solution for the potential ϕ that satisfies the condition ϕ = 0 at the

surface of the conducting sphere, i.e. ϕ(|r| = a) = 0, and such that at large distance

from the conductor the field is E0.

According to point a), the field outside the sphere must equal E0 plus the field

of an electric dipole pi, parallel to E0 and located at the center of the sphere. The

moment of the dipole is obtained by substituting R = a into (S-2.64),

pi = ke
−1a3 E0 =

3

4πke
VaE0 , (S-2.66)

where Va is the volume of the sphere. The potential for r � a is thus

ϕ = ke
pi · r
r3
−E0z , (S-2.67)

z

q

d

b

+qd

−q

Fig. S-2.14

while ϕ = 0 for � a. The total charge induced on the

sphere is zero, so that the solution is the same for a

grounded and for an isolated, uncharged sphere. The

solution is identical to the one obtained in Problem

2.1 via a different (heuristic) approach.

c) For the dipole at the center of a spherical con-

ducting cavity, the boundary condition is ϕ = 0 at

r = b. The polarization charges on the inner surface

must generate a uniform field Ei parallel to p0 and,

according to (S-2.64), of intensity

Ei = ke
p0

b3
= ke

4πp0

3Vb

= ke
p0

b3
. (S-2.68)

As in the preceding case, the total induced charge is

zero and thus it does not matter whether the shell is

grounded, or isolated and uncharged.

d) We can think of the dipole as a system of two

point charges ±q, respectively located at z=±d, with

p = 2qd, as in Fig. S-2.14. According to the method

of the image charges, the charge +q modifies the

charge distribution of the inner surface of the shell, so that it generates a field

inside the sphere, equivalent to the field of an image charge q′ = −qb/d, located

at z = d′ = b2/d. Also the presence of the charge −q affects the surface charge dis-

tribution, so that the total field inside the shell is the sum of the fields of the two real

charges, plus the field of two image charges ∓qb/d located at z = ±b2/d, respec-

tively. Letting d → 0 and q→∞, keeping the product 2qd = p constant, the field

of the real charges approaches the field of a dipole p = pẑ located at the center of

the shell, while the field of the image charges approaches a uniform field. Let us

evaluate the field of the image charges at the center of the shell:

Ec = 2ke
qb

d

(

d

b2

)2

= ke
2qd

b3
= ke

p

b3
, (S-2.69)

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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in agreement with the result of point c). The method of the image charges can also

be used to obtain the result of point b).

S-2.8 Electrically Connected Spheres

a) To the zeroth order in a/d and b/d, we assume the surface charges to be uniformly

distributed. The electrostatic potential generated by each sphere outside its volume

is thus equal to the potential of a point charge located at the center of the sphere. Let

us denote by Qa and Qb the charges on each sphere, with Qa +Qb = Q. The charge

on the wire is negligible because we have assumed that its capacitance is negligible.

The electrostatic potentials of the spheres with respect to infinity are

Va ≃ ke
Qa

a
, Vb ≃ ke

Qb

b
, (S-2.70)

respectively. Since the spheres are electrically connected, Va = Vb ≡ V . Solving for

the charges we obtain

Qa ≃ Q
a

a+b
, Qb ≃ Q

b

a+b
, (S-2.71)

so that Qa > Qb.

b) From the results of point a) it follows

V ≃ ke
Q

a+b
, C ≃ a+b

ke
. (S-2.72)

c) The electric fields at the sphere surfaces are

Ea ≃ ke
Qa

a2
= ke

Q

a(a+b)
, Eb ≃ ke

Qb

b2
= ke

Q

b(a+b)
, (S-2.73)

with Eb > Ea. At the limit b→ 0 we have Ea→ keQ/a2, while Eb→∞.

qbqaqa q
b

Fig. S-2.15

d) We proceed as in Problem

2.6. To zeroth order, we con-

sider the field of each sphere

outside its volume as due to

a point charge at the sphere

center. We denote by qa and

qb the values of these point

charges. To the first orders in

a/d and b/d, we consider that each zeroth-order charge induces an image charge

inside the other sphere, with values

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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q′a = −qb

a

d
, q′b = −qa

b

d
, (S-2.74)

at distances a2/d and b2/d from the centers, respectively. At each successive order,

we add the images of the images added at the previous order. This leads to image

charges of higher and higher orders in a/d and b/d.

Up to the first order, we thus have four point charges with the condition qa+qb+

q′a+q′
b
= Q. A further condition is that the potentials at the sphere surfaces are

Va ≃ ke
qa

a
, Vb ≃ ke

qb

b
, (S-2.75)

since, at the surface of each sphere, the potentials due to the external zeroth-order

charge and to the internal first-order charge cancel each other. Finally, we must have

Va = Vb, because the spheres are connected by the wire, so that

qa ≃
Q

1+b/a−2b/d
, qb ≃

Q

1+a/b−2a/d
. (S-2.76)

S-2.9 A Charge Inside a Conducting Shell

a

q(Q )

d

Q (q )

R
R

O
R

O

da

Fig. S-2.16

a) Let us first recall

Problem 2.4 , now with

a point charge Q at

a distance a from the

center O of a conduct-

ing, grounded sphere,

of radius R < a. We

introduce a spherical

coordinate system, with

the origin in O. We shall need only the radial coordinate r.

We have seen that the boundary conditions for r � R are replicated by locating

an image charge Q′ = Q (a/R) inside the sphere, at a distance a′ = R2/a from O,

on the line joining O and Q. In the present case we are dealing with the reverse

problem, and we can obtain the solution in the region r � R by reversing the roles

of the real and image charges. The real charge q is now inside the cavity of a spher-

ical conducting, grounded shell of internal radius R, at a distance d < R from the

center O. The boundary conditions inside the cavity are replicated by locating an

external image charge q′ = q (R/d) at a distance d′ = R2/d from O, on the straight

line through O and q, as in Fig. S-2.16. Thus, the electric potential inside the cavity

equals the sum of the potentials of q and q′. The potential ϕ in the region R � r � R′

is constant because here we are inside a conductor in static conditions, and equal

to zero because the shell is grounded. We have ϕ ≡ 0 also for r � R′, because ϕ = 0

both on the spherical surface at r = R, and at infinity, and there are no charges in

between.

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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b) The force between q and the shell equals the Coulomb force between q and its

image charge q′, and is attractive

F = ke
qq′

(d′−d)2
= −ke

q2Rd

(R2−d2)2
. (S-2.77)

c) Let us consider a spherical surface of radius R′′, centered in O, with R < R′′ < R′.
The flux of the electric field through this closed surface is zero, because the field

is zero everywhere inside a conductor. The total charge inside the sphere must thus

be zero according to Gauss’s law. This implies that the charge induced on the inner

surface of the shell is −q, as may be verified directly by calculating the surface

charge and integrating over the whole surface.

d) The electric potential must still be constant for R � r � R′, but it is no longer

constrained to be zero. The electric potential in the region r � R is still equivalent to

the potential generated by the charges q and q′ of point a), plus a constant quantity

ϕ0 to be determined. The electric field in the region R � r � R′ is still zero, so that

the potential is constant and equal to ϕ0. Since the total charge on the shell must

be zero, we must distribute a charge q over its external surface, of radius R′, to

compensate the charge −q distributed over the internal surface, of radius R. Since

the real charge q, and the charge −q distributed over the surface of radius R generate

a constant potential for r � R, the charge q must be distributed uniformly over the

external surface in order to keep the total potential constant in the region R � r � R′.
The potential in the region r � R′ is equivalent to the potential generated by a

point charge q located in O. Thus we have ϕ(r) = keq/r for r � R′, if we choose

ϕ(∞) = 0. Thus ϕ0 = ϕ(R′) = keq/R′, and ϕ(r) = ϕ0 for R � r � R′. For r � R we

have

ϕ(r) = ke

(

q

rq

+
q′

rq′

)

+ϕ0, (S-2.78)

where rq is the distance of the point from the real charge q, and rq′ is the distance

of the point from the image charge q′. The field inside the cavity is the same for a

grounded or for an isolated shell.

S-2.10 A Charged Wire in Front of a Cylindrical Conductor

a) We have r =
√

(x+a)2+ y2 and r′ =
√

(x−a)2+ y2, x and y being the coordinates

of Q. Thus, squaring the equation r/r′ = K we get
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(x+a)2+ y2

(x−a)2+ y2
= K2

x2+2ax+a2 + y2 = K2x2−2K2ax+K2a2+K2y2

−(x2+ y2)(K2−1)+2ax(K2+1) = a2(K2−1)

x2+ y2−2
K2+1

K2−1
ax = a2 . (S-2.79)

On the other hand, the equation of a circumference centered at (x0,0) and radius R

is

(x− x0)2+ y2 = R2

x2+ y2−2x0x = R2− x2
0 . (S-2.80)

Comparing (S-2.80) to (S-2.79) we see that the curves defined by the equation r/r′ =
K are circumferences centered at

x0(K) =
K2+1

K2−1
a , y0 = 0 , (S-2.81)

of radius

R(K) =
2K

|K2−1|
a . (S-2.82)

Note that

x0

(

1

K

)

= −x0(K) , and R

(

1

K

)

= R(K) . (S-2.83)

Thus, we may restrict ourselves to K > 1, so that x0(K) > a > 0, and omit the

absolute-value sign in the expression for R(K). The circumferences corresponding

to 0 < K < 1 are obtained by reflection across the y axis of the circumferences cor-

responding to 1/K.

b) According to Gauss’s law, the electrostatic field and potential generated by an

infinite straight wire with linear charge density λ are

E(r) =
λ

2πε0r
and ϕ(r) = − λ

2πε0
ln

(

r

r0

)

, (S-2.84)

where r is the distance from the wire and r0 an arbitrary constant, corresponding to

the distance at which we pose ϕ = 0. The potential generated by two parallel wires

of charge densities λ and −λ, respectively, is

ϕ = − λ
2πε0

ln

(

r

r0

)

+
λ

2πε0
ln

(

r′

r′
0

)

=
λ

2πε0
ln

(

r′

r

)

+
λ

2πε0
ln

(

r0

r′
0

)

, (S-2.85)

where r′
0

is a second arbitrary constant, analogous to r0. The term

λ

2πε0
ln

(

r0

r′
0

)

(S-2.86)
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is actually a single arbitrary constant, which we can set equal to zero. With this

choice the electrostatic potential is zero on the x = 0 plane of a Cartesian reference

frame where the two wires lie on the straight lines (x =−a,y= 0) and (x =+a,y= 0).

The equation for the equipotential surfaces in this reference frame is

λ

2πε0
ln

(

r′

r

)

= ϕ, (S-2.87)

which leads to
r

r′
= e−2πε0ϕ/λ . (S-2.88)

Thus we can substitute K = e−2πε0ϕ/λ into (S-2.81) and (S-2.82). We see that the

equipotential surfaces are infinite cylindrical surfaces whose axes have the equations

x0(ϕ) =
e−4πε0ϕ/λ+1

e−4πε0ϕ/λ−1
, y0 = 0 , (S-2.89)

and their radii are

R(ϕ) =
2e−2πε0ϕ/λ

|e−4πε0ϕ/λ−1|
a . (S-2.90)

By multiplying the numerators and denominators of the above expressions by

e2πε0ϕ/λ we finally obtain

x0(ϕ) =
e−2πε0ϕ/λ+ e2πε0ϕ/λ

e−2πε0ϕλ− e2πε0ϕ/λ
a = −a coth

(

2πε0ϕ

λ

)

(S-2.91)

and

R(ϕ) =
2

|e−2πε0ϕ/λ− e2πε0ϕ/λ|
a =

∣

∣

∣

∣

∣

a

sinh(2πε0ϕ/λ)

∣

∣

∣

∣

∣

. (S-2.92)

R

λ

d

d

λ

Fig. S-2.17

If the negative wire is located on the (x = −a,y =

0) straight line, the ϕ > 0 equipotential cylinders are

located in the x< 0 half space (r < r′ in Fig. 2.8), and

the ϕ < 0 equipotentials in the x > 0 half space.

c) We can solve the problem by locating an image

wire with charge density λ′ = −λ inside the cylinder.

In Fig. (2.8), let the real wire intersect the xy plane

at P ≡ (−a,0), and the image wire at P′ ≡ (a,0). The

surface of the conducting cylinder intersects the xy

plane on one of the circumferences r/r′ = K. This is

always possible as far as d > R. With these locations

of the real and image wires the potential of the cylin-

der surface is constant and equal to a certain value ϕ0. Given R and d, we can find

the values of a and d′ by first defining the dimensionless constant ϕ′ = 2πε0ϕ0/λ,

and then solving the simultaneous equations

http://dx.doi.org/10.1007/978-3-319-63133-2_2
http://dx.doi.org/10.1007/978-3-319-63133-2_2
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2a+d′ = d , a+d′ = x0 = acothϕ′ ,
a

sinhϕ′
= R . (S-2.93)

From the first equation we obtain a = (d−d′)/2, which we substitute into the other

two equations
d+d′

2
=

d−d′

2
cothϕ′ ,

d−d′

2
= Rsinhϕ′ , (S-2.94)

and the latter equation leads to

sinhϕ′ =
d−d′

2R
, (S-2.95)

independent of λ. From the relations

cosh2 x− sinh2 x = 1 , and coth x =
cosh x

sinh x
,

we obtain

cothϕ′ =

√

4R2+ (d−d′)2

d−d′
, (S-2.96)

which, substituted into the first of (S-2.93) leads to

d+d′

2
=

d−d′

2

√

4R2+ (d−d′)2

d−d′
. (S-2.97)

Disregarding the trivial solution d′ = d (corresponding to two superposed wires of

linear charge density λ and −λ, generating zero field in the whole space), we have

d′ =
R2

d
, a =

d2+R2

2d
, ϕ′ = arccosh

(

d2+3R2

d2+R2

)

. (S-2.98)

Alternatively, may proceed analogously to the well-known problem of the poten-

tial of a point charge in front of a grounded, conducting sphere.

R

P

r

d

O

d

λ λ

θ
r

Fig. S-2.18

Figure S-2.18 shows the intersection with

the xy plane of the conducting cylinder of

radius R, the real charged wire at distance

d from the cylinder axis, and the image

wire at distance d′ from the axis. We have

translational symmetry perpendicularly to the

figure. The potential ϕ generated by the real

wire of linear charge density λ, and by the

image wire of linear of linear charge density

λ′ must be constant over the cylinder surface.

The potential at a generic point P of the surface is

ϕ = − λ
2πε0

lnr− λ
′

2πε0
lnr′ = const (S-2.99)
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where r is the distance of P from the real wire and r′ the distance of P from the

image wire. Multiplying by −2πε0 we obtain

λ lnr+λ lnr′ = const , (S-2.100)

which can be rewritten by expressing r and r′ in terms of d, d′, R and the angle θ

between r and the radius joining P to the intersection of the cylinder axis with the

xy plane, O, and applying the law of cosines,

λ ln

(

√

d2+R2−2Rd cosθ

)

+λ′ ln
(

√

d′2+R2−2Rd′ cosθ

)

= const . (S-2.101)

Differentiating with respect to θ we obtain

λRd sinθ

d2+R2−2Rd cosθ
= − λ′Rd′ sinθ

d′2+R2−2Rd′ cosθ
, (S-2.102)

implying that λ and λ′ must have opposite signs. Dividing both sides by Rsinθ we

obtain, after some algebra,

λd
(

d′2+R2−2Rd′ cosθ
)

= −λ′d′
(

d2+R2−2Rd cosθ
)

λ
(

dd′2+dR2−2Rdd′ cosθ
)

= −λ′
(

d′d2+d′R2−2Rdd′ cosθ
)

, (S-2.103)

which requires λ′ = −λ in order to make the equation independent of θ, and, disre-

garding the trivial solution d′ = d, we finally obtain

d′ =
R2

d
. (S-2.104)

S-2.11 Hemispherical Conducting Surfaces

O

q

a

q1

q2

R

q3

θθ

φ

z

r

a

Fig. S-2.19

a) We choose a cylindrical coordinate system (r,φ,z)

with the symmetry axis of the problem as z axis, so

that the point charge is located in (asinθ,φ,acosθ),

with φ a given fixed angle, as in Fig. S-2.19. The con-

ductor surface, comprising the hemispherical boss

and the plane part, is equipotential with ϕ = 0. If

the conductor surface were simply plane, with no

boss, the problem would be solved by locating an

image charge q1 = −q in (asinθ,φ,−acosθ), as in

Fig. S-2.19. On the other hand, if the conductor were

a grounded spherical surface of radius R, the prob-

lem would be solved by locating an image charge

q2 = −q(R/a) in (a′ sinθ,φ,a′ cosθ), with a′ = R2/a.

The real charge q, with the two image charges q1 and q2, gives origin to a potential
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ϕ(r) = ϕq(r)+ϕq1
(r)+ϕq2

(r) which is different from zero both on the plane surface,

where it equals ϕq2
(r), since ϕq(r)+ϕq1

(r) = 0 on the plane, and on the hemispher-

ical surface, where it equals ϕq1
(r). The problem is solved by adding a third image

charge q3 = q(R/a) at (a′ sinθ,φ,−a′ cosθ), so that the pairs {q,q1} and {q2,q3} gener-

ate a potential ϕ = 0 on the plane surface, and the pairs {q,q2} and {q1,q3} generate a

potential ϕ = 0 on the spherical (and hemispherical!) surface. According to Gauss’s

law, the total charge induced on the conductor equals the sum of the image charges

qind = q1+q2+q3 = −q+

(

−R

a
q

)

+

(

R

a
q

)

= −q . (S-2.105)

O

q2q3

q

R

q1

R
2 / b

θθ
b

Fig. S-2.20

Note that, since the electric field generated by the

real charge plus the three image charges is always

perpendicular to the conductor surface, it must be

zero on the circumference (R,φ,0), here with φ any,

where the hemisphere joins the plane.

b) Now the real charge q is located at (bsinθ,φ,

bcosθ) inside the hemispherical cavity of radius R >

b in the conductor, as in Fig. S-2.20. The solution is

analogous to the solution of point a): we locate three

image charges in the conductor, outside of the cavity,

namely, q1 = −q in (bsinθ,φ,−bcosθ), q2 = −(R/b)q

in (b′ sinθ,φ,b′ cosθ), with b′ = R2/b > R, and q3 =

−q2 = (R/b)q in (b′ sinθ,φ,−b′ cosθ).

S-2.12 The Force between the Plates of a Capacitor

h

+

−σ

σ

E

S

Fig. S-2.21

We present this simple problem in order to point

out, and prevent, two typical recurrent errors. The

first error regards the electrostatic pressure at the

surface of a conductor, the second the derivation

of the force from the energy of a system.

a) Let us consider the electrostatic pressure first.

If Q is the charge of the capacitor, and S the

surface of its plates, the surface charge density

(which is located on the inner surfaces only!)

is ±σ = ±Q/S . Within our approximations, the

electric field is uniform between the two charged

surfaces, E = 4πkeσ, and zero everywhere else.

This leads to an electrostatic pressure

P =
1

2
σE = 2πkeσ

2 . (S-2.106)
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Here, the typical mistake is to forget the 1/2 factor and to write P
w
= σE (the “w” on

the “=” sign stands for wrong!). In fact, only one half of the electric field is due to

the charge on the other plate. The force F is attractive because the two plates have

opposite charges, and we can write

F = −PS = −2πke
Q2

S 2
S = −2πke

Q2

S
. (S-2.107)

Thus the force depends on Q only, and is independent of the distance h between the

plates. (S-2.107) is valid both for an isolated capacitor, and for a capacitor connected

to a voltage source maintaining a fixed potential difference V . But, in the latter case,

the charge is no longer constant, and it is convenient to replace Q by the product

CV , remembering that the capacity of a parallel-plate capacitor is C = S/(4πkeh).

Thus

F = −2πke
(CV)2

S
= − V2S

8πkeh2
. (S-2.108)

b) In the case of an isolated capacitor, the force between the plates can also be

evaluated as minus the derivative of the electrostatic energy Ues of the capacitor

with respect to the distance between the plates, h. It is convenient to write Ues as a

function of the charge Q, which is constant for an isolated capacitor,

Ues =
Q2

2C
= 2πke

Q2h

2S
, (S-2.109)

so that the force between the plates is

F = −∂hU es = −2πke
Q2

S
, (S-2.110)

in agreement with (S-2.107).

If the capacitor is connected to a voltage source, the potential difference V

between the plates is the constant quantity. Thus, it is more convenient to write

Ues as a function of V

Ues =
1

2
CV2 =

1

8πke

V2S

h
. (S-2.111)

At this point, it is tempting, but wrong, to evaluate the force between the plates as

minus the derivative of Ues with respect to h. We would get

F
w
= −∂hUes = +

1

8πke

V2S

h2
, (S-2.112)

and, if the “+” sign were correct, now the force would be repulsive, although

equal in magnitude to (S-2.108)! Of course, this cannot be true, since the plates have

opposite charges and attract each other. The error is that the force equals minus the

gradient of the potential energy of an isolated system, which now includes also the



162 S-2 Solutions for Chapter 2

voltage source. And the voltage source has to do some work to keep the potential dif-

ference of the capacitor constant while the capacity is changing. Let us consider an

infinitesimal variation of the plate separation, dh which leads to an infinitesimal vari-

ation of the capacity, dC. The voltage source must move a charge dQ = VdC across

the potential difference V , in order to keep V constant. The source thus does a work

dW = VdQ = V2dC , (S-2.113)

and its internal energy (whatever its nature: mechanical, chemical, . . . ) must change

by the amount

dUsource = −dW = −V2dC . (S-2.114)

Since at the same time the electrostatic energy of the capacitor changes by 1/2 V2dC,

the variation of the total energy of the isolated system, dUtot, is

dUtot = dUsource+dUes = −V2dC+
V2

2
dC = −V2

2
dC = −dUes . (S-2.115)

Thus, the force is

F = −∂hUtot = +∂hUes = −
V2S

8πkeh2
, (S-2.116)

in agreement with (S-2.108).

S-2.13 Electrostatic Pressure on a Conducting Sphere

a) The surface charge is σ = Q/S , where S = 4πa2 is the surface of the sphere. The

electric field at the surface is E = 4πkeσ, so that the pressure is

P =
1

2
σE = 2πkeσ

2 = ke
Q2

8πa4
. (S-2.117)

b) According to Gauss’s law, the electric field of the sphere is

E(r) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 , r < a ,

ke
Q

r2
, r > a ,

(S-2.118)

and thus the electrostatic energy is

Ues =

∫

1

8πke
E2(r)d3r =

∫ ∞

a

ke

8π

(

Q

r2

)2

4πr2 dr = ke
Q2

2a
. (S-2.119)
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The derivative of Ues with respect to a, which has the dimensions of a force, can be

interpreted as the integral of the electrostatic pressure over the surface of the sphere.

Since the pressure is uniform for symmetry reasons, we can write

P =
1

4πa2

(

−dUes

da

)

=
1

4πa2

keQ2

2a2
= ke

Q2

8πa4
, (S-2.120)

in agreement with (S-2.117).

−

+
V

b

a

Fig. S-2.22

c) This problem is equivalent to locating a charge

Q on the sphere, such that the potential difference

between the sphere and infinity is V . The problem

can also be seen as a spherical capacitor with internal

radius a and external radius b, potential difference V ,

at the limit of b approaching infinity. The capacity is

C = lim
b→∞

1

ke

ab

b−a
=

a

ke
, (S-2.121)

while the electric potential inside the capacitor is

ϕ(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

V (r < a)

V
a

r
(r > a)

(S-2.122)

so that the charge on the sphere of radius a is Q = aV/ke. By substituting Q in

(S-2.117) we obtain

P =
V2

8πkea2
. (S-2.123)

Alternatively, we can write the electrostatic energy (S-2.119) as a function of V ,

Ues =
1

2
CV2 =

aV2

2ke
, (S-2.124)

and remember from Problem 2.12 that, if the radius a is increased by da at constant

voltage, the electrostatic energy of our “capacitor” changes by dUes, and, simulta-

neously, the voltage source does a work dW = 2dUes, so that the variation of the

“total” energy is

dUtot = dUes−dW = −dUes , (S-2.125)

and the pressure is

P =
1

4πa2

(

−dUtot

da

)

=
1

4πa2

(

dUes

da

)

=
V2

8πkea2
, (S-2.126)

in agreement with (S-2.123).

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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S-2.14 Conducting Prolate Ellipsoid

a) Let us consider a line segment of length 2c, of uniform linear electric charge den-

sity λ, so that the total charge of the segment is Q = 2cλ. We start using a system of

cylindrical coordinates (r,φ,z), such that the end points of the segment have coor-

dinates (0,φ,±c), the value of φ being irrelevant when r = 0. The electric potential

ϕ(P) of a generic point P, of coordinates (r,φ,z), is

ϕ(P) = ke

∫

+c

−c

λdz′

s
= keλ

∫

+c

−c

dz′
√

(z− z′)2+ r2
, (S-2.127)

z

r P

λ
O

φ
dz

z

s2

s1

s

−c +c

Fig. S-2.23

where s is the distance from P to the
point of the charged segment of coor-
dinate z′, as shown in Fig. S-2.23. The
indefinite integral is

∫

dz′
√

(z− z′)2 + r2

= − ln

[

2

√

(z− z′)2 + r2 +2z−2z′
]

+C , (S-2.128)

as can be checked by evaluating the derivative, leading to

ϕ(P) = keλ ln

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√

(z+ c)2+ r2+ z+ c
√

(z− c)2+ r2+ z− c

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= ke
Q

2c
ln

(

s1+ z+ c

s2+ z− c

)

, (S-2.129)

where s1 =
√

(z+ c)2+ r2 and s2 =
√

(z− c)2+ r2 are the distances of P from the end

points of the charged line segment, as shown in Fig. S-2.23. We now introduce the

elliptic coordinates u and v

u =
s1+ s2

2c
, v =

s1− s2

2c
, (S-2.130)

so that

s1 = c(u+ v) , s2 = c(u− v) ,

and

uv =
s2

1
− s2

2

4
=

z

c
. (S-2.131)

Because of (S-2.130), we have u≥ 1, and −1≤ v≤ 1. The surfaces u= const are con-

focal ellipsoids of revolution, and the surfaces v = const are confocal hyperboloids
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of revolution, as shown in Fig. S-2.24. The surface u = 1 is the degenerate case of an

ellipsoid with major radius a = c and minor radius b = 0, coinciding with segment

(−c,c). The surface v = 0 is the degenerate case of the plane z = 0, while v = ±1 cor-

respond to the degenerate cases of hyperboloids collapsed to the half-lines (c,+∞)

and (−c,−∞). In terms of u and v, equation (S-2.129) becomes

ϕ(P) = ke
Q

2c
ln

[

c(u+ v)+ cuv+ c

c(u− v)+ cuv− c

]

= ke
Q

2c
ln

[

(u+1)(v+1)

(u−1)(v+1)

]

= ke
Q

2c
ln

(

u+1

u−1

)

, (S-2.132)

Thus, the electric potential depends only on the elliptical coordinate u, and is

constant on the ellipsoidal surfaces u = const. The surfaces v = const are perpendic-

ular to the equipotential surfaces u = const, so that the intersections of the surfaces

v = const with the planes φ = const (confocal hyperbolae) are the field lines of the

electric field. If we let u approach infinity, i.e., for s1+ s2≫ c, we have s1 ≃ s2 and

= −1

= 0.92

=
0.

70
7

= 1

=
0
.3

8
3

u = 1.667

u = 1.333

c−c

u = 1.033

=
−
0.707

=
0

= −0.92

=
−

0.3
8
3

Fig. S-2.24

u+1

u−1
≃ 1+

2

u
,

ln

(

1+
2

u

)

≃ 2

u
, (S-2.133)

and

lim
u→∞
ϕ(P) = ke

Q

2c

2

u

= ke
Q

cu
≃ ke

Q

s1
, (S-2.134)

a

b

c
zO

c

r
u = a/ c

λ = Q/ 2c

Fig. S-2.25

since s1 ≃ s2. This is what expected for

a point charge. In other words, the ellip-

soidal equipotential surfaces approach

spheres as u→∞.

b) For a prolate ellipsoid of revolution of

major and minor radii a and b, respec-

tively, the distance between the center O

and a focal point, c, is

c =
√

a2−b2 . (S-2.135)

At each point of the surface of the ellip-

soid we have s1+ s2 = 2a, so that the equa-

tion of the surface in elliptic coordinates
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is u = a/c. A uniformly charged line segment with end points at (0,φ,−c) and

(0,φ,c), and linear charge density λ = Q/(2c), generates a constant electric potential

ϕ(a,b) on the surface of the ellipsoid

ϕ(a,b) = ke
Q

2c
ln

(

u+1

u−1

)

= ke
Q

2
√

a2−b2
ln

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a+
√

a2−b2

a−
√

a2−b2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (S-2.136)

On the other hand, the potential generated by the charged segment at infinity is zero,

and there are no charges between the surface of the ellipsoid and infinity. The flux

of the electric field through any closed surface containing the ellipsoid is Q. Thus,

the potential, and the electric field, generated by the charged segment outside the

surface of the ellipsoid equal the potential, and the electric field, generated by the

conducting ellipsoid carrying a charge Q, and this solves the problem. The capacity

of the ellipsoid is thus

C =
Q

ϕ(a,b)
=

2
√

a2−b2

ke

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ln

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a+
√

a2−b2

a−
√

a2−b2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1

. (S-2.137)

The denominator of the argument of the logarithm can be rationalized, leading to

a+
√

a2−b2

a−
√

a2−b2
=

(

a+
√

a2−b2
)2

a−a2+b2
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a+
√

a2−b2

b
,

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

(S-2.138)

and the capacity of the prolate ellipsoid can be rewritten

C =

√
a2−b2

ke

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ln

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a+
√

a2−b2

b

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1

. (S-2.139)

The plates of a confocal ellipsoidal capacitor are the surfaces of two prolate ellip-

soids of revolution, sharing the same focal points located at ±c on the z axis, and

of major radii a1 and a2, respectively, with a1 < a2. According to (S-2.135) and

(S-2.136) the potential on the two plates are

ϕ1,2 = ke
Q

2c
ln

(

a1,2+ c

a1,2− c

)

(S-2.140)

so that the capacity is

C =
Q

ϕ1−ϕ2
=

2c

ke ln

(

a1+ c

a1− c

a2− c

a2+ c

) =
2c

ke ln

(

a1a2− c2+ c (a2−a1)

a1a2− c2− c (a2−a1)

)
. (S-2.141)
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c) A straight wire of length h and diameter 2b, with h≫ b, can be approximated by

an ellipsoid prolate in the extreme, with major radius a = h/2 and minor radius b,

with, of course, b≪ a. From

√

a2−b2 ≃ a− b2

a
valid for b≪ a , (S-2.142)

and (S-2.139) we have

Cwire ≃
a

2ke ln(2a/b)
=

h

ke ln(h/b)
. (S-2.143)



Chapter S-3

Solutions for Chapter 3

S-3.1 An Artificial Dielectric

a) According to (S-2.6) of Problem 2.1, a metal sphere in a uniform external field E

acquires a dipole moment

p =
a3

ke
E =

3

4πke
V E , (S-3.1)

where V = 4/3 πa
3 is the volume of the sphere. The polarization of our suspension

is

P = np =
3n

4πke
V E . (S-3.2)

In SI units we have P = ε0χE, and χ = 3 f , while in Gaussian units we have P = χE,

and χ = 3 f /(4π). In both cases f = nV is the fraction of the volume occupied by the

spheres. Since the minimum distance between the centers of two spheres is 2a, we

have

f ≤ 4πa3

3

1

8a3
=
π

6
, (S-3.3)

leading to χ ≤ π/2 in SI units, and χ ≤ 1/8 in Gaussian units.

b) The average distance ℓ between two sphere centers is of the order of n−1/3. The

electric field of a dipole at a distance ℓ is of the order of

Edip ≃ ke
p

ℓ3
≃ ke

a3

ke
E n = a3E n. (S-3.4)

Thus, the condition Edip≪ E requires n≪ 1/a3.
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S-3.2 Charge in Front of a Dielectric Half-Space

Fig. S-3.1

We denote by A the z < 0, vacuum, half-space,

containing the real charge q, and by B the z > 0,

dielectric, half-space, containing no free charge.

We shall treat the two half spaces separately,

making educated guesses, in order to apply the

uniqueness theorem for the Poisson equation. We

use cylindrical coordinates (r,φ,z), with the real

charge located at (0,φ,−d). All our formulas will

be independent of the azimuthal coordinate φ,

which is not determined, and not relevant, when

r = 0.

a) We treat the field in the half-space A assuming vacuum in the whole space,

including the half-space B. As ansatz, we locate an image charge q′, of value to

be determined, at (0,0,+d), in the half space that we are not considering, as in Fig.

S-3.1. Now we evaluate the electric field E(−) in a generic point P ≡ (r,φ,0−) of

the plane z = 0−. The distance between P and q is
√

d2+ r2 and forms an angle

θ = arccos(d/
√

d2+ r2) with the z axis. Also the distance between P and q′ will be√
d2+ r2. The field at P, E(−), is the vector sum of the fields E due to the real charge

q, and E′ do to the image charge q′. The components of E(−), perpendicular and

parallel to the z = 0 plane are, respectively

E
(−)
⊥ = ke

q

d2+ r2
cosθ− ke

q′

d2+ r2
cosθ = ke

d

(d2+ r2)3/2
(q−q′)

E
(−)

‖ = ke
q

d2+ r2
sinθ+ ke

q′

d2+ r2
sinθ = ke

r

(d2+ r2)3/2
(q+q′)

. (S-3.5)

Fig. S-3.2

We treat the half-space B assuming that the

whole space, including the half-space A, is

filled by a dielectric medium of relative per-

mittivity εr. We are not allowed to introduce

charges or alter anything in B, but, as an edu-

cated guess, we replace the real charge q,

located in the half-space A that we are not treat-

ing, by a charge q′′, of value to be determined

(Fig. S-3.2). We evaluate the field E(+) at the

same point P as before, but on the z= 0+ plane.

The components of E(+) perpendicular and par-

allel to the z = 0 plane are
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E
(+)
⊥ =

ke

εr

q′′

d2+ r2
cosθ =

ke

εr

d

(d2+ r2)3/2
q′′

E
(+)

‖ =
ke

εr

q′′

d2+ r2
sinθ =

ke

εr

r

(d2+ r2)3/2
q′′ . (S-3.6)

If our educated guesses are correct, the dielectric boundary conditions must hold at

z = 0. This implies E
(−)
⊥ = εrE

(+)
⊥ and E

(−)

‖ = E
(+)

‖ , corresponding to the equations

q−q′ = q′′ , and q+q′ =
q′′

εr
, (S-3.7)

with solutions

q′ = −εr −1

εr +1
q , and q′′ =

2εr

εr+1
q . (S-3.8)

We can easily check that, at the limit εr→ 1 (vacuum in the whole space), we have

q′ → 0 and q′′ → q, i.e., in the whole space we have the field of charge q only. At

the limit εr→∞ (dielectric→ conductor limit) we have q′→−q and q′′→ 2q, i.e.,

the field of the real charge q and its image −q in the half-space A, and zero field in

the half space B, as at point a) of Problem 2.2. The finite value of q′′ is irrelevant

for the field in the half-space B, because of the infinite value of εr.

Notice that we can also write equations (S-3.6) without εr in the denominators,

thus including the dielectric bound charge into q′′. This leads to the equations

q−q′ = εr q′′ , and q+q′ = q′′ (S-3.9)

with solutions

q′ = −εr−1

εr+1
q , and q′′ =

2

εr+1
q , (S-3.10)

which give the same expressions for the electric field as for the choice (S-3.6).

b) The polarization charge density on the z = 0 plane, σb(r), is

σb(r) = − 1

4πke
(E

(−)
⊥ −E

(+)
⊥ ) = − 1

4π

d

(d2+ r2)3/2

(

q−q′− q′′

εr

)

= − 1

2π

d

(d2+ r2)3/2

εr−1

εr+1
q =

1

2π

d

(d2+ r2)3/2
q′ . (S-3.11)

The total polarization charge on the z = 0 plane is

qp =

∫ ∞

0

σb(r)2πr dr = −εr−1

εr+1
q

∫ π/2

0

cosθdθ = q′, (S-3.12)

where we have substituted cosθ = d/
√

d2+ r2, r = d/cosθ and dr = d dθ/cos2 θ.

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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c) The polarization charge of the z = 0 plane generates an electric field equal to the

field of a charge q′ = −q (εr −1)/(εr +1) located at (0,0,+d) in the half space z < 0,

and equal to the field of a charge q′ located at (0,0,−d) in the half space z > 0.

S-3.3 An Electrically Polarized Sphere

a) Since the polarization P of the sphere is uniform, we have no volume bound-

charge density, according to ̺b = ∇ · P. If we choose a spherical coordinate system

(r, θ,φ) with the azimuthal axis parallel to P, as shown in Fig. S-3.3, we see that the

surface bound-charge density of the sphere is σb = Pcosθ, according to σb = P · n̂.

Thus, in principle, we can evaluate the electric field everywhere in space as the field

generated by the bound-charge distribution on the sphere surface.

However, it is easier to consider the polarized sphere as the superposition of two

uniformly charged spheres, both of radius a, one of volume charge density ̺, and

one of volume charge density −̺. The centers of the two spheres are separated by a

small distance δ, as in Fig. 1.1 of Problem 1.1. Thus, two initially superposed infini-

tesimal volume elements d3r of the two spheres, of charge ±̺d3r, respectively, give

origin to an infinitesimal electrical dipole moment dp = δ̺d3r after the displace-

ment.

Fig. S-3.3

This corresponds to a polarization dp/d3r = ̺δ, we

must have P = ̺δ, and are interested in the limit

|δ| → 0, ρ → ∞, with ̺δ = P = constant. Now we

can follow the solution of Problem 1.1. According to

(S-1.1), the electric field inside the sphere is uniform

and equals

Ein = −
4πke

3
̺δ = −4πke

3
P . (S-3.13)

The problem of the field outside the sphere is solved at point b) of Problem 1.1,

we have

Eext(r) = ke
3r̂ (p · r̂)−p

r3
, (S-3.14)

where p = P(4πa3/3) is the total dipole moment of the sphere.

Fig. S-3.4

b) The problem can be solved by the superposition

principle. The hole of radius b can be regarded as a

sphere of uniform electrical polarization −P super-

posed to the sphere of radius a and polarization P.

The sphere of radius b generates a field

E
(b)

in
=

4πke

3
P (S-3.15)

http://dx.doi.org/10.1007/978-3-319-63133-2_1
http://dx.doi.org/10.1007/978-3-319-63133-2_1
http://dx.doi.org/10.1007/978-3-319-63133-2_1
http://dx.doi.org/10.1007/978-3-319-63133-2_14
http://dx.doi.org/10.1007/978-3-319-63133-2_1
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at its interior. Thus, the total field inside the spherical hole is E
(a+b)

in
= 0. The field

inside the spherical shell b < r < a is the sum of the uniform field (S-3.13) and the

field generated by an electric dipole of moment p(b) located at the center O, with

p(b) = −4πb3

3
P . (S-3.16)

Finally, the external field (r > a) equals the field generated by a single dipole p(a+b)

located in O with

p(a+b) =
4π
(

a3−b3
)

3
P . (S-3.17)

S-3.4 Dielectric Sphere in an External Field

a) As an educated guess. Let us assume that the external field induces a uniform

electric polarization P in the sphere. We have seen in Problem 3.3 that a sphere of

uniform

Fig. S-3.5

electric polarization P generates a uniform elec-

tric field Epol = −(4πke/3)P at its interior. The

difference is that in the present case P is not per-

manent but it is induced by the local electric field,

and

P =
εr−1

4πke
Ediel , (S-3.18)

where Ediel is the field inside the dielectric

sphere, which is the sum of the external and the induced fields:

Ediel = E0+Epol . (S-3.19)

We thus have

Ediel = E0−
4πke

3
P = E0−

εr −1

3
Ediel , (S-3.20)

which can be solved for Ediel:

Ediel =
3

εr+2
E0 . (S-3.21)

Since εr > 1, the field inside the dielectric sphere is smaller than E0.

The electric field outside the sphere Eout will be given by the sum of E0 and the

field of a dipole

http://dx.doi.org/10.1007/978-3-319-63133-2_3
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p =
4πa3

3
P =

a3

3ke

εr−1

εr+2
E0 (S-3.22)

located at the center of the of the sphere. Thus

Eout = E0+ ke
3(p · r̂)r̂−p

r3
= E0+

a3

3ke

εr −1

εr +2
[3(E0 · r̂)r̂−E0] . (S-3.23)

It is instructive, and useful for the following, to check that the above solution

satisfies the boundary conditions at the surface of the sphere. Let us then restart the

problem by assuming that the field Ediel inside the sphere (r < a) is uniform and

parallel to the external field E0, and that the field Eout outside the sphere (r > a)

is the sum of the external field and that of a dipole p located at the center of the

sphere and also parallel to E0. Thus we can write Ediel = αE0 and p = ηE0, with the

constants α and η to be determined by the boundary conditions at r = a. Choosing

a spherical coordinate system with the origin O at the center of the sphere, and the

polar axis z parallel to E0, we have

Ediel
r = αE0 cosθ Eout

r = E0 cosθ+ keηE0
2cosθ

r3

Ediel
θ = αE0 sinθ Eout

θ = E0 sinθ− keηE0
sinθ

r3

Ediel
φ = 0 Eout

φ = 0 . (S-3.24)

The boundary conditions at the surface of the sphere are εrE
diel
⊥ = Eout

⊥ and Ediel
‖ =

Eout
‖ which yields, in spherical coordinates,

εrE
diel
r (r = a−) = Eout

r (r = a+) Ediel
θ (r = a−) = Eout

θ (r = a+) . (S-3.25)

Using (S-3.24) and deleting the common factors we obtain

εrα = 1+
2ke

a3
η , α = 1− ke

a3
η , (S-3.26)

whose solutions for α and η are

α = 3/(εr +2) , η =
a3

ke

εr−1

εr−2
, (S-3.27)

and we eventually recover (S-3.21) and (S-3.22).

b) We make an educated guess analogous to the one of the previous point, i.e., we

assume that the field inside the cavity, Ecav, is uniform and parallel to Ed, and that

the field in the dielectric medium, Ediel, is the sum of Ed and the field of an electric

dipole pc, located at the center of the cavity and parallel to Ed. Thus we can write
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Ecav = αEd , pc = ηEd ; (S-3.28)

where, again, α and η are constants to be determined by the boundary conditions.

Using again spherical coordinates with the origin at the center of the spherical cavity

and the z axis parallel to Ed, the expressions analogous to (S-3.24) are

Ecav
r = αEd cosθ Emed

r = Ed cosθ+ ke ηEd

2cosθ

r3

Ecav
θ = αEd sinθ Emed

θ = Ed sinθ− keηEd

sinθ

r3

Ecav
φ = 0 Emed

φ = 0 , (S-3.29)

with the boundary conditions

Ecav
r (r = a−) = εrE

med
r (r = a+) Ecav

θ (r = a−) = Emed
θ (r = a+) . (S-3.30)

The values for α and η may thus be easily obtained by solving a linear system

of two equations as in point a). However, we can immediately obtain the solution

by noticing that (S-3.29) and (S-3.30) are identical to (S-3.24) and (S-3.25) but

for the replacements Ed ↔ E0, Ecav ↔ Ediel, Emed ↔ Eout, and εr ↔ 1/εr. Thus,

the solutions for Ecav and pc are obtained from those for Ediel and p, (S-3.21) and

(S-3.22), by substituting Ed for E0 and 1εr for εr:

Ecav =
3

1/εr +2
Ed =

3εr

1+2εr
Ed , (S-3.31)

pc =
a3

3ke

1/εr−1

1/εr+2
Ed =

a3

3ke

1−εr
1+2εr

Ed . (S-3.32)

Thus Ecav > Ed, i.e. the field inside the cavity is stronger than that outside it, and pc

is antiparallel to Ed.

S-3.5 Refraction of the Electric Field at a Dielectric Boundary

Fig. S-3.6

a) First, we note that the electric field E0 outside the

dielectric slab equals the field that we would have

in vacuum in the absence of the slab. Neglecting the

boundary effects, the bound surface charge densities

of slab are analogous to the surface charge densities

of a parallel-plate capacitor. These generate a uni-

form electric field inside the capacitor, but no field

outside. Thus, the electric field inside the slab is the

sum of E0 and the field generated by the surface

polarization charge densities. If we denote by E′ the
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internal electric field, the boundary conditions at the dielectric surfaces are

E0⊥ = εr E′⊥ , E0‖ = εr E′‖ , (S-3.33)

where the subscripts ⊥ and ‖ denote the field components perpendicular and parallel

to the interface surface, respectively. In terms of the angles θ and θ′ of Fig. S-3.6

Fig. S-3.7

we have

E0 cosθ = εrE
′ cosθ′

E0 sinθ = E′ sinθ′ . (S-3.34)

If we divide the second of (S-3.34) by the first we

obtain

1

εr
tanθ′ = tanθ , (S-3.35)

and, since εr > 1, we have θ′ > θ.
b) From Gauss’s law we obtain

σb =
1

4πke
(Eo,⊥−E′⊥) =

1

4πke
E0 cosθ

(

1− 1

εr

)

. (S-3.36)

c) The electrostatic energy density inside the slab is

ues =
εr

8πke
E′2 =

εr

8πke
, (E′2⊥ +E′2‖ ) =

εr

8πke
E2

0

(

cos2 θ

ε2r
+ sin2 θ

)

=
1

8πkeεr
E2

0

[

(ε2r −1)sin2 θ+1
]

, (S-3.37)

so that ues increases with increasing θ, and we expect a torque τ tending to rotate the

slab toward the angle of minimum energy, i.e., θ = 0. Neglecting boundary effects,

the total electrostatic energy of the slab is Ues = Vues, where V is the volume of the

slab, and the torque exerted by the electric field is

τ = −∂Ues

∂θ
= − 1

8πkeεr
E2

0V
(

ε2r −1
)

sin2θ < 0 . (S-3.38)
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S-3.6 Contact Force between a Conducting Slab and a Dielectric

Half-Space

Fig. S-3.8

a) Neglecting boundary effects at the edges of the

slab, the electric field is parallel to the x axis in all

the regions of interest because of symmetry reasons.

Thus, we can omit the vector notation, and we shall

use positive numbers for vectors whose unit vector

is x̂, negative numbers otherwise.

According to Gauss’s law, a uniformly charged

plane with surface charge density σa generates uni-

form fields at both its sides, of intensities Ea =

±σa/2ε0, respectively. In our problem we have three

charged parallel plane surfaces: we denote by σ1 the

surface charge density on the left surface of the slab,

by σ2 charge the density on its right surface, and by σb the bound surface charge

density of the dielectric material on its surface, as shown in Fig. S-3.8. Since the

total free charge on the slab is Q, we have

σ1+σ2 =
Q

S
= σtot . (S-3.39)

At any point in space the total electric field is the sum of the fields generated by

the three surface charges. Now, the electric field must be zero inside the conducting

slab. Thus the sum of all surface charge densities (including both free and bound

charges) at the left of the slab must equal the sum of all surface charge densities at

the right, so that their respective fields cancel out inside the slab. This conclusion

holds both when the slab is in contact with the dielectric, and when there is a vacuum

gap between them. Thus, we have

σ1 = σ2+σb . (S-3.40)

The electric field Ed inside the dielectric medium is Ed = 4πke (σ2 + σb). This

implies for the dielectric polarization of the medium P

P =
εr −1

4πke
Ed = (εr −1)σ1 . (S-3.41)

Since we also have σb = −P · x̂ = −P, we obtain the additional relation

σb = −(εr−1)(σ2+σb) , (S-3.42)

that leads to

σb = −
εr−1

εr
σ2 . (S-3.43)
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From (S-3.39), (S-3.40) and (S-3.43) we finally obtain

σ1 =
1

εr +1
σtot , σ2 =

εr

εr+1
σtot , σb = −

εr−1

εr+1
σtot . (S-3.44)

The magnitudes of the electric field at the left of the slab E1, and of the electric field

inside the dielectric medium Ed, can be evaluated from Gauss’s law, recalling that

the field is zero inside the slab. We have

E1 = −4πkeσ1 = −
4πke

εr +1
σtot and Ed = 4πke (σ2+σb) = −E1 . (S-3.45)

In the case of a vacuum gap between the conducting slab and the dielectric medium,

as shown in Fig. S-3.9, the field E2 in the gap is

E2 = 4πkeσ2 = 4πke
εr

εr+1
σtot = −εrE1 . (S-3.46)

The values of E1 and Ed are not affected by the presence of the vacuum gap.

As an alternative approach we can assume, following Problem 3.2, that the free

charge layers σ1 and σ2 induce image charge layers σ′
1

and σ′
2

in the dielectric,

σ′1 = −
εr−1

εr+1
σ1 , σ′2 = −

εr −1

εr +1
σ2 , (S-3.47)

Fig. S-3.9

with the image planes located in position symmet-

rical with respect to the dielectric surface. Due to

Gauss’s law the bound surface charge density is the

sum of the image charge densities,

σp = σ
′
1+σ

′
2 = −

εr−1

εr+1

Q

S
. (S-3.48)

The free charge densities can be now found by

requiring the field to vanish inside the slab: omitting

a common multiplying factor we have

0 = σ1−σ2−σ′1−σ
′
2 = 2

εrσ1−σ2

εr+1
, (S-3.49)

from which we obtain εrσ1 = σ2, and we eventually recover the free and bound

surface charge densities of (S-3.44).

b) In order to evaluate the electrostatic force acting on the conducting slab, we first

assume the presence of a small vacuum gap of width ξ between the slab and the

dielectric medium, as shown in Fig. S-3.9.

http://dx.doi.org/10.1007/978-3-319-63133-2_3
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We can evaluate the total electrostatic force F acting on the conducting slab in

three equivalent ways:

(i) We can evaluate the variation of the total electrostatic energy Ues when the

slab is displaced by an infinitesimal amount dx toward the right, thus decreas-

ing the gap. In this case Ues increases by E2
1

S dx/(8πke) at the left of the

slab, because the width of region “filled” by the field E1 increases by dx,

and correspondingly decreases by E2
2

S dx/(8πke) at its right. Thus, dUes =

(E2
1
−E2

2
)S dx/(8πke), from which we obtain the force per unit surface

F = −dUes

dx
=

S

8πke
(E2

1 −E2
2) =

S

8πke
(ε2r −1)

(

4πke

εr+1

)2 (
Q

S

)2

= 2πke

εr−1

εr+1

Q2

S
. (S-3.50)

We have F > 0, meaning that the slab is attracted by the dielectric medium.

(ii) We can multiply the charge of the slab Q by the local field, i.e., by the field

generated by all charges excluding the charges of the slab. In our case the local

field is the field Ep generated by the bound surface charge density σb. We have

Ep = −2πkeσb = 2πke
εr −1

εr +1
σtot , and F = 2πke

εr −1

εr +1

Q2

S
. (S-3.51)

(iii) We can evaluate the force on the slab by summing the forces F1 on its left

and F2 on its right surface. These are obtained by multiplying the respective

charges Q1 = Sσ1 and Q2 = Sσ2 by the average fields at the surfaces

F = F1+F2 = Q1
E1

2
+Q2

E2

2
= − Q

εr+1

2πke

εr+1
σtot+

εrQ

εr+1

εr2πke

εr+1
σtot

= 2πke

ε2r −1

(εr+1)2

Q2

S
= 2πke

εr−1

εr+1

Q2

S
. (S-3.52)

The force F is independent of ξ, thus the above result should be valid also at the

limit ξ → 0, i.e., when there is contact between the metal slab and the dielectric.

One may argue, however, that in these conditions the field at x = 0+, i.e., at the right

of the slab, is given by Ed = −E1, so that following the approach (iii) one would

write

F = F1+F2
?
= Q1

E1

2
+Q2

Ed

2
� Q1

E1

2
+Q2

E2

2
. (S-3.53)

This discrepancy comes out because actually the average field on the free charges

located on the right surface of the slab is not Ed/2, which is the average field across

the two merging layers of free and bound charges; however, the force on the slab

must be calculated by taking the average field on free charges only.
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Fig. S-3.10

To illustrate this issue, let us assume for a

moment the free charges at the slab surfaces

to be distributed in a layer of small but finite

width, so that we can localize exactly where

free charges are without merging them with

bound charges. In particular, let the free sur-

face charge layer have thickness ℓ2 and vol-

ume charge density ̺2(x) such that

∫ 0

−ℓ2
̺2 dx = σ2 , (S-3.54)

Fig. S-3.11

as shown in Fig. S-3.10. The electric field is

still directed along the x axis for symmetry

reasons. Gauss’s law in one dimension gives

∂xE = 4πke̺. Since E(−ℓ2) = 0 (as deep into

the conductor the field should vanish) we have

for the electric field in the −ℓ2 � x � 0 region

E(x) = 4πke

∫ x

−ℓ2
̺2(x′)dx′ . (S-3.55)

The total force on the free charges only can

thus be evaluated as

F2 = S

∫ 0

−ℓ2
E(x)̺2(x)dx

=
S

4πke

∫ 0

−ℓ2
E(x)∂xE(x)dx =

S

8πke

∫ 0

−ℓ2
∂xE2(x)dx

=
S

8πke
E2

2 =
S (4πkeσ2)2

8πke
= 2πke Sσ2

2 , (S-3.56)

the electric field at x = 0− is E2, as shown in Fig. S-3.11, and the resulting elec-

trostatic pressure is p2 = F2/S = 2πkeσ
2
2
, independent of the particular distribution

̺2(x), and in agreement with the previous result (S-3.52). However, the electric field

at x = 0+ is Ed because of the presence of the surface bound charge. 1

c) If the dielectric medium is actually a slab limited at x = w, as shown in Fig.

S-3.12, a further bound surface charge density −σb, opposite to the density σb at

x = 0, appears at its x = w surface. This charge distribution is identical to that of

a plane capacitor, so that the bound charges generate no field outside the dielectric

1We might assume that also the polarization charge fills a layer of small, but finite width ℓd at the

surface of the dielectric. However, this would only imply that the field becomes Ed at x � ℓd, and

would not affect our conclusions on the forces on the conductor.
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slab. As trivial consequences the surface charge densities on the conducting slab are

σ1 = −σ2 = Q/2S , the field inside the dielectric is E1/εr = Q/(2ε0εrS ), and there is

no force between the slab and the dielectric. Moreover, this result is independent of

w, and therefore should be valid also in the limit w→∞.

Fig. S-3.12

The apparent contradiction with the results

of points a) and b) is that, in two attempts

to approximate real conditions by objects

of infinite size, we are assuming different

boundary conditions at infinity. To discuss

this issue let us look again at Fig. 3.5, show-

ing the slab of charge Q located in front of a

dielectric hemisphere of radius R. At the limit

R→∞, the field in the dielectric half-space

approaches the field that we would have if

the dielectric medium filled the whole space,

and the surface S had surface charge density

σ′′ = 2εrσ/(εr + 1), see Problem 3.2. Thus,

the field, the polarization, and the polariza-

tion surface charge density all approach zero at the hemispherical surface. Part b)

of Fig. 3.5 is an enlargement of the area enclosed in the dashed rectangle of part

a) of the same figure, and the vanishing charge density on the hemisphere surface

does not contribute to the field in this area, according to the result of Problem 1.11.

This motivates the boundary condition assumed in points a) and b). In contrast, in

point c) the bound surface charge density does not vanish at infinity and generates

a uniform field, which in vacuum cancels out the field generated by the dielectric

surface at x = 0.

S-3.7 A Conducting Sphere between two Dielectrics

a) We use a spherical coordinate system (r, θ,φ) with the origin O at the center of

the sphere, and the zenith direction perpendicular to the plane separating the two

dielectric media, as shown in Fig. S-3.13. The electric field inside the conducting

sphere is zero. The electric field outside the sphere, E(r, θ,φ), is independent of

φ because of the symmetry of our problem. Since the sphere is conducting, the

electric field E(R+, θ,φ) must be perpendicular to its surface, and its only nonzero

component is Er. If we write Maxwell’s equation ∇×E = 0 in spherical coordinates

over the spherical surface r = R+ (see Table A.1 of the Appendix), we see that the

r and θ components of the curl are automatically zero because Eφ = 0, Eθ = 0, and

all derivatives with respect to φ are zero. The condition that also the φ component

of the curl must be zero is

∂θEr = ∂r(rEθ) = Eθ + r∂rEθ . (S-3.57)

http://dx.doi.org/10.1007/978-3-319-63133-2_3
http://dx.doi.org/10.1007/978-3-319-63133-2_3
http://dx.doi.org/10.1007/978-3-319-63133-2_3
http://dx.doi.org/10.1007/978-3-319-63133-2_1
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Fig. S-3.13

The right-hand side of (S-3.57) is zero

because Eθ(R
−) = Eθ(R

+) = 0, implying that

also ∂rEθ(R) = 0. Thus, ∂θEr(R
+) = 0, and

Er(R
+) does not depend on θ (and, conse-

quently, on the dielectric medium). If we

denote by σtot the sum of the free surface

charge density σf and the bound charge den-

sity σb, the relation

σtot =
E(R+, θ,φ)

4πke
=

E(R+)

4πke
(S-3.58)

shows that σtot is constant over the whole surface of the sphere. Thus the electric

field in the whole space outside the sphere equals the field of a point charge Qtot

located in O, with Qtot = Q+Qb , where Qb is the total polarization (bound) charge:

E(r, θ,φ) = E(r) = 4πkeσtot
R2

r2
r̂ , r > R , (S-3.59)

since the field depends on r only. The polarization charge densities on the surfaces

of the two dielectrics in contact with the sphere are, respectively,

σb1 = n̂ ·P1 = −
εr1−1

4πke
E(R) = −(εr1−1)σtot

σb2 = n̂ ·P2 = −
εr2−1

4πke
E(R) = −(εr2−1)σtot (S-3.60)

where the unit vector n̂ points toward the center of the sphere. The free surface

charge densities in the regions in contact with the two dielectrics, σf1 and σf2, are,

respectively,

σf1 = σtot−σb1 = εr1σtot

σf2 = σtot−σb2 = εr2σtot . (S-3.61)

Since 2πR2(σf1+σf2) = Q, we finally obtain

σtot =
Q

2πR2(εr1+εr2)
E(r) = 2ke

Q

(εr1+εr2)r2
r̂

σf1 =
εr1 Q

2πR2(εr1+εr2)
σf2 =

εr2 Q

2πR2(εr1+εr2)

σb1 = −
(εr1−1) Q

2πR2(εr1+εr2)
σb2 = −

(εr2−1) Q

2πR2(εr1+εr2)
. (S-3.62)
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Fig. S-3.14

b) The electrostatic pressures on the two

hemispherical surfaces equal the electrostatic

energy densities in the corresponding dielec-

tric media, and are, respectively,

Pfi =
2πke

εri
σ2

fi =
2πke

εri

[

εri Q

2πR2(εr1+εr2)

]2

= ke
εri Q2

2πR4(εr1+εr2)2
(S-3.63)

with i = 1,2. Thus P1 > P2 because εr1 > εr2,

and the pressure pushes the sphere towards the medium of higher permittivity. The

force on the sphere surface element dS = R2 sinθdθdφ is dF = r̂Pfi dS , with i = 1 if

θ > π/2, and i= 2 if θ < π/2. The total force acting on the upper hemisphere (θ < π/2)

is thus

F2 = ẑ

∫ 2π

0

dφ

∫ π/2

0

dθR2 sinθcosθke
εr2 Q2

2π(εr1+εr2)2R4

= ẑπR2ke
εr2Q2

2π(εr1+εr2)2R4
= ẑπR2P2 = ẑke

εr2Q2

2(εr1+εr2)2R2
, (S-3.64)

directed upwards, since the force components perpendicular to the z axis cancel out.

Note that F2 simply equals Pf2 times the section of the sphere πR2. The total force

acting on the lower hemisphere (θ > π/2) is, analogously,

F1 = −ẑke
εr1 Q2

2(εr1+εr2)2R2
. (S-3.65)

The total electrostatic force acting on the conducting sphere is thus

Ftot = F1+F2 = −ẑke
(εr1−εr2) Q2

2(εr1+εr2)2 R2
. (S-3.66)

If the sphere is at equilibrium when half of its volume is submerged, Ftot plus the

sphere weight must balance Archimedes’ buoyant force

ke
(εr1−εr2) Q2

2(εr1+εr2)2 R2
= g

2πR3

3
(̺1+̺2−2̺) , (S-3.67)
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where g is the gravitational acceleration. Thus, at equilibrium, the electric charge on

the sphere must be

Q =

√

4πR5 (εr1+εr2)2 (̺1+̺2−2̺)g

3ke (εr1−εr2)
. (S-3.68)

S-3.8 Measuring the Dielectric Constant of a Liquid

The partially filled capacitor is equivalent to two capacitors connected in parallel,

one with vacuum between the plates, and the other filled by the dielectric liquid.

The two capacitors have the same internal and external radii, a and b, but different

lengths, ℓ−h and h, respectively. The total capacitance is

C =
ℓ−h

2ke ln(b/a)
+

εrh

2ke ln(b/a)
=
ℓ+ (εr−1)h

2ke ln(b/a)
, (S-3.69)

and the electrostatic energy of the capacitor is

Ues =
1
2

CV2 =
ℓ+ (εr−1)h

4ke ln(b/a)
V2 . (S-3.70)

If the liquid raises by an amount dh the capacity increases by

dC =
(εr−1)dh

2ke ln(b/a)
, (S-3.71)

and, if the potential difference V across the capacitor plates is kept constant, the

electrostatic energy of the capacitor increases by an amount

dUes =
1
2

V2dC =
(εr−1)dh

4ke ln(b/a)
V2 . (S-3.72)

Simultaneously the voltage source does a work

dW = VdQ = V2dC =
(εr−1)dh

2ke ln(b/a)
V2 , (S-3.73)

because the charge of the capacitor must increase by dQ = VdC in order to keep the

potential difference across the plates constant, and this implies moving a charge dQ

from one plate to the other. The energy of the voltage source changes by

dUsource = −
(εr−1)dh

2ke ln(b/a)
V2 = −2dUes . (S-3.74)
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We must still evaluate the increase in gravitational potential energy of the liquid.

When the liquid raises by dh an infinitesimal annular cylinder of mass dm = ̺π(b2−
a2)dh is added at its top, and the gravitational energy increases by

dUg = g̺π(b2−a2)hdh . (S-3.75)

The total energy variation is thus

dUtot = dUes+dUsource+dUg = −dUes+dUg

= − (εr−1)dh

4ke ln(b/a)
V2+g̺π(b2−a2)hdh , (S-3.76)

and the total force is

F = −∂Utot

∂h
=

εr−1

4ke ln(b/a)
V2−g̺π(b2−a2)h . (S-3.77)

At equilibrium we have F = 0, which corresponds to

h =
(εr−1)V2

4πke g̺(a2−b2) ln(b/a)
and εr = 1+

4πke g̺(a2−b2) ln(b/a)

V2
h . (S-3.78)

For the electric susceptibility χ, we have in SI units χ = εr −1, and

χ =
g̺ (a2−b2) ln(b/a)

ε0V2
h , (S-3.79)

while in Gaussian units we have χ = (εr−1)/4π, and

χ =
g̺ (a2−b2) ln(b/a)

V2
h . (S-3.80)

S-3.9 A Conducting Cylinder in a Dielectric Liquid

a) We choose a cylindrical coordinate system (r,φ,z) with the longitudinal axis z

superposed to the axis of the conducting cylinder, and the origin O at the height

of the boundary surface between the dielectric liquid and the vacuum above it. The

azimuthal angle φ is irrelevant for the present problem. The electric field E(r,φ,z) is

perpendicular to the surface of the cylinder, thus we have E(r,φ,z) ≡ [Er(r,z),0,0].

The field is continuous at the dielectric-vacuum boundary surface, since it is parallel

to it. We thus have Er(r,z) = Er(r), independently of z. Let us denote by σ1 and σ2

the free-charge surface densities on the cylinder lateral surface for z > 0 and z < 0,

respectively. Quantities σ1 and σ2 are related to the electric field at the cylinder
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surface, Er(a), to εr and Q by

σ1 =
Er(a)

4πke
, σ2 =

εrEr(a)

4πke
,

Q = 2πa [σ1h+σ2(L−h)] . (S-3.81)

We thus have

Er(a) = Q
2ke

a[h+εr(L−h)]

= Q
2ke

a[εrL− (εr−1)h]
. (S-3.82)

Fig. S-3.15

b) The electric field Er(r) in the region a <

r < b can be evaluated by applying Gauss’s law

to a closed cylindrical surface of radius r and

height ℓ≪ L, coaxial to the conducting cylinder.

Neglecting the boundary effects, the flux of the

electric field through the bases of the Gaussian

surface is zero, and we have

2πr ℓEr(r) = 4πkeQint ,

Er(r) =
2keQint

r ℓ
, (S-3.83)

where Qtot is the total charge inside the Gaussian

surface, including both free and polarization

charges. If we let r approach a keeping ℓ constant, Qint remains constant and we

have

lim
r→a

Er =
2keQint

aℓ
= Er(a) , so that Er(r) = Er(a)

a

r
(S-3.84)

and, inserting (S-3.82),

Er(r) =
2keQ

r [εrL− (εr−1)h]
. (S-3.85)

c) The electrostatic energy of the system is
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Ues ≃
1

8πke

[

εr

∫ L−h

0

dz

∫ b

a

E2
r (r)2πr dr+

∫ L

L−h

dz

∫ b

a

E2
r (r)2πr dr

]

=
1

8πke

[

2keQ

[εrL− (εr−1)h]

]2{
[

εr(L−h)+h
]

∫ b

a

2π

r
dr

}

= ke

[

Q

[εrL− (εr−1)h]

]2
[

εr(L−h)+h
]

ln

(

b

a

)

= ke
Q2 ln(b/a)

εrL− (εr−1)h
, (S-3.86)

i.e., the electrostatic energy of two cylindrical capacitors connected in parallel, with

total charge Q. Both capacitors have internal radius a and external radius b, one

has length L−h and is filled with the dielectric material, the other has length h and

vacuum between the plates. The electrostatic force, directed along z, is

Fes = −
dUes

dh
= −ke

(εr−1) ln(b/a) Q2

[εrL− (εr −1)h]2
< 0 . (S-3.87)

The electrostatic forces tends to decrease h, i.e., to sink the cylinder into the liquid.

d) The sum of the gravitational and buoyant (due to Archimedes’ principle) forces

on the cylinder is

Fg = −Mg+̺g(L−h)πa2 , (S-3.88)

and the cylinder is in equilibrium when Fes+Fg = 0, i.e., when

̺g(L−h)πa2−Mg = ke
(εr−1) ln(b/a) Q2

[εrL− (εr −1)h]2
. (S-3.89)

Given L, h and εr, we have equilibrium for

Q = [εrL− (εr−1)h]

√

̺g(L−h)πa2−Mg

ke(εr−1) ln(b/a)
. (S-3.90)

S-3.10 A Dielectric Slab in Contact with a Charged Conductor

b+

b−

conductor

E2

E1
h r

x

Fig. S-3.16

a) Within our approximations, the

electric fields are perpendicular to

the conducting surface. We choose

a Cartesian reference frame with the

origin on the conductor surface and

the x axis perpendicular the surface, as

in Fig. S-3.16, so that the only nonzero

component of the electric fields is
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their x component. We denote by E1 the electric field field inside the dielectric

slab, and by E2 the electric field in vacuum, while the field will is zero inside the

conductor.

The fields E1 and E2 can be evaluated by applying equation ∇· (εrE) = 4πke ̺f to

two Gaussian “pillboxes”, crossing the x = 0 and the x = h surfaces, respectively,

b+

b−

conductor

E2

E1
h

x

r

Fig. S-3.17

as in Fig. S-3.17. We see that εrE is

discontinuous at x = 0 surface, and

continuous at x = h:

εrE1 = 4πkeσ ,

E2 = εrE1 , (S-3.91)

which lead to

E1 =
4πke

εr
σ , E2 = 4πkeσ. (S-3.92)

b) We denote by σb− and σb+ the surface polarization charge densities at x = 0

and x = h, respectively. These quantities can be calculated by applying Gauss’s law

∇ ·E = 4πke(̺f +̺b) to the two “pillboxes” of Fig. S-3.17, and obtaining

E1 = 4πke(σ+σb−) , E2−E1 = 4πkeσb+ , (S-3.93)

introducing (S-3.91) into (S-3.93) we finally have

σb+ = −σb− =

(

1− 1

εr

)

σ =
εr −1

εr
σ. (S-3.94)

c) In the vacuum region between the conductor and the dielectric slab the field is

E = 4πkeσ = E2, independent of s. The electric field inside the dielectric slab, and

above the slab, are E1 and E2, respectively, as in the case of s= 0, thus independently

of s.

conductor

h r b−
E1

b+

s E2

E2
x

Fig. S-3.18

The net electrostatic force on the

slab is zero, independently of s, since

the forces on the upper and lower sur-

faces of the slab are exactly opposite.

Further, if we evaluate the electrosta-

tic energy of the system as the vol-

ume integral of εrE
2/(8πke), we see

that also this quantity is independent

of s, within our approximations.
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S-3.11 A Transversally Polarized Cylinder

We choose a cylindrical coordinate system (r,φ,z), with the cylinder axis as z

axis, and the reference plane (the plane from which the angle φ is measured) parallel

to P. We have translational symmetry along z, so that, mathematically, the problem

is two-dimensional. The surface charge polarization density of the cylinder isσ(φ)=

P · n̂, where n̂ is the outgoing unit vector perpendicular to the cylinder surface, thus

σ(φ) = Pcosφ . (S-3.95)

Similarly to Problem 1.1, our transversally polarized cylinder can be considered as

φ

+
+

−
−

x

+r

−

O+

O−

Ph
y z

Fig. S-3.19

the limit for h→ 0 and ̺→∞ of two partially

overlapping cylinders, of volume charge den-

sity ±̺, respectively. The two cylinder axes

are the straight lines x = ±h/2, both out of

paper in Fig. S-3.19. The product ̺h is con-

stant, and equals the polarization P of the

original cylinder. The electrostatic potential

ϕext
± (A), generated by each charged cylinder

at an external point A ≡ (r,φ,z), equals the

potential of an infinite line charge of linear

charge density λ± = ±πa2̺, located on the

cylinder axis,

ϕext
± (A) = ∓2keπa

2̺ ln

(

r±
R±

)

, (S-3.96)

z

+
+

−
−

x

+

−

O+

O−

Ph

A

r
−

φ

r
+

r

Fig. S-3.20

where

r± ≃ r∓ h

2
cosφ (S-3.97)

are the distances of A from the axes of

the two cylinders, see Fig. S-3.20. Quanti-

ties R± are two arbitrary constants, such that

ϕext
± (r±,φ,z) = 0 on the cylindrical surfaces

r± = R±. It is convenient to choose R+ = R−,

so that ln(R+/R−) = 0 will cancel out in the

following computations, leaving the poten-

tial equal to zero at r = ∞. The electrostatic

potential generated by both cylinders is thus

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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ϕext(A) = ϕext
+ (A)+ϕext

− (A) = 2keπa
2̺ ln

(

r−
r+

)

+2keπa
2̺ ln

(

R+

R−

)

≃ 2keπa
2̺ ln

[

r+ (h/2)cosφ

r− (h/2)cosφ

]

= 2keπa
2̺ ln

[

1+ (h/2r)cosφ

1− (h/2r)cosφ

]

= 2keπa
2̺

[

ln

(

1+
h

2r
cosφ

)

− ln

(

1− h

2r
cosφ

)]

≃ 2keπa
2̺

h

r
cosφ = 2keπa

2 Pcosφ

r
= 2keπa

2 P · r̂
r
, (S-3.98)

where r̂ is the unit vector of the cylindrical coordinate r. Thus, the potential of our

two-dimensional electric dipole decreases as r−1, while the potential of the ordinary

electric dipole decreases as r−2. In Cartesian coordinates we have

ϕext(x,y,z) = 2keπa
2 Px

x2+ y2
, (S-3.99)

where the x and y axes are the ones shown in Fig. S-3.19.

The external electric field is obtained by evaluating Eext =−∇ϕext. The cylindrical

components are, from Table A.1 of the Appendix,

Eext
r = −∂rϕ

ext = 2keπa
2 Pcosφ

r2
,

Eext
φ = −

1

r
∂φϕ

ext = 2keπa
2 Psinφ

r2
,

Eext
z = −∂zϕ

ext = 0 , (S-3.100)

the field decreases proportionally to r−2, while the field of the usual electric dipole

decreases as r−1. The Cartesian components of the field are

+
+

−
−

+

−

h r−

r+

x

O−

O+
A

Fig. S-3.21

Eext
x = −∂xϕ

ext = 2keπa
2P

x2− y2

(x2+ y2)2
,

Eext
y = −∂yϕ

ext = 2keπa
2P

2xy

(x2+ y2)2
,

Eext
z = −∂zϕ

ext = 0 . (S-3.101)

The electric field generated by each cylinder

at its interior is, according to Gauss’s law,

Eint
± = ±2πke̺r±, where r± is the distance

from the respective axis, see Fig. S-3.21. The

two contributions sum up to a uniform inter-

nal field

Eint(A) = 2πke̺ (r+− r−) = −2πke̺h x̂ = −2πke P . (S-3.102)
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The electrostatic potential inside the cylinder, in Cartesian and cylindrical coordi-

nates, is thus

ϕint = 2πke x+C = 2πke r cosφ+C , (S-3.103)

where C is an arbitrary constant. Since the potential most be continuous, we must

have, in cylindrical coordinates,

ϕint(a,φ,z) = ϕext(a,φ,z) , (S-3.104)

which is verified if we choose C = 0.
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Solutions for Chapter 4

S-4.1 The Tolman-Stewart Experiment

a) The equation of motion for the “free” (conduction) electrons in a metal is, accord-

ing to the Drude model,

m
d 〈v〉

dt
= F−mη 〈v〉 , (S-4.1)

where 〈v〉 is the “average” electron velocity, F is the external force on the electrons,

and mη 〈v〉 is a phenomenological friction force. In a steady state (d〈v〉/dt = 0) in

the presence of an external electric field E, so that F = −eE, the electrons have a

constant average velocity

〈v〉 = −
e

mη
E . (S-4.2)

The current density is J = −ene〈v〉, where ne is the volume density of free electrons.

From this we obtain the microscopic form of Ohm’s law

J =
nee2

mη
E ≡ σE . (S-4.3)

The value of the damping frequency η for copper is

η =
nee2

mσ
=

8.5×1028(1.6×10−19)2

9.1×10−31×107
≃ 2.4×1014 s−1 , (S-4.4)

(m = me = 9.1×10−31 kg).

At t = 0 the electron tangential velocity is v0 = aω. For t > 0, due to the absence

of external forces the solution of Eq. (S-4.1) is

c© Springer International Publishing AG 2017
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v = v0 e−ηt . (S-4.5)

The total current is thus given by

I = I0 e−ηt , I0 = −(enev0)S , (S-4.6)

and the decay time is τ = 1/η ≃ 4×10−15 s.

b) The total charge flown in the ring is

Q =

∫ ∞

0

I(t)dt =
I0

η
= −

m

e
σS v0 . (S-4.7)

Thus, measuring σ, S , v0 and Q the value of e/m can be obtained. In the origi-

nal experiment, Tolman and Stewart were able to measure Q using a ballistic gal-

vanometer in a circuit coupled with a rotating coil.

S-4.2 Charge Relaxation in a Conducting Sphere

a) For symmetry reasons the electric field is radial, and it is convenient to use

a spherical coordinate system (r, θ,φ) with the origin located at the center of the

sphere. Coordinates θ and φ are irrelevant for this problem. Let us denote by q(r, t)

the electric charge contained inside the sphere r < a, at time t � 0. If we apply

Gauss’s law to the surface of our sphere we obtain

E(r, t) = ke
q(r, t)

r2
. (S-4.8)

According to the continuity equation, the flux of the current density J =σE through

our spherical surface equals the time derivative of q(r, t):

∮

J ·dS = 4πr2J(r, t) = 4πr2σE(r, t) = −∂tq(r, t). (S-4.9)

By substituting (S-4.8) into (S-4.9) we obtain

∂tq(r, t) = −4πkeσq(r, t), (S-4.10)

with solution

q(r, t) = q(r,0)e−t/τ, where τ =
1

4πkeσ
. (S-4.11)
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Since at t = 0 the charge density ̺(r, t) is uniform all over the volume of the sphere

of radius a, we have

̺(r,0) = ̺0 = Q
3

4πa3
, r < a , so that q(r,0) = Q

r3

a3
. (S-4.12)

Thus, according to (S-4.11), the density ̺(r, t) remains uniform over the sphere vol-

ume (independent of r) at any time t > 0

̺(r, t) = ̺(t) = ̺0 e−t/τ . (S-4.13)

The surface charge density qs(t) (we have already used the Greek letter σ for the

conductivity) can also be evaluated from the continuity equation, since

∂tqs(t) = +J(a, t) = σE(a, t) = keσ
Q

a2
e−t/τ =

Q

4πa2τ
e−t/τ , (S-4.14)

so that, asymptotically,

qs(∞) =

∫ ∞

0

∂tqs dt =
Q

4πa2τ

∫ ∞

0

e−t/τ dt =
Q

4πa2
. (S-4.15)

The equation for the time evolution of the electric field inside the sphere (r < a) is

E(r, t) = ke
q(r, t)

r2
= ke Q

r

a3
e−t/τ , r < a , (S-4.16)

while the electric field is independent of time outside the sphere

E(r, t) = E(r) = ke
Q

r2
, r > a . (S-4.17)

The time constant τ = 1/(4πkeσ) is extremely short in a good conductor. For copper

we have (in SI units) σ ≃ 6×107 Ω−1m−1 at room temperature, thus

τ =
εθ

σ
≃

8.854×10−12

6×107
s ∼ 1.4×10−19 s = 0.14 as (S-4.18)

(1 as = 1 attosecond = 10−18 s: atten means eighteen in Danish). This extremely

short value should be not surprising, since there is no need for the electrons to travel

distances even of the order of the atomic spacing within the relaxation time; a very

small collective displacement of the electrons is sufficient to reach a condition of

mechanical equilibrium (see also Problem 2.1).

b) We can easily evaluate the variation of electrostatic energy ∆Ues during the

charge relaxation by noticing that the electric field E(r, t) is constant outside the

conducting sphere (r > a). The electric field inside the sphere decays from the ini-

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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tial profile E(r,0) = (Q/4πεθ)(r/a
3) to E(r,∞) = 0. Thus, using the “energy density”

ues = E2/(8πke) we can write

∆Ues = −
1

8πke

∫

sphere

E2(r,0)d3x = − 1

8πke

(

k2
e Q2

a3

)∫ a

0

r2 4πr2 dr

= −
ke

10

Q2

a
. (S-4.19)

c) The time derivative of the electrostatic energy can be written as

∂tUes =
1

8πke
∂t

∫ ∞

0

E2(r, t)4πr2 dr =
1

8πke

∫ a

0

∂tE
2(r, t)4πr2dr

=
1

8πke

∫ a

0

(

−2

τ

)

E2(r, t )4πr2dr = − 1

4πkeτ

∫ a

0

k2
e Q2 r2

a6
e−2t/τ4πr2dr

= − ke

5τ

Q2

a
e−2t/τ = −

4πk2
eσQ2

5a
e−2t/τ , (S-4.20)

where we used (S-4.16) and (S-4.17). The power loss due to Joule heating is

Pd =

∫ ∞

0

J ·E4πr2dr =

∫ a

0

σE2(r, t)4πr2dr

=
4πk2

eσQ2

5a
e−2t/τ , (S-4.21)

since J=σE for r < a, and J= 0 for r > a. Thus Pd =−∂tUes, and all the electrostatic

energy lost by the sphere during the relaxation process is turned into Joule heat.

S-4.3 A Coaxial Resistor

a) We use a cylindrical coordinate system (r,φ,z), with the z axis coinciding with

the common axis of the cylindrical plates. The material between the plates can be

considered as a series of infinitesimal cylindrical-shell resistors, each of internal

and external radii r and r+dr and of height h. The resistance of the cylindrical shell

between r and r+dr is

dR = ρ
dr

S (r)
= ρ

dr

2πrh
, (S-4.22)

since dr is the “length” of our resistor, and S (r) = 2πr its “cross-sectional area”. The

resistance of the material is thus

R =
ρ

2πh

∫ b

a

dr

r
= ρ

ln(b/a)

2πh
. (S-4.23)
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b) The capacity of a cylindrical capacitor of radii a and b, and length h, is

C0 =
h

2ke ln(b/a)
, (S-4.24)

assuming that the space between the plates is filled with vacuum. Thus, in our case

we have

R =
ρ

4πke C0
. (S-4.25)

I S

J =
E/ρ

dS

V

A

I
ρ

A

Fig. S-4.1

Equation (S-4.25) is actually of much more gen-

eral validity, and is a very good approximation

for evaluating the resistance between two elec-

trodes of high conductivity and calculable capac-

ity immersed in a medium of known resistivity.

As an example, consider two highly-conducting

square plates immersed in an ohmic medium,

and connected to a voltage source by insulated

cables, as in Fig. S-4.1. The current that flows,

for instance, from the left plate, can be written

I =

∫

J ·dS =
1

ρ

∫

E ·dS , (S-4.26)

where the flux is calculated through a surface enclosing the electrode, except for

the area through which the current enters it, like the cylindrical closed surface of

Fig. S-4.1. In most cases the contribution of the excluded area to the flux of E is

negligible in an electrostatic problem, while, according to Gauss’s law, we have
∮

E ·dS = 4πke Q (S-4.27)

where Q is the charge on the electrode that would produce the field E. Within the

approximation of considering the last integral of (S-4.26) as equal to the integral

through the whole closed surface, we have

I =
4πke

ρ
Q . (S-4.28)

On the other hand, if we consider the two electrodes as the plates of a capacitor of

capacitance C0 we have

Q =C0V , (S-4.29)

where V is the potential difference between them. We thus have
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I =
4πke

ρ
C0V =

V

R
, (S-4.30)

from which (S-4.25) follows.

S-4.4 Electrical Resistance between two Submerged Spheres (1)

a) We start by evaluating the capacitance C0 of the two spheres in vacuum, with the

same geometry of the problem. Let the sphere of radius a carry a charge Q, and the

sphere of radius b a charge −Q. With our assumptions a≪ x and b≪ x the electric

potentials ϕa and ϕb of the two spheres are given approximately by

ϕa ≃ keQ

(

1

a
−

1

x

)

and ϕb ≃ keQ

(

−
1

b
+

1

x

)

, (S-4.31)

where we have assumed the potential ϕ to be zero at infinity, and have neglected the

induction effects between the two spheres, discussed in Problem 2.6. The capaci-

tance of the two spheres can thus be approximated as

C0 =
Q

ϕa−ϕb

≃ 1

ke

(

1

a
+

1

b
− 2

x

)−1

, (S-4.32)

and, according to (S-4.25), the resistance between them is

R =
ρ

4πkeC0
≃
ρ

4π

(

1

a
+

1

b
−

2

x

)

, (S-4.33)

which can be further approximated to

R ≃
ρ

4π

(

1

a
+

1

b

)

, (S-4.34)

independent of the distance between x between the centers of the spheres.

b) In this case the resistance between the spheres is twice the value found at point

a), since at point a) we can introduce a horizontal plane passing through the centers

of the spheres, which divides the fluid into two equivalent halves, each of resistance

2R, so that, in parallel, they are equivalent to a resistance R. In the present case

the upper half is replaced by vacuum, so that only the resistance 2R of the lower

half remains. This problem is of interest in connection with electrical circuits that

use the ground as a return path. In this case ρ is the resistivity of the earth (of

course, the assumption that ρ is uniform is a very rough approximation). In practical

applications, the resistivity of the earth in the neighborhood of the electrodes can be

decreased by moistening the ground around them.

http://dx.doi.org/10.1007/978-3-319-63133-2_2
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S-4.5 Electrical Resistance between two Submerged Spheres (2)

a) According to (S-4.32) of Problem 4.4, and remembering that now the medium

has a relative dielectric permittivity εr, the charge of each sphere is

Q ≃ εr C0V =
εr

ke

(

2

a
− 2

ℓ

)−1

V =
εr

ke

ℓ

ℓ−a

a

2
V

≃ εr a

2ke

(

1+
a

ℓ

)

V ≃ εr a

2ke
V , (S-4.35)

where the last two terms are the first and the zeroth order approximations in a/ℓ.

b) According to (S-4.33) and (S-4.34) we have

R ≃ ρ
4π

(

2

a
− 2

ℓ

)

≃ ρ
2πa
, (S-4.36)

again to the zeroth order in a/ℓ. The current I is thus

I =
V

R
=

2πa

ρ
V . (S-4.37)

This result can be checked by introducing a cylindrical coordinate system (r,φ,z)

with the z axis through the centers of the two spheres and the origin O so that the

a

r

O

V

/ 2 2

ρ
εr

z

φ

Fig. S-4.2

sphere centers are at (0,φ,−ℓ/2)

and (0,φ,+ℓ/2), respectively,

and evaluating the flux of the

current density J through the

plane z = 0

I =

∫

J ·dS

=
1

ρ

∫ ∞

0

Ez(r)2πr dr ,

where

Ez(r) =
2keQ

εr

ℓ/2

[(ℓ/2)2+ r2]3/2
, (S-4.38)

so that

I =
keQ

ρεr

∫ ∞

0

ℓr

[(ℓ/2)2+ r2]3/2
dr =

4πke

ρεr
Q =

2πa

ρ
V. (S-4.39)

http://dx.doi.org/10.1007/978-3-319-63133-2_4
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c) Having a system equivalent to a capacitor in parallel with a resistor, we expect an

exponential decay of the charge Q, with a time constant τ= RC. The time constant is

independent of the geometry of the problem because the capacitance C of the system

is εr C0, where C0 is the capacitance when the medium is replaced by vacuum, while,

according to (S-4.25), the resistance is R = ρ/(4πkeC0), so that

τ = RC =
εrρ

4πke
. (S-4.40)

This relations holds for any “leaky capacitor”, if the discharge occurs only through

leakage. In the present case we obtain from the continuity equation

dQ

dt
= −I = −

4πke

εrρ
Q, Q(t) = Q(0)e−t/τ, τ =

εrρ

4πke
. (S-4.41)

V

−QQ q −qa

d d

εr

ρ

Fig. S-4.3

d) To the first order in a/ℓ

the electrostatic induction

effects can be described by

regarding the electric field

outside the two spheres as

due to two charges ±Q

located at the centers of the

spheres, and two charges

±q = ±(a/ℓ) Q located at

distances d = a2/ℓ from the

centers, on the line connecting the two centers, each toward the other sphere, as in

the figure.

Thus, to the first order, the potential of each sphere is ≃ ±ke Q/(εr a), since the

contribution of the charge ∓Q on the other sphere is canceled by the image charge

±q present in the sphere. We have Q ≃ εr aV/(2ke), while the absolute value of the

total charge on each sphere is Q+q = Q (1+a/ℓ). The capacitance of the system is

thus

C =
Q

V
=
εr a

2ke

(

1+
a

ℓ

)

. (S-4.42)

The same result is obtained from (S-4.32) of Problem 4.4

C = εr C0 =
εr

ke

(

2

a
− 2

ℓ

)−1

=
εr a

2ke

ℓ

ℓ−a
≃ εr a

2ke

(

1+
a

ℓ

)

, (S-4.43)

where the image charges have been disregarded, but the effect of the charge on each

sphere on the potential of the other has been taken into account.

http://dx.doi.org/10.1007/978-3-319-63133-2_4
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According to (S-4.33) the resistance now becomes

R =
ρ

4πkeC0
=
ρ

2πa

ℓ−a

a
, (S-4.44)

so that the time constant τ = RC = εr ρ/(4πke) is unchanged.

S-4.6 Effects of non-uniform resistivity

a) We use a cylindrical coordinate system (r,φ,z), with the z axis along the common

axis of the two cylinders, and the origin O on the surface separating the two cylinders

h

h

z

ρ1

ρ2

r

J

J

O

φ

a

Fig. S-4.4

as in Fig. S-4.4. We denote the volume charge den-

sity by qv, since the Greek letter ρ is already used

to denote the resistivities. In a steady state we must

have ∂tqv = 0 everywhere, otherwise the volume

charge density would increase, or decrease, indef-

initely. Thus, according to the continuity equation,

we have also

∇ ·J = −∂tqv = 0 . (S-4.45)

On the other hand, from ∇ · E = 4πke qv and J = E/ρ

we obtain

0 = ∇ ·J =
1

ρ
∇ ·E =

4πke

ρ
qv , (S-4.46)

showing that also the volume charge density qv must

be zero everywhere inside a conductor in stationary

conditions. This does not exclude the presence of

surface charge densities on the surfaces delimiting

a conductor.

If we assume that h≫ a, it follows from ∇ ·J = 0

and ∇×E = 0 that J is uniform inside the cylinders, pointing downwards along

the z direction. Since E and J are proportional to each other inside each cylinder,

it follows that also E is uniform inside each cylinder. The current density J must

be continuous through the surface separating the two cylinders, otherwise charge

would accumulate indefinitely on the surface. Thus, J is uniform throughout the

whole conductor, and the current is I = Jπa2.
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The resistances R1,2 of the two cylinders are, respectively,

R1,2 = ρ1,2
h

πa2
, (S-4.47)

leading to a total resistance R of the system

R = R1+R2 = (ρ1+ρ2)
h

πa2
. (S-4.48)

The current, and the current density, flowing in the system are

I =
V

R
=
πa2V

h (ρ1+ρ2)
, J =

V

h (ρ1+ρ2)
. (S-4.49)

Since we have the same current density in two conductors of different resistivities,

and E = ρJ, the electric fields in the two conductors must be different, namely

E1 = ρ1J =
ρ1V

h (ρ1+ρ2)
, E2 = ρ2J =

ρ2V

h (ρ1+ρ2)
. (S-4.50)

b) The surface charge density on the surface separating the two cylinders can be

evaluated from Gauss’s law

σ =
1

4πke
(E2−E1) =

1

4πke

(ρ2−ρ1)V

h (ρ1+ρ2)
. (S-4.51)

Assuming that the electric field is zero above the upper base and below the lower

base of the conductor, the surface charge densities at the two bases are also obtained

from Gauss’s law as

σ1 =
E1

4πke
=

1

4πke

ρ1V

h (ρ1+ρ2)
, σ2 = −

E2

4πke
= − 1

4πke

ρ2V

h (ρ1+ρ2)
. (S-4.52)

S-4.7 Charge Decay in a Lossy Spherical Capacitor

a) We use a spherical coordinate system (r, θ,φ), with the origin O at the center of

the capacitor. We have E = 0 for r < a and r > b. For symmetry reasons, the electric

field E is radial and depends on r and t only in the spherical shell a < r < b. The flux

of εrE through a spherical surface centered in O and of radius r is independent of r

and equals
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εr

∮

E(r, t) ·dS = 4πke Q(t) , (S-4.53)

where Q(t) is the free charge contained in the surface, i.e, the free surface charge of

the conducting sphere of radius a. Thus we have

E(r, t) =
ke

εr

Q(t)

r2
rc . (S-4.54)

In addition to the free charge, our system contains surface polarization charges at

r = a and r = b, of values ∓Q (εr−1)/εr, respectively. No volume polarization charge

is present, because

∇ ·P = εr−1

4πke
∇ ·E(r, t) = 0 . (S-4.55)

The electric field E(r, t), in the presence of an electrical conductivity σ, gives origin

to a current density J

J = σE = σ
ke

εr

Q(t)

r2
r̂ , (S-4.56)

so that we have a total charge flux rate (electric current) through the surface

I =
dQ

dt
=

∮

J ·dS =
4πσke

εr
Q(t) . (S-4.57)

The charge crossing the surface is subtracted from the free charge on the internal

conducting sphere, so that

dQ(t)

dt
= −4πσke

εr
Q(t) , (S-4.58)

leading to

Q(t) = Q0 e−t/τ , with τ =
εr

4πσke
, (S-4.59)

and the decay constant is independent of the sizes of the capacitor, in agreement

with (S-4.40).

b) The power dissipated over the volume of the capacitor is

Pd =

∫

J ·Ed3x = σ

∫

E2 d3x = σ

∫

b

a

[

ke

εr

Q(t)

r2

]2

4πr2 dr

=
4πσk2

e

ε2r
Q2

0 e−2t/τ

∫ b

a

dr

r2
=

4πσk2
e (b−a)

ε2r ab
Q2

0 e−2t/τ . (S-4.60)

The electrostatic energy of the capacitor is
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Ues =
1

2

Q2(t)

C
=

ke (b−a)

2εr ab
Q2

0 e−2t/τ , (S-4.61)

so that

dUes

dt
= −ke(b−a)

τεr ab
Q2

0 e−2t/τ = −
4πσk2

e (b−a)

ε2r ab
Q2

0 e−2t/τ = −Pd . (S-4.62)

Thus, the electrostatic energy of the capacitor is dissipated into Joule heating.

S-4.8 Dielectric-Barrier Discharge

a) We denote by E1 and E2 the electric fields in the gas and in the dielectric layers,

respectively. Since the voltage drop between the plates is V , we must have

E1d1+E2d2 = V . (S-4.63)

In the absence of free surface charges the normal component of εrE is continuous

through the surface separating the two layers, so that

E1 = εrE2 . (S-4.64)

Combining (S-4.63) and (S-4.64) we obtain

E1 =
εrV

εrd1+d2
, E2 =

V

εrd1+d2
. (S-4.65)

b) In steady-state conditions the current density in the gas, J, must be zero, otherwise

the free charge on the surface separating the gas and the dielectric material would

increase steadily. Since the current density is J = E1/ρ, we must have E1 = 0. On

the other hand (S-4.63) still holds, so that E2 = V/d2. The free charge density on the

surface separating the layers in steady conditions is

σs =
1

4πke
(εrE2−E1) =

εr

4πke
E2 =

εr

4πke

V

d2
. (S-4.66)

c) The continuity equation for σ and J is

∂tσ = J =
E1

ρ
. (S-4.67)

From (S-4.66), now with E1 � 0 (discharge conditions), we have
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E1 = εrE2−4πkeσ, (S-4.68)

which, combined with (S-4.63), leads to

E1 = εr

(

V

d2
− d1

d2
E1

)

−4πkeσ, i.e., E1 =
εrV

εrd1+d2
− 4πked2

εrd1+d2
σ. (S-4.69)

Equation (S-4.69), substituted into (S-4.67), gives

∂tσ = −
4πked2

ρ(εrd1+d2)
σ+

εrV

ρ (εrd1+d2)
. (S-4.70)

with solution

σ =
εrV

4πked2

(

1− e−t/τ
)

≡ σs

(

1− e−t/τ
)

, where τ =
ρ (εrd1+d2)

4πked2
. (S-4.71)

This problem shows the concept of the “dielectric-barrier discharge” (DBD). This

scheme, where the dielectric layer acts as a current limiter, is used in various electri-

cal discharge devices, for example in plasma TV displays, where the discharge acts

as an ultraviolet micro-source to activate the phosphors in each pixel of the screen.

S-4.9 Charge Distribution in a Long Cylindrical Conductor

a) As we saw in point a) of Problem 4.6, the volume charge density qv is zero every-

where inside our conducting cylinder, while E and J are uniform. The presence of an

electric field requires the presence of a charge distribution generating it, and, since

there cannot be volume charge densities inside a conductor in steady conditions, the

2h
E

a σ B

V0
J

−σ B

Fig. S-4.5

charges generating the fields must be

distributed on the conductor surfaces.

Consider the thin cylindrical conduc-

tor shown in Fig. S-4.5, of radius a

and length 2h, with h≪ a, connected

to a voltage source V0. In this case,

neglecting boundary effects, the sur-

face charge densities σB and −σB on

the two bases are sufficient to gener-

ate the uniform electric field E inside

the conductor. This leads also to a uniform current density J = E/ρ. Neglecting the

boundary effects we have

E =
V0

2h
, σB =

E

4πke
=

V0

8πkeh
. (S-4.72)

http://dx.doi.org/10.1007/978-3-319-63133-2_4
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z
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a

dq

2h

Fig. S-4.6

But here we are dealing with the opposite case, when

the potential difference V0 is applied to the bases

of a very elongated cylinder, with h ≫ a. Without

loss of generality, we assume the potential to be

+V0/2 at the upper base, and −V0/2 at the lower

base. With this geometry, the surface charge den-

sities ±σB on the two bases alone cannot generate

a uniform electric field inside the whole conductor.

We need another charge density σL, not necessar-

ily uniform, distributed on the lateral surface of the

cylinder. In order to treat the problem, we introduce a

cylindrical coordinate system (r,φ,z), with the z axis

coinciding with the axis of the cylinder, the origin O

being located so that the upper and lower bases are

at z = ±h, respectively (this is not apparent from Fig.

S-4.6 for practical reasons).

Because of symmetry reasons, σL cannot depend

on φ. And it cannot be constant along the lateral sur-

face, otherwise, neglecting the boundary effects, it

would generate no field inside the conductor. Thus,

σL must be a function of z, and z only. As an educated guess, we assume that σL is

proportional to z, so that we have

σL(z) = γz , (S-4.73)

with γ a constant. This choice leads to σL(0) = 0 at z = 0, and |σL| increasing,

with opposite signs toward the upper and lower bases. Let us evaluate the electric

potential in a point P ≡ (r,0,z), with r ≪ h, not necessarily inside the conductor.

The choice of φ = 0 does not affect the generality of the approach because of the

rotational symmetry around the z axis. The contribution of the charge element dq =

γ z′adφdz′, located on the lateral surface of the conductor at (a,φ,z′), to the potential

Φ(r,0,z) is

dΦ = ke
dq

s
,

where s is the distance between the points (a,φ,z′) and (r,0,z). The distance s can

be evaluated by the cosine formula,

s =

√

(z′− z)2+a2+ r2−2ar cosφ

=

√

(z′− z)2+a2

(

1+
r2

a2
−2

r

a
cosφ

)

=

√

(z′− z2)+a2 f (r,φ) , (S-4.74)
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where we have defined

f (r,φ) =

(

1+
r2

a2
−2

r

a
cosφ

)

. (S-4.75)

We thus have

dΦ = keaγz′
dφdz′

√

(z′− z)2+a2 f (r,φ)
, (S-4.76)

and the electric potential in P is

Φ(P) = keaγ

∫ 2π

0

dφ

∫

h

−h

z′dz′
√

(z′− z)2+a2 f (r,φ)
. (S-4.77)

In order to evaluate the integral we introduce a new variable ζ = z′− z, so that

Φ(P) = ke aγ

∫ 2π

0

dφ

∫

h−z

−h−z

(z+ ζ)dζ
√

ζ2+a2 f (r,φ)
. (S-4.78)

The indefinite integrals needed in the formula are

∫

dζ
√

ζ2+b
= ln

(

2ζ +2

√

ζ2+b

)

, and

∫

ζ dζ
√

ζ2+b
=

√

ζ2+b . (S-4.79)

We can split Φ(P) into the sum of two terms Φ(P) =Φ1(P)+Φ2(P), where

Φ1(P) = ke aγz

∫ 2π

0

dφ

∫

h−z

−h−z

dζ
√

ζ2+a2 f (r,φ)

= ke aγz

∫

2π

0

dφ ln

⎡

⎢

⎢

⎢

⎢

⎢

⎣

h− z+
√

(h− z)2+a2 f (r,φ)

−h− z+
√

(h+ z)2+a2 f (r,φ)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(S-4.80)

and

Φ2(P) = ke aγ

∫ 2π

0

dφ

∫

h−z

−h−z

ζ dζ
√

ζ2+a2 f (r,φ)

= ke aγ

∫

2π

0

dφ

[

√

(h− z)2+a2 f (r,φ)−
√

(h+ z)2+a2 f (r,φ)

]

. (S-4.81)
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The square roots appearing in the integrals can be approximated as

√

(h± z)2+a2 f (r,φ) ≃ h± z+
a2

2(h± z)
f (r,φ) (S-4.82)

up to the second order in a/h and r/h. The second order is needed only in the denom-

inator of the argument of the logarithm appearing in (S-4.80), where the first order

cancels out with −h− z. Thus, Φ1(P) can be approximated as

Φ1(P) ≃ ke aγz

∫

2π

0

dφ ln

{

2(h− z)

a2 f (r,φ)/[2(h+ z)]

}

=2πke aγz

∫

2π

0

dφ ln

[

4(h2− z2)

a2 f (r,φ)

]

≃ 2πke acz

∫

2π

0

dφ ln

[

4h2

a2 f (r,φ)

]

, (S-4.83)

while the approximation for Φ2(P) is

Φ2(P) ≃ −ke aγ

∫ 2π

0

2zdφ = −4πke acz . (S-4.84)

The two contributions sum up to

Φ(P) =Φ1(P)+Φ2(P) ≃ 2πke aγz

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫

2π

0

dφ ln

[

4h2

a2 f (r,φ)

]

−2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 2πke aγz

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2π ln

(

h2

a2

)

+

∫

2π

0

dφ ln

[

4

f (r,φ)

]

−2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 2πke aγz

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4π ln

(

h

a

)

+

∫

2π

0

dφ ln

[

4

f (r,φ)

]

−2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (S-4.85)

If h is sufficiently large, the first terms in braces is dominant, and we have

Φ(r,z) ≃ 8π2ke aγ ln

(

h

a

)

z , (S-4.86)

thus independent of r, within our approximations, as expected. Since we have

assumed Φ(r,h) = V0/2, we must have

V0

2
= 8π2ke aγ ln

(

h

a

)

h , (S-4.87)
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which leads to

γ =
V0

16π2keah ln(h/a)
and σL(z) =

V0

16π2keah ln(h/a)
z . (S-4.88)

S-4.10 An Infinite Resistor Ladder

R

R

R

R

R

R

R

R

R

R

R

R

B

AR

R

R

B

A

Fig. S-4.7

Let us denote by RL

the resistance measured

between the terminals

A and B. If a further

unit of three resistors is

added to the left of the

ladder, as in Fig. S-4.7,

the ”new” resistance measured between terminals A′ and B′ must equal the “old’

R

R

R

B

A

RL

A

B

Fig. S-4.8

resistance RL. The “old” resistor ladder at the right

of terminals A and B can be replaced by the equiv-

alent resistance RL, leading to the configuration of

Fig. S-4.8. We see that the resistance between termi-

nals A′ and B′ is the solution of

RL = 2R+
RRL

R+RL

RRL +R2
L = 2R2+2RRL +RRL

R2
L −2RRL −2R2 = 0 , (S-4.89)

and, disregarding the negative solution, we have

RL = R
(

1+
√

3
)

. (S-4.90)
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Solutions for Chapter 5

S-5.1 The Rowland Experiment

a) Neglecting the boundary effects, the electric field E0 in the regions between the

disk and the plates is uniform, perpendicular to the disk surfaces, and its mag-

nitude is E0 = V0/h in both regions. In both regions, the field is directed out-

wards from the disk, according to the polarity of the source shown in Fig. 5.1.

The charge densities of the lower and upper surfaces of the disk, σ, are equal in

modulus and sign, because the field must be zero inside the disk. Thus we have

σ= E0/(4πke)=V0/(4πkeh). In SI units we have σ= ε0V0/h, with ε0 = 8.85×10−12,

V0 = 104 V, h = 5× 10−3 m, resulting in σ = 1.77× 10−5 C/m2. In Gaussian units

we have σ = V0/(4πh), with V0 = 33.3 statV and h = 0.5 cm, resulting in σ = 5.3

statC/cm2.

dI

rdr
ω

Bc

Fig. S-5.1

b) We evaluate the magnetic field Bc at the

center of the disk by dividing its upper and

lower surfaces into annuli of radius r (with

0< r < a) and width dr. On each syrface, each

annulus carries a charge dq =σdS = 2πσr dr.

Due to the rotation of the disk, each annulus

is equivalent to a coil with a current intensity

dI = ωdq/(2π), that generates at its center a

magnetic field dBc = 2πkm dI/r ω̂, perpendic-

ular to the disk plane. The total field at the

center of the disk is thus given by the integral

Bc = 2

∫ a

0

2πkm
dI

r
= 4πkmσω

∫ a

0

r dr

r

= 4πkmωσa =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

μ0ωσa ≃ 1.4×10−9 T SI
4π

c
ωσa ≃ 1.4×10−5 G Gaussian,

(S-5.1)
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where the factor of 2 in front of the first integral is due to contribution of both the

upper and the lower surfaces of the disk to the magnetic field.

The magnetic field component Br, parallel to the disk surface and close to it,

can be evaluated by applying Ampère’s law to the closed rectangular path C shown

Fig. S-5.2. The path is placed at a distance r from the rotation axis, with the sides

parallel to the disk surfaces having length ℓ≪ r, so that Br is approximately constant

along the sides. The contribution of the vertical paths to the line integral cancel

K

K

Br

Br

r

b C

Fig. S-5.2

each other, thus

4πkmIc =

∮

c

B ·dℓ ≃ 2Brℓ , (S-5.2)

where Ic is the current flowing through the

rectangular loop C, and the antisymmetry of

Br with respect to the midplane has been

used. The rotation of the disk leads to a sur-

face current density K =σv =σωr φ̂, resulting in a total current flowing through the

rectangular loop Ic = 2Kℓ = 2σωrℓ. Thus, according to (S-5.2),

Br(r) =
2πkmIc

ℓ
=

2πkm

ℓ
2σωrℓ = 4πkmσωr . (S-5.3)

The maximum value of Br(r) occurs at r = a, where Br(a) = Bc.

c) The deviation angle of the needle is given by tanθ = B/B⊕, hence

θ ≃
B

B⊕
= 2.8×10−5 rad = 1.6×10−3 deg . (S-5.4)

The expected angle is very small, and its measurement requires exceptional care.

S-5.2 Pinch Effect in a Cylindrical Wire

a
r

z

B

J

v−
e

×
B

r

B

J

−e

Fig. S-5.3

a) We use a cylindri-

cal coordinate system

(r,φ,z) with the z axis

along the axis of the

cylinder. The vectors J

and v are along z. If we

assume J > 0 we have

v < 0 since J = −ne ev.

The magnetic field B is azimuthal for symmetry reasons. Its only component Bφ(r)

can easily be evaluated by applying Ampère’s circuital law to a circular closed path

coaxial with the cylinder axis, as shown in figure. We have
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2πrBφ = 4π2r2km J =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

μ0 πr
2 J , SI

4π2r2

c
J , Gaussian,

(S-5.5)

so that

Bφ = 2πkmJ r = −2πkm neev , (S-5.6)

and Bφ > 0, since v < 0. Thus the field lines of B are oriented counterclockwise with

respect to the z axis.

The magnetic force Fm = −ebm(v×B) is radial and directed towards the z axis

Fm = −2πkmbmnee2
v

2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−
μ0 nee2

v
2

2
r , SI

−
2πnee2

v
2

c2
r , Gaussian.

(S-5.7)

Thus the magnetic force pulls the charge carriers toward the axis of the wire, inde-

pendently of their sign. A beam of charged particles always gives origin to a mag-

netic field that tends to “pinch” the beam, i.e., to shrink it toward its axis. However,

if the beam is propagating in vacuum, the Coulomb repulsion between the charged

particles is dominant. In our case, or in the case of a plasma, the medium is globally

neutral, and, initially, the positive and negative charge densities are uniform over the

medium, so that the pinch effect can be observed, at least in principle.

b) The Lorentz force is FL = −e (E+bm v×B). At equilibrium the r component of

FL must be zero in the presence of conduction electrons (see Problem 1.9), so that

the electrons flow only along the z axis. Thus the r component of the electric field,

Er, must be

Er = −bmvB = 2πkmbmneev
2r , (S-5.8)

while Ez = J/σ, where σ is the conductivity of the material. According to Gauss’s

law, a charge density ̺, uniform over the cylinder volume, generates a field E =

2πke ̺r, and the required field Er is generated by the charge density

̺ =
kmbm

ke
neev

2 = nee
v

2

c2
, (S-5.9)

independent of the system of units. On the other hand, the global charge density is

̺ = e (Zni−ne), so that

ne =
Zni

1−v
2/c2

. (S-5.10)

http://dx.doi.org/10.1007/978-3-319-63133-2_1
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Thus, the electron density is uniform over the wire volume, but it exceeds the value

ne0 = Zni, corresponding to ̺ = 0. This means that the number density of the elec-

trons is increased by a factor (1− v
2/c2)−1, and ̺ is negative, inside the wire. The

“missing” positive charge is uniformly distributed over the surface of the conductor.

c) For electrons in a usual Ohmic conductor we have v ≃ 1 cm/sec = 10−2 m/sec,

corresponding to (v/c)2 ≃ 10−21, and the resulting “pinch” effect is so small that

it cannot be observed. On the other hand, the effect may be strong in high density

particle beams or plasma columns, where v is not negligible with respect to c.

In order to get further insight into the size of the effect, let us consider an

Ohmic cylindrical conductor (wire) of radius a. We assume that the electron den-

sity is increased in a central cylindrical region of radius a − d, where n
pinch
e =

Zni/(1−v
2/c2), and the volume charge density is

̺pinch = e (Zni−n
pinch
e ) = −eZni

v
2

c2

1

1−v
2/c2

< 0 , (S-5.11)

while the cylindrical shell between r = a−d and r = a is depleted of conduction elec-

trons, so that its charge density ̺surf is ̺surf = eZni. The thickness d of the depleted

cylindrical shell can be estimated by the constraint of charge conservation.

a

dρsurf > 0

ρpinch < 0

Fig. S-5.4

A slice of wire of length ℓ must be globally neutral,

thus, assuming d≪ a, we must have

π(a−d)2ℓ̺pinch = −2πadℓ̺surf

π(a−d2)eZni
v

2

c2

1

1−v
2/c2

= 2πadeZ ni

(a2−2ad+d2)
v

2

c2

1

1−v
2/c2

= 2ad , (S-5.12)

and, since v≪ c and d≪ a, we can approximate

a2 v
2

c2
≃ 2ad , so that d ≃

a

2

v
2

c2
. (S-5.13)

Remembering that v
2/c2 is of the order of 10−21, we see that a value of d of the order

of the crystal lattice spacing (≃ 10−10 m) would require a wire of radius a ≃ 1011 m,

a remarkably large radius!

S-5.3 A Magnetic Dipole in Front of a Magnetic Half-Space

a) The analogy between the magnetostatic equations in the absence of free currents

(∇×H = 0, ∇ ·B = 0) with those for the electrostatics of dielectric in the absence of

free charges (∇×E = 0, ∇ ·D = 0) indicates that the solution of this problem will be



S-5.3 A Magnetic Dipole in Front of a Magnetic Half-Space 215
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−d
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x
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x < 0 x > 0

µr

O

Fig. S-5.5

similar to that of Prob-

lem (3.2). Thus, analo-

gously to Problem (3.2),

we treat the vacuum half-

space and the medium-

filled half-space separately,

with separate educated

guesses for the magnetic

field in each half-space.

This in order to exploit the uniqueness theorem for the Poisson equation (5.5). Our

guess for half-space 1 (x < 0) is that the field is same as if the magnetic medium

were removed from half-space 2 (thus, vacuum in the whole space), and replaced

by an image magnetic dipole m′ located symmetrically to m with respect to the

x = 0 plane, at x = d. Our guess for half-space 2 (x > 0) is that the field is the same

as if the magnetic medium filled the whole space, and the magnetic dipole m were

replaced by a different magnetic dipole m′′, placed at the same location. Thus we

look for values of m′ and m′′ originating a magnetic field B1 in half-space 1, and a

magnetic field B2 in half-space 2, satisfying the interface conditions at x = 0

B1⊥(x = 0−) = B2⊥(x = 0+) , B1‖(x = 0−) =
1

μr
B2‖(x = 0+) , (S-5.14)

The subscripts ‖ and⊥ stand for parallel and perpendicular to the x= 0 plane, respec-

tively. Thus, at a generic point P ≡ (0,y,z) of the x = 0 plane, we must have

Bx(0−,y,z) = Bx(0+,y,z)

By(0−,y,z) =
1

μr
By(0+,y,z)

Bz(0
−,y,z) =

1

μr
Bz(0

+,y,z) . (S-5.15)

The field generated by a magnetic dipole m in a medium of relative magnetic per-

mittivity μr is

B(r) =
km

bm
μr

3(m · r̂) r̂−m

r3
(S-5.16)

where r is the distance vector directed from m to the point where we evaluate the

field, and r̂ = r/r is the unit vector along r. Note that, differently from Problem

O

y

O

y

x x

x < 0 x > 0

µr

d

m

r

B

Bm
θ

d

m

d

r B
θr

Fig. S-5.6

(3.2), here we do not have

cylindrical symmetry around

the x axis, because the real

magnetic dipole m is not lying

on x. It is convenient to intro-

duce the angles θ = arcsin(d/r)

and φ = arctan(z/y), and write

the Cartesian components of B

separately

http://dx.doi.org/10.1007/978-3-319-63133-2_3
http://dx.doi.org/10.1007/978-3-319-63133-2_3
http://dx.doi.org/10.1007/978-3-319-63133-2_5
http://dx.doi.org/10.1007/978-3-319-63133-2_3
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Bx =
km

bm
μr

3mcosθ sinθ

r3

By =
km

bm
μr

3mcos2 θcosφ−m

r3

Bz =
km

bm
μr

3mcos2 θ sinφ

r3
, (S-5.17)

where r =
√

d2+ y2+ z2. If we replace (S-5.17) into (S-5.15) and divide by (km/bm)

the boundary conditions become

3mcosθ sinθ

r3
−

3m′ cosθ sinθ

r3
= μr

3m′′ cosθ sinθ

r3

3mcos2 θcosφ−m

r3
+

3m′ cos2 θcosφ−m′

r3
=

3m′′ cos2 θcosφ−m′′

r3

3mcos2 θ sinφ

r3
+

3m′ cos2 θ sinφ

r3
=

3m′′ cos2 θ sinφ

r3
, (S-5.18)

which can be further simplified into

m−m′ = μr m′′

m+m′ =m′′ (S-5.19)

leading to the solution

m′ = −
μr−1

μr+1
m , m′′ =

2

μr+1
m . (S-5.20)

As expected, the expressions for m′ and m′′ as functions of m are identical to (S-3.8)

for the image charges q′ and q′′ as functions of the real charge q (although Prob-

lem 3.2 involves point charges, the generalization to electric dipoles is immediate).

b) The force exerted by the magnetic half-space on m equals the force that would

be exerted on m by a real magnetic dipole m′ located at x = +d. The force between

two magnetic dipoles at a distance r from each other is

f = −
km

bm
∇

[

m ·m′−3(m · r̂)(m′ · r̂)

r3

]

, (S-5.21)

with, in our case, r̂ = x̂, r = 2d, and m · r̂ =m′ · r̂ = 0, so that the force on m is

f = −
km

bm

3m2

r4

(

μr−1

μr+1

)

x̂ =
km

bm

3m2

16d4

(

μr−1

μr+1

)

x̂ . (S-5.22)

The force is repulsive (antiparallel to x̂) for μr < 1 (diamagnetic material), and attrac-

tive (parallel to x̂) for μr > 1 (paramagnetic material). At the limit μr → 0 we have

a perfect diamagnetic material (superconductor), and m′ →m, the two dipoles are

parallel and the force is repulsive, as expected. In this case m′′ � 0, so that H � 0

http://dx.doi.org/10.1007/978-3-319-63133-2_16
http://dx.doi.org/10.1007/978-3-319-63133-2_3
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in the half-space 2, where, however, μr = 0 so that B = μ0μrH = 0. The situation

is opposite to that of a perfect conductor in electrostatics, where an electric dipole

would induce an opposite image dipole, and the force would be attractive.

At the limit of μr → ∞ (perfect ferromagnetic material), we have m′ → −m,

corresponding to an attractive force, while m′′→ 0 and H→ 0 inside the material.

This situation is analogous to the case of a conductor in electrostatics. Notice that B

is finite inside the material (since μrm
′′→ 2m) and given by

B =
km

bm
μr

3 r̂ (r̂ ·m′′)−m′′

4πr3
→ 2

3 r̂ (r̂ ·m)−m

4πr3
, (x > 0) , (S-5.23)

so that the paramagnetic material doubles the value of the magnetic field in vacuum

in the limit μr→∞.

S-5.4 Magnetic Levitation

a) The radial component Br of the magnetic field close to the z axis can be eval-

uated by applying Gauss’s law ∇ ·B = 0 to a small closed cylinder of radius r,

coaxial with the z axis, and with the bases at z and z+∆z, as shown in Fig. S-5.7.

The flux of B through the total surface of the cylinder must be zero, thus we have

z

z + ∆z

z

r

Bz(z + ∆ z)

Bz(z)

Br(r)

Fig. S-5.7

0 =

∮

cylinder

B ·dS (S-5.24)

= 2πr∆zBr(r)+πr2 [Bz(z+∆z)−Bz(z)
]

,

leading to

Br = −
r
[

Bz(z+∆z)−Bz(z)
]

2∆z

≃ −
B0

2L
r (S-5.25)

b) According to Table 5.1, the force exerted by an external magnetic field B on

a magnetic dipole m is f = (m ·∇)B. If we assume that the dipole is moving in a

region free of electric current densities, so that ∇×B = 0, the work done on the

dipole when it performs an infinitesimal displacement dr ≡ (dx,dy,dz) is1

1We have

dW = [(m ·∇)B] ·dr =
∑

i, j

mi ∂iB j dx j =
∑

i, j

mi ∂ jBi dx j =
∑

i

mi dBi =m ·dB, (S −5.26)

where, as usual, x1,2,3 = x,y,z, and ∂1,2,3 = ∂x,∂y,∂z. We have used the property ∂iB j = ∂ jBi, trivial

for i = j, while the condition ∇×B = 0 implies ∂iB j −∂ jBi = 0 also for i � j.

http://dx.doi.org/10.1007/978-3-319-63133-2_5
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dW = f ·dr = [(m ·∇)B] ·dr =m ·dB. (S-5.27)

For a permanent magnetic dipole this leads to the well known expression for the

potential energy of a dipole located at r

U(r) = −m ·B(r). (S-5.28)

Here, however, the magnetic dipole is not permanent. Rather, we have an induced

dipole m = αB. Thus we have

U(r2)−U(r1) = −

∫ r2

r1

m ·dB = −α

∫ r2

r1

B ·dB = −
α

2

∫ r2

r1

dB2 (S-5.29)

=
α

2

[

B2(r1)−B2(r2)
]

=
1

2
[m(r1) ·B(r1)−m(r2) ·B(r2)] .

and the potential energy for the induced dipole at r is written

U(r) = −
1

2
m(r) ·B(r) . (S-5.30)

For the present problem, this leads to

U(r) = −
1

2
m(r) ·B(r) = −

1

2
αB2(r) = −

1

2

αB2
0

L2

(

z2+
r2

4

)

. (S-5.31)

c) The potential energy U has a minimum in the origin (r = 0,z = 0) if α < 0 (dia-

magnetic particle). The force is

f = −∇U = −
1

2
|α|

2B2
0

L2

(

z ẑ+
r

4
r

)

. (S-5.32)

Thus, we have a harmonic force both for radial and axial displacements, with corre-

sponding oscillation frequencies

ωz =

√

|α|B2
0

ML2
, ωr =

ωz

2
. (S-5.33)
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S-5.5 Uniformly Magnetized Cylinder

M

R

n̂

Km

Fig. S-5.8

a) The volume magnetization current (bound cur-

rent) density Jm is zero all over the cylinder volume

because the cylinder magnetization M is uniform,

and Jm = ∇×M/bm. For the surface magnetization

current density Km we have Km =M× n̂/bm, where

n̂ is the unit vector perpendicular to the cylinder lat-

eral surface, and bm is the system dependent constant

defined in (5.1). Since M and n̂ are perpendicular to

each other, we have Km = |Km| = |M|/bm.

b) The magnetized cylinder is equivalent to a

solenoid with nI = Km, where n is the number of

coils per unit length, and I is the electric current cir-

culating in each coil. Thus, at the h ≫ R limit, the

magnetic field is uniformly zero outside the cylinder, and it is uniform and equal to

B =
4πkm

bm
nI =

4πkm

bm
Km =

4πkm

bm
M =

{

μ0M , SI

4πM , Gaussian,
(S-5.34)

inside. The auxiliary field H is zero both inside and outside the cylinder because

Hin =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Bin

μ0
−M = 0 , SI

Bin−4πM = 0 , Gaussian.

Hout =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Bout

μ0
= 0 , SI

Bout = 0 , Gaussian.

(S-5.35)

c) At the “flat cylinder” limit, R≫ h, the cylinder is equivalent to a single coil of

radius R carrying a current I = hKm = hM/bm. Thus we have for the field at its center

B0 = 2πkm
I

R
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

μ0I

2R
=
μ0Mh

2R
, SI

2πI

cR
=

2πMh

cR
, Gaussian,

(S-5.36)

and B0 approaches zero as h/r→ 0.

d) The equivalent magnetic charge density is defined as ̺m = −∇ ·M, thus ̺m ≡ 0

inside the cylinder volume, while the two bases of the cylinder carry surface mag-

netic charge densitiesσm =M · n̂=±M. Therefore our flat magnetized cylinder is the

“magnetostatic” equivalent of an electrostatic parallel-plate capacitor. The equiva-

lent magnetic charge “generates” the auxiliary magnetic field H, which is uniform,

and equal to H =−σm =−M, inside the volume of the flat cylinder, and zero outside.

Thus B = μ0(H+M) is zero everywhere (more realistically, it is zero far from the

boundaries).

The field of a magnetized cylinder and its electrostatic analog are further dis-

cussed in Problem 13.1.

http://dx.doi.org/10.1007/978-3-319-63133-2_5
http://dx.doi.org/10.1007/978-3-319-63133-2_13
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S-5.6 Charged Particle in Crossed Electric and Magnetic Fields

a) We choose a Cartesian laboratory frame of reference xyz with the y axis parallel

to the electric field E, the z axis parallel to the magnetic field B, and the origin O

located so that the particle is initially at rest in O. The Lorentz force on the particle

f = q [E+bmv×B]

has no z component, and the motion of the particle occurs in the xy plane. The

equations of motion are thus

mẍ = bmqBẏ ,

mÿ = −bmqB ẋ+qE . (S-5.37)

It is convenient to introduce two new variables x′, and y′, such that

x = x′+v0 t , y = y′ , (S-5.38)

where v0 is a constant velocity, which we shall determine in order to simplify the

equations of motion. The initial conditions for the primed variables are

x′(0) = 0 , ẋ′(0) = −v0 ,

y′(0) = 0 , ẏ′(0) = −0 . (S-5.39)

Differentiating (S-5.38) with respect to time we obtain

ẋ = v0+ ẋ′ , ẍ = ẍ′ ,

ẏ = ẏ′ , ÿ = ÿ′ , (S-5.40)

which we substitute into (S-5.37), thus obtaining the following equations for the

time evolution of the primed variables

m ẍ′ = bmqBẏ′ ,

mÿ′ = −bmqBv0−bmqB ẋ′+qE . (S-5.41)

Now we choose the constant velocity v0 to be

v0 =
E

bmB
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

E

B
, SI,

E

B
c , Gaussian ,

(S-5.42)
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independently of the charge and mass of the particle, so that the terms qE and

−bmqBv0 cancel each other in the second of (S-5.41). The equations reduce to

ẍ′ = bm
qB

m
ẏ′ ,

ÿ′ = −bm
qB

m
ẋ′ , (S-5.43)

which are the equations of a uniform circular motion with angular velocity ω =

−bmqB/m. The rotation is clockwise if q > 0, counterclockwise if q < 0. Since,

according to (S-5.39), ẋ′(0) = −v0 and ẏ′(0) = 0, the radius of the circular path is

r =
mv0

bmqB
=

mE

b2
mqB2

. (S-5.44)

The time evolution of the primed variables is thus

O x

q > 0

y

2
mE

b2
mqB2

E B

Fig. S-5.9

x′ = x′0+ r cos(ωt+φ) = r sin(ωt) = −
mE

b2
mqB2

sin

(

bmqB

m
t

)

, (S-5.45)

y′ = y′0+ r sin(ωt+φ) = r− r cos(ωt) =
mE

b2
mqB2

[

1− cos

(

bmqB

m
t

)]

,

where we have chosen the constants φ = −π/2, x′
0
= 0, and y′

0
= −r, in order to

reproduce the initial conditions. The time evolution of the unprimed variables is

x =
E

bmB
t−

mE

b2
mqB2

sin

(

bmqB

m
t

)

,

y =
mE

b2
mqB2

[

1− cos

(

bmqB

m
t

)]

, (S-5.46)

and the observed motion is a cycloid, as shown in Fig. S-5.9 for a positive charge.

b) From the results of point a), we know that the motion of the electron will be

a cycloid starting from the negative plate, and reaching a maximum distance 2r =

2mE/(b2
mqB2) from it, where E = V/h. The condition for the electron not reaching

the positive plate is thus
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2mE

b2
mqB2

=
2mV

b2
mhqB2

< h , corresponding to B >
1

bmh

√

2meV

e
, (S-5.47)

where me is the electron mass, and e the absolute value of the electron charge.

S-5.7 Cylindrical Conductor with an Off-Center Cavity

r2

h
r1

PJ

−Jẑ

Fig. S-5.10

According to the superposition principle, a cur-

rent density J flowing uniformly through the cross

section of the conductor in the positive z direction

is equivalent to a uniform current density J, flowing

through the whole circular section of radius a, super-

posed to a current density −J, flowing in the negative

z direction through the the cavity.

The magnetic field generated by an infinite,

straight wire of radius a and uniformly distributed

current density J = Jẑ has azimuthal symmetry.

Using a cylindrical coordinate system (r,φ,z) with

the z axis coinciding with the axis of the wire, the

magnetic field B = Bφ(r) φ̂ can be evaluated using

(5.3): the line integral calculated over the circle C of radius r is

2πrBφ(r) = 4πkm

∮

C

J ·dS = 4πkmJ×

{

πr2 , r < a ,

πa2 , r > a .
(S-5.48)

We thus obtain

Bφ(r) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2πkmJr , r < a ,

2πkmJa2

r
, r > a .

(S-5.49)

It is possible, and useful for the following, to write the above expressions in a com-

pact vectorial form. Since r̂× ẑ= φ̂we have for the field Bw =Bw(r;a) of the infinite

wire or radius a at a distance r from the axis

Bw(r;a) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2kmr×J , r < a ,

2kma2r×J

r2
, r > a .

(S-5.50)

Coming back to the cylindrical conductor with a cavity, the magnetic field in a point

P is the sum of the field generated by a wire of radius a with current J and a wire of

radius b with current −J, with the distance between the axes of the two wires equal

to h. Let r1 and r2 be the distance of P from the axes of the first and the second

http://dx.doi.org/10.1007/978-3-319-63133-2_5
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wire, respectively, we have r1 − r2 = h. We thus have B(P) = Bw(r1;a)+Bw(r2;b).

In particular, inside the cavity we have r1 < a and r2 < b, thus

B(P) = 2kmr1 ×J+2kmr2 × (−J) = 2km(r1 − r2)×J = 2kmh×J , (S-5.51)

which is a constant vector. Thus, inside the cavity the magnetic field is uniform and

perpendicular to both J and h.

S-5.8 Conducting Cylinder in a Magnetic Field

a) We use a cylindrical coordinate system (r,φ,z), with the z axis along the cylinder

axis. The centrifugal force, Fc, and the magnetic force, Fm, are both directed along

r̂ and depend on r only:

Fc = meω
2r , Fm = −ev×B0 = −eωB0r ,

|Fc|

|Fm|
=

meω

eB0
≃ 7.2×10−5 . (S-5.52)

The magnetic force is dominant, and we shall neglect the centrifugal force in the

following.

b) In static conditions the magnetic force must be compensated by an electric field

E

E = −v×B0 = −ωB0r . (S-5.53)

The existence of this electric field implies a uniform charge density

̺ =
1

4πke
∇ ·E =

E(r)

2πker
= −
ωB0

2πke
. (S-5.54)

Since the cylinder carries no net charge, its lateral surface must have a charge density

σ = −
πa2h̺

2πah
= −

a̺

2
=
ωaB0

4πke
. (S-5.55)

a

r

ω

J(r)

dr

K

Fig. S-5.11

c) The volume charge density ̺ is associated to a vol-

ume rotational current density J(r) due to the cylin-

der rotation

J(r) = ̺ωrφ̂ = −
ω2rB0

2πke
φ̂ . (S-5.56)

The contribution of J(r) to the magnetic field on the

cylinder axis, BJ , can be evaluated by dividing the
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cylinder into infinitesimal coaxial cylindrical shells between r and r+dr. Each shell

is equivalent to a solenoid of radius r and product nI = J(r)dr, contributing dBJ =

4πkmJ(r)dr to the field at its inside. The total contribution of J(r) at a distance r

from the axis is thus

BJ(r) = 4πkm

∫ a

r

J(r′)dr′ = −4πkm
ω2B0

2πke

∫ a

r

r′ dr′

= −4πkm
ω2B0

2πke

[

r′2

2

]a

r

= −
km

ke
ω2B0(a2− r2) . (S-5.57)

Now we must add the contribution BK of the surface current density K = σωa

BK = 4πkmσωa = 4πkmωa
ωaB0

4πke
=

km

ke
ω2a2B0 (S-5.58)

and the total magnetic field B1(r) due to the rotational currents is

B1(r) = BJ(r)+BK =
km

ke
ω2B0 r2 , (S-5.59)

which is zero on the axis and reaches its maximum value at r = a−. We thus have

B1(a−)

B0
=

km

ke
ω2a2 =

ω2a2

c2
≃ (2.1×10−7)2≪ 1 . (S-5.60)

S-5.9 Rotating Cylindrical Capacitor

ab

ω

h

z

Q

−Q

K

−K

Fig. S-5.12

a) We use cylindrical coordinates (r,φ,z) with the z

axis coinciding with capacitor axis. We assume ω =

ω ẑ, with ω = 2π/T > 0. The surface currents due to

the capacitor rotation are thus

K = σv =
Q

2πah
ωa =

Q

hT
, (S-5.61)

where σ = Q/(2πah) is the surface charge density

on the inner shell, and −K on the outer shell, inde-

pendently of a and b. Thus the two cylindrical shells

are equivalent to two solenoids with nI products

nI = ±K, respectively. The outer shell gives origin to

a magnetic field Bb = −4πkmK ẑ in the region r < b,

and to no field in the region r > b. The inner shell



S-5.9 Rotating Cylindrical Capacitor 225

gives origin to a field Ba = −Bb in the region r < a, and to no field in the region

r > b. The total field B = Ba+Bb is thus

B =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−4πkmK ẑ = −4πkm
Q

hT
ẑ , a < r < b ,

0 , r < a , r > b.
(S-5.62)

b) The electric field is zero for r < a and r > b, while it is E(r) = r̂2keQ/(hr) for

a < r < b, and the force between the two shells is attractive. The electrostatic force

per unit area on, for instance, the external shell is thus

f
(e)
s = σb

E(b)

2
= −r̂

Q

2πbh

2keQ

hb
= −r̂

keQ2

πb2h2
, (S-5.63)

where σb is the surface charge density on the shell. The magnetic force per unit area

on the same shell is

f
(m)
s = σb v×B = r̂

Q

2πbh

2πb

T
4πkm

Q

hT
= 4πkm

Q2

h2T 2
, (S-5.64)

directed opposite to the electrostatic force. The ratio f
(m)
s / f

(e)
s on the outer shell is

f
(m)
s

f
(e)
s

= 4πkm
Q2

h2T 2

πb2h2

keQ2
=

km

ke

(

2πb

T

)2

=
v

2
b

c2
(S-5.65)

where vb = 2πb/T is the tangential velocity of the outer shell. The ratio (S-5.65) is

thus negligibly small in all practical cases.

S-5.10 Magnetized Spheres

a) The quickest way to obtain the solution is to exploit the analogy of the magneto-

static equations ∇×H = 0, ∇ ·B = 0 with the electrostatic ones ∇×E = 0, ∇ ·D = 0

(see also Problem 5.3), along with the definitions (3.4) and (5.19). The spatial distri-

bution of M is the same as that of P in Problem (3.3), and the boundary conditions

for H are the same as for E. Thus from (S-3.13) we immediately obtain that inside

the sphere (r < R) the field H is uniform with constant value H(int), given by

H(int) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−
M

3
, SI ,

−
4πM

3
, Gaussian .

(S-5.66)

http://dx.doi.org/10.1007/978-3-319-63133-2_5
http://dx.doi.org/10.1007/978-3-319-63133-2_3
http://dx.doi.org/10.1007/978-3-319-63133-2_5
http://dx.doi.org/10.1007/978-3-319-63133-2_3
http://dx.doi.org/10.1007/978-3-319-63133-2_16
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Using (5.19) we obtain for the magnetic field inside the sphere

B(int) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

2μ0M

3
, SI ,

8πM

3
, Gaussian .

(S-5.67)

Outside the sphere the field is that of a magnetic dipole m =M(4πR3/3) located at

the center of the sphere (r = 0).

b) The rotation of the sphere with uniform surface charge σ = Q/(4πR2) generates

an azimuthal surface current

Krot = σv = σRωsinθ φ̂ , (S-5.68)

where θ = 0 corresponds to the direction of M. This surface current distribution

current is analogous to that of the magnetization current distribution (5.17) for the

magnetized sphere of point a),

Km =M× r̂ = M sinθ φ̂ . (S-5.69)

Thus, the magnetic field generated by Krot is the same as that generated by Km, with

the replacement M = σRω = Qω/(4πR).

c) Analogously to Problem 3.4 for a dielectric sphere in an external electric field, we

assume that the induced magnetization M = χmH is uniform and parallel to B0. The

total field will be the sum of the external field B0 ≡ [μ0]H0 (with [μ0] replaced by

unity for Gaussian units) and of that generated by the magnetization. Thus, inside

the sphere H is uniform and has the value H(int) given by

H(int) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H0−
M

3
=H0−

χm

3
H(int) , SI ,

H0−
4πM

3
=H0−

4πχm

3
H(int) , Gaussian .

(S-5.70)

Solving for H(int) and finally using B(int) = [μ0]μrH
(int) we obtain

H(int) =
3

μr+2
H0 , B(int) =

3μr

μr +2
B0 , (S-5.71)

independently of the system of units; it may be interesting to compare the result

with (S-3.21) for the dielectric sphere. The magnetization is given by M = χmH(int).

In the case of a perfectly diamagnetic sphere (a superconducting sphere) we have

μr = 0 and B(int) = 0, and the magnetization is

M =
3χm

2
H0 = −

3

8π

bm

km
B0 . (S-5.72)

http://dx.doi.org/10.1007/978-3-319-63133-2_5
http://dx.doi.org/10.1007/978-3-319-63133-2_5
http://dx.doi.org/10.1007/978-3-319-63133-2_3
http://dx.doi.org/10.1007/978-3-319-63133-2_16
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Actually, inside the sphere the external field is completely screened by the surface

currents (S-5.69) due to the magnetization (S-5.72).

It is instructive to double check the above solution by verifying the boundary

conditions at the surface of the sphere, analogously to the dielecric case of Solution

S-3.4. We choose a spherical coordinate system (r, θ,φ) with the zenith direction z

parallel to the external magnetic field B0, and the origin at the center of the sphere O,

B0

µr

O R

z φ

r
r̂
θ̂

θ

Fig. S-5.13

as shown in Fig. S-5.13. As an educated guess, we

look for a solution where i) the magnetic field inside

the sphere, B(int), is uniform and proportional to

B0, and, accordingly, ii) the magnetization M of the

sphere, proportional to B(int), is uniform, and iii) the

total external field, B(ext), is the superposition of the

applied external field B0 and of the field B(mag), gen-

erated by the sphere magnetization. Thus, B(mag) will

be the field generated by a magnetic dipole m = αB0

located at the center of the sphere, with α a constant

to be determined. Summing up, we are looking for a

solution

B(int) = ψB0 ,

B(ext) = B0+B(mag) , (S-5.73)

with ψ a further constant to be determined. B(mag) and its spherical components are

B(mag) = αB0
km

bm

[(

3
ẑ · r

r5

)

r−
ẑ

r3

]

, (S-5.74)

B
(mag)
r = αB0

km

bm

2cosθ

r3
, (S-5.75)

B
(mag)

θ
= αB0

km

bm

sinθ

r3
, (S-5.76)

B
(mag)

φ
= 0 , (S-5.77)

where km/bm = μ0/(4π) in SI units, and km/bm = 1 in Gaussian units. The constants

α and ψ are determined from the boundary conditions on B and B/μr at the surface

of the sphere

B
(int)
⊥ (R, θ) = B

(ext)
⊥ (R, θ) ,

B
(int)

‖
(R, θ)

μr
= B

(ext)

‖
(R, θ) , (S-5.78)

http://dx.doi.org/10.1007/978-3-319-63133-2_16
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which lead to

ψB0 cosθ = B0 cosθ+B
(mag)
r (R, θ) = B0 cosθ

(

1+α
km

bm

2

R3

)

, (S-5.79)

ψ
B0

μr
sinθ = B0 sinθ−B

(mag)

θ
(R, θ) = B0 sinθ

(

1−α
km

bm

1

R3

)

. (S-5.80)

Dividing (S-5.79) by B0 cosθ, and (S-5.80) by B0 sinθ, we obtain

ψ = 1+α
km

bm

2

R3
,

ψ

μr
= 1−α

km

bm

1

R3
, (S-5.81)

with solutions

ψ =
3μr

μr +2
, α = R3 bm

km

(

μr−1

μr+2

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

4πR3

μ0

(

μr−1

μr+2

)

, SI,

R3

(

μr−1

μr+2

)

, Gaussian,

(S-5.82)

which eventually lead to

B(int) =
3μr

μr+2
B0 , m =

4πR3

3
M = R3 bm

km

(

μr −1

μr +2

)

B0 . (S-5.83)
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Solutions for Chapter 6

S-6.1 A Square Wave Generator

a) The motion is periodic, and we choose the origin of time, t = 0, at an instant

when the coil surface is completely in the x � 0 half of the xy plane. With this

choice, the flux of the magnetic field through the coil, Φ(t), increases with time

when 2nπ<ωt< (2n+1)π, with n any integer, and equalsΦ(t)= B(ωt mod 2π)a2/2.

Here, (x mod y) stands for the remainder of the division of x by y with an integer

quotient. When (2n+1)π < ωt < (2n+2)π, the flux decreases with time and equals

Φ(t) = B
[
2π− (ωt mod 2π)

]
a2/2. The electromotive force in the coil, E(t), is thus

I

− I0

I0

2T

t
T

0

Fig. S-6.1

y

x

I

I

f

B

O

y

x
I

I

f O

B

Fig. S-6.2

E(t) = −bm
dΦ(t)

dt
(S-6.1)

= −bm
Ba2ω

2
sign[π− (ωt mod 2π)] ,

where sign(x) = x/|x| is the sign function.

Thus, E reverses its sign whenever ωt =

nπ, with n any integer. The current cir-

culating in the coil is I = E/R. As shown

in Fig. S-6.1, I (as well as E) is a square

wave of period T = 2π/ω, and amplitude

I0 =
E0

R
= bm

Bωa2

2R
. (S-6.2)

b) The external torque applied to the coil

in order to keep its angular velocity con-

stant must balance the torque exerted by

the magnetic forces. The magnetic force

on a current-carrying circuit element dℓ is

df = bmI dℓ×B, and is different from zero
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only in the x < 0 half plane. The corresponding torque dτ = r×df = b2
mIr× (dℓ×B),

where r is the distance of the coil element dℓ from the z axis, is always equal to zero

on the circumference arc of the coil because the three vectors of the triple product

are mutually perpendicular here. Thus, dτ is different from zero only on the half of

the straight part of the coil inside the magnetic field, where dℓ = dr. Here we have

dτ = −b2
mI0rBdr ẑ, as shown in Fig. S-6.2, and the total torque on the coil, τ, is

τ =

∫
dτ = −b2

mω
B2a2

2R
ẑ

∫ a

0

r dr = −b2
mω

B2a4

4R
ẑ , (S-6.3)

corresponding to a power dissipation

Pdiss = −τ ·ω = b2
mω

2 B2a4

4R
= RI2

0 , (S-6.4)

that equals the power dissipated by Joule heating. The power dissipation is con-

stant in time, neglecting the “abrupt” transient phases at t = nπ/ω, where I instantly

changes sign. Thus, the external torque must provide the power dissipated by Joule

heating.

c) If we take the coil self-inductance L into account, the equation for the current in

the coil becomes

E(t)−L
dI

dt
= RI , (S-6.5)

where E(t) is the electromotive force (S-6.1), due to the flux change of the external

field only. However “small” L may be, its contribution is not negligible because, if

I were an ideal square wave, its derivative dI/dt would diverge whenever t = nπ/ω

(instantaneous transition between −I0 and +I0). The general solution of (S-6.5) is,

taking into account that E(t) is constant over each half-period,

I =
E
R
+Ke−t/t0 , (S-6.6)

T 2T

t

I

I0

0

−I0

Fig. S-6.3

where t0 = L/R is the characteristic

time of the loop, and K is a constant

to be determined from the initial con-

ditions. If L is small enough, we can

assume that at time t = 0− we have

E(t) = +E0 and I(t) = +I0. At time

t = 0, E(t) switches instantaneously

from +E0 to −E0, and the constant K

is determined by the initial condition

I(0) = I(0−) = I0 = E0/R, leading to

K = 2E0/R. Thus, for 0 < t < π/ω,
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I(t) = I0 (2e−t/t0 −1) . (S-6.7)

T 2T

0

I

t

I0

IM

−I0

−IM

Fig. S-6.4

At t = (π/ω)− we have E(t) = −E0

and we can assume that I(t) = −I0. At

t = π/ω E(t) switches instantaneously

from −E0 to +E0, and, for π/ω < t <

2π/ω, we have

I(t) = −I0 (2e−(t−π/ω)/t0 −1) , (S-6.8)

and so on for the successive periods.

The self-inductance of the coil prevents the current from switching instantaneously

between +I0 and −I0: the change occurs following an exponential with characteristic

time t0 = L/R.

The behavior described by (S-6.7) and (S-6.8) is valid only if t0≪ T = 2π/ω, as

in Fig. S-6.3, representing the case of t0 = 0.04T . If t0 is not negligible with respect

to T , the current oscillates between two values +IM and −IM , with IM < I0. Let us

consider the time interval 0 ≤ t ≤ π/ω. We must have I(0) = IM and I(π/ω) = −IM .

Replacing I by (S-6.6), we obtain

IM = I0
1− e−T/2t0

1+ e−T/2t0
. (S-6.9)

The plot of I(t) can no longer be approximated by a square wave, as shown in

Fig. S-6.4 for the case t0 = 0.25T .

S-6.2 A Coil Moving in an Inhomogeneous Magnetic Field

a) With our assumptions, the flux of the magnetic field through the coil can be

approximated as

ΦB(t) =ΦB[z(t)] ≃ πa2B0
z(t)

L
= πa2B0

z0+ vt

L
, (S-6.10)

where z0 is the position of the center of the coil at t = 0. The rate of change of this

magnetic flux is associated to an electromotive force E, and to a current I = E/R
circulating in the coil

E = RI = −bm
dΦ

dt
= −bm πa

2B0
v

L
. (S-6.11)

b) The power dissipated by Joule heating is

P = RI2 =
E2

R
= b2

m

(πa2B0 v)2

L2R
. (S-6.12)
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Thus, in order to keep the coil in motion at constant speed, one must exert an external

force fext on the coil, whose work compensates the dissipated power. We have

fext · v = P = b2
m

(πa2B0 v)2

L2R
, (S-6.13)

and the coil is submitted to a frictional force proportional to its velocity

ffrict = −fext = −b2
m

(πa2B0)2

L2R
v . (S-6.14)

c) The force ffrict is actually the net force obtained by integrating the force dffrict =

bm I dℓ ×B acting on each coil element dℓ:

ffrict = bm I

∮

coil

dℓ×B . (S-6.15)

a
d

I

z

B(r, z)

Fig. S-6.5

The contribution of the z component of B is

a radial force tending to shrink the coil if

∂tΦ > 0, or to widen it if ∂tΦ < 0, accord-

ing to Lenz’s law; the case represented in

Fig. S-6.5 corresponds to the latter case. Thus

fext, directed along z, is due only to the radial

component Br of B. The component Br is

not given by the problem, but, as we saw at

answer a) of Problem 5.4, it can be evaluated

by applying Gauss’s law to a closed cylindri-

cal surface of radius r and height ∆z. According to (S-5.25)

Br ≃ −
B0

2L
r , thus dffrict = bm I dℓ

B0 a

2L
, (S-6.16)

and by substituting (S-6.11) and integrating over the coil we obtain

ffrict = ẑbmI

∮

coil

dℓ
B0 a

2L
= −ẑbm

(
bmπa

2B0
v

L

)(
2πa

B0 a

2L

)

= −ẑb2
m

(πa2B0)2

L2R
v , (S-6.17)

in agreement with (S-6.14).

S-6.3 A Circuit with “Free-Falling” Parts

a) We choose the x axis oriented downwards, with the origin at the location of the

upper horizontal bar, as in Fig. S-6.6. The current I in the rectangular circuit is

http://dx.doi.org/10.1007/978-3-319-63133-2_5
http://dx.doi.org/10.1007/978-3-319-63133-2_18
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I =
E
R
= −bm

1

R

dΦ(B)

dt
= −bm

Ba

R

dx

dt
= −bm

Bav

R
, (S-6.18)

where x is the position of the falling bar, and v = ẋ its velocity. The velocity is

positive, and the current I is negative, i.e., it circulates clockwise, in agreement with

Lenz’s law. The magnetic force on the falling bar is fB = bmBaI x̂, antiparallel to the

gravitational force mg, and the equation of motion is

m
dv

dt
= mg+bmBaI = mg−b2

m

(Ba)2

R
v. (S-6.19)

R/ 2

g

ax

O

R/ 2

I
B

x

Fig. S-6.6

The solution of (S-6.19), with the initial condition

v(0) = 0, is

v(t) = vt

(
1− e−t/τ

)
(S-6.20)

where

τ =
mR

(bmBa)2
and vt = gτ =

mRg

(bmBa)2
. (S-6.21)

As t → ∞, the falling bar approaches the terminal

velocity vt.

b) When v = vt, the power dissipated in the circuit by

Joule heating is

PJ = RI2
t =

(bmBavt)
2

R
=

(
mg

bmBa

)2

R , (S-6.22)

where It = −bmBavt/R is the “terminal current”. On

the other hand, the work done by the force of gravity per unit time is

PG = mg · vt = mg
mgR

(bmBa)2
= PJ , (S-6.23)

in agreement with energy conservation for the bar moving at constant velocity.

c) When both horizontal bars are falling, we denote by x1 the position of the upper

bar, and by x2 the position of the lower bar, as in Fig. S-6.7, with v1 = ẋ1 and v2 = ẋ2.

The current I circulating in the circuit is

I =
E
R
= −bm

1

R

dΦ(B)

dt
= −bm

Ba

R

d

dt
(x2− x1)

= −bm
Ba

R
(v2− v1), (S-6.24)
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R/ 2

1

2

a

g

O

x

x1

x2

R/ 2

B

I

Fig. S-6.7

circulating counterclockwise (I > 0) if v1 > v2, and

clockwise (I < 0) if v1 < v2. The magnetic forces

acting on the two falling bars are fB1 = −bmBaI x̂

and fB2 = bmBaI x̂, respectively. Independently of the

sign of I, we have fB1 =−fB2
, so that the net magnetic

force on the system comprising the two falling bars

is zero. The equations of motion are thus

m
dv1

dt
= mg+b2

m

(Ba)2

R
(v2− v1) (S-6.25)

m
dv2

dt
= mg−b2

m

(Ba)2

R
(v2− v1) , (S-6.26)

with the initial conditions v1(0) = v0 and v2(0) = 0.

The sum of equations (S-6.25) and (S-6.26) is

d

dt
(v1+v2)= 2g , with solution

v1+ v2

2
=

v0

2
+gt ,

(S-6.27)

meaning that the center of mass of the two horizontal bars follows a free fall, inde-

pendent of the magnetic field B. On the other hand, the difference of equations

(S-6.25) and (S-6.26) is

d

dt
(v1− v2) = −2

τ
(v1− v2) , with solution v1− v2 = v0 e−2t/τ , (S-6.28)

where τ = mR/(bmBa)2. For the velocities of the two horizontal bars we obtain

v1 =
v0

2

(
1+ e−2t/τ

)
+gt , v2 =

v0

2

(
1− e−2t/τ

)
+gt . (S-6.29)

At the steady state limit (t≫ τ) we have

lim
t→∞

v1 = lim
t→∞

v2 =
v0

2
+gt and lim

t→∞
I = 0 , (S-6.30)

since, for v1 = v2, the flux of B through the loop is constant.

S-6.4 The Tethered Satellite

a) To within our approximations, we can assume that the magnetic field is constant

over the satellite orbit, and equal to the field at the Earth’s equator, Beq ≃ 3.2×
10−5 T. The field is parallel to the axis of the satellite orbit, and constant over the

tether length. The electromotive force E on the tether equals the line integral of the

magnetic force along the wire,
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E = bm

∫

tether

dℓ · v(r)×Beq = bm

∫ R⊕+h−ℓ

R⊕+h

drωr Beq , (S-6.31)

where ω = v/r is the angular velocity of the satellite. To within our approximations

we can also assume that also v(r) ≃ v(R⊕) ≃ 8000m/s is constant over the wire

length, and obtain

E ≃ bmvℓBeq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
8000×1000×3.2×10−5 ≃ 250V , SI,
1

c
×8×105×105×0.32 ≃ 0.85statV , Gaussian.

(S-6.32)

b) Neglecting the resistance of the ionosphere, the current I circulating in the wire,

and the corresponding power dissipated by Joule heating Pdiss are, respectively,

I =
E
R
= bm

vℓBeq

R
, and Pdiss = RI2 = b2

m

v2ℓ2B2
eq

R
. (S-6.33)

The power dissipated in the tether by Joule heating must equal minus the work done

by the magnetic force on the wire. This can be easily verified, since the magnetic

force acting on the wire is

F = bmIℓ r̂×Beq = −b2
m

B2
eqℓ

2

R
v , (S-6.34)

and the corresponding work rate is

P = F · v = −b2
m

B2
eqℓ

2

R
v2 = −Pdiss . (S-6.35)

If we assume that the tether is a copper wire (conductivity σ ≃ 107 Ω−1m−1 SI,
σ ≃ 9×1016 s−1 Gaussian) of cross section A=1 cm2, the magnitude of the magnetic
drag force on the system is

Fdrag = b2
m

B2
eqℓ

2

ℓ/(σA)
v =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(3.2×10−5)2 ×1000

1/(107 ×10−4)
×8000 ≃ 8.2N , SI

1

c2

(0.32)2 ×105

1/(9×1016)
×8×105 ≃ 8.2×105 dyn , Gaussian.

(S-6.36)

This problem gives an elementary description of the principle of the “Tethered

Satellite System”, investigated in some Space Shuttle missions as a possible gener-

ator of electric power for orbiting systems.
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S-6.5 Eddy Currents in a Solenoid

a) The time-dependent current in the solenoid generates a time-dependent magnetic

field which, in turn, induces a time-dependent contribution to the electric field. The

induced electric field is associated to a displacement current density, and, in a con-

ductor, also to a conduction current density J = σE. Both current densities, in turn,

affect the magnetic field. According to our symmetry assumptions, in a cylindrical

coordinate system (r,φ,z), with the solenoid axis as z axis, the only non-zero com-

ponent of the magnetic field is Bz, and the only non-zero component of the electric

field is Eφ, therefore the only non-zero component of the conduction current density

is Jφ. Both Bz and Eφ depend only on r. In principle we must solve (6.1) and (6.5)

which in cylindrical coordinates yield (see Table A.1 of the Appendix),

1

r
∂r(rEφ) = −bm ∂tBz , (S-6.37)

−∂rBz = 4πkmσEφ+
km

ke
∂tEφ . (S-6.38)

Finding the complete solution to (S-6.37) and (S-6.38) is possible but somewhat

involved. However, if the angular frequency ω of the driving current is low enough,

the slowly varying current approximation (SVCA) provides a sufficiently accurate

solution of the problem.

In the SVCA, we start by calculating B as in the static case. Neglecting boundary

effects, a DC current I would generate a uniform magnetic field B = ẑ4πkm μrnI

inside our solenoid, and B ≡ 0 outside. Thus, inside the solenoid, we would have

B = ẑμ0 μrnI in SI units, and B = ẑ4πμrnI/c in Gaussian units. If we replace I by

I0 cosωt we obtain

B(0) = ẑ4πkm μrnI0 cosωt , (S-6.39)

which we assume as our zeroth-order approximation for the field inside the solenoid.

In the next step of SVCA, we evaluate the first order correction by calculating the

electric field E(1) induced by (S-6.39), and its associated current densities. These

current densities, in turn, contribute to the first order correction to the magnetic

field. A posteriori, our procedure will be justified if the first order correction to

the magnetic field, B(1), is much smaller than B(0). And so on for the successive

correction orders. For additional simplicity, we neglect the displacement current,

i.e., the last term on the right-hand side of (S-6.38), although its inclusion would not

be difficult.

Using (6.1) and the symmetry assumptions, the first-order electric field E(1)(r) =

φ̂E(1)(r) can be found from its path integral over the circumference of radius r,

∮
E(1) ·dℓ = 2πrE(1)(r) = −bmπr

2∂tB
(0) , (S-6.40)

http://dx.doi.org/10.1007/978-3-319-63133-2_6
http://dx.doi.org/10.1007/978-3-319-63133-2_6
http://dx.doi.org/10.1007/978-3-319-63133-2_6
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R

rB(0)

E(1)

r

I0 cos t

Fig. S-6.8

which yields

E(1)(r) = kmbm 2πμrrnI0ωsinωt φ̂

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ0μr

2
rnI0ωsinωtφ̂ , SI,

1

c2
2πμrrnI0ωsinωt φ̂ , Gaussian.

(S-6.41)

Notice that the induced electric field also generates

an electromotive force E(1) in the solenoid coils. We

assume the generator producing the current I(t) =

I0 cosωt to be an ideal one, which maintains the

same current against any effect occurring in the cir-

cuit (the appearance of E(1) will require extra work

to maintain the current).

b) Due to the conductivity σ of the solenoid core, the

electric field E(1)(r) originates an azimuthal current density J(1)(r) = σE(1)(r) (eddy

currents) in the material. The corresponding Joule dissipation heats up the material.

The energy turned into heat per unit volume at each instant t is

J(1)(r) ·E(1)(r) = σ
[
E(1)(r)

]2
= σ (kmbm 2πμrrnI0ωsinωt)2 , (S-6.42)

with a time average

〈
J(1)(r) ·E(1)(r)

〉
= 2σ(kmbm πμrrnI0ω)2 . (S-6.43)

The total dissipated power is found by integrating (S-6.43) over the volume of the

cylindrical core

Pd =

∫

cylinder

〈
J(1)(r) ·E(1)(r)

〉
d3x = 2σ (kmbm πμrnI0ω)2

∫ R

0

r2ℓ2πrdr

= σπℓ
(
kmbm πμrnI0ωR2

)2
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σμ2
0
μ2

r

16
πn2I2

0ω
2ℓR4 , SI,

1

c4
π3σμ2

r n2I2
0ω

2ℓR4 , Gaussian.

(S-6.44)

c) The induced current density J(1)(r) = σE(1)(r) generates a magnetic field B(1)(r)

in the cylindrical volume enclosed by the surface of radius r. Each infinitesimal

cylindrical shell between r and r+dr of Fig. S-6.9 behaves like a solenoid of radius

r, generating a magnetic field whose value is obtained by replacing the product nI

by the product J(1)(r)dr. Thus, the contribution to the magnetic field in r of the

infinitesimal shell is

dB
(1)

int
(r) = ẑ4πkmμrσE(1)(r) . (S-6.45)
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B(0) r

B(1)
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Fig. S-6.9

Also all infinitesimal cylindrical shells between r′

and r′+dr′, with r < r′ < R, contribute to the field in
r, and the resulting first-order correction to the field
in r is

B(1)(r) =

∫ R

r

dB
(1)

int
(r) = 4πkmμrσ

∫ R

r

E(1)(r′)dr′ .

(S-6.46)

If we replace (S-6.41) into (S-6.46) we obtain

B(1)(r) = 8π2k2
mbmμ

2
rσnI0ωsinωt

∫ R

r

r′ dr′ = ẑ4π2k2
mbm μ

2
rσnI0 (R2 − r2)ωsinωt

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẑ
1

4
μ2

0 μ
2
rσnI0 (R2 − r2)ωsinωt , SI,

ẑ
4π2

c3
μ2

rσnI0 (R2 − r2)ωsinωt , Gaussian.

(S-6.47)

Thus, B(1)(r) is maximum for r = 0, where all infinitesimal cylindrical shells con-

tribute, and zero for r = R. Our treatment is justified if B(1)(0)≪ B(0) for all r < R

and for all t, i.e., if 〈
B(1)(0)

〉
〈
B(0)

〉 = πkmbm μrσωR2≪ 1 , (S-6.48)

where the angle brackets denote the average over time. This gives the condition on

ω

ω≪ 1

πkmbm μrσR2
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4

μ0 μrσR2
, SI,

c2

πμrσR2
, Gaussian.

(S-6.49)

Thus, for materials with a high value of the product μrσ, the frequency must be

very low. For instance, iron has a relative magnetic permeability μr ≃ 5000, and a

conductivity σ ≃ 107 Ω−1m−1 in SI units. Assuming a solenoid with R = 1 cm, we

obtain the following condition on the frequency ν of the driving current

ν =
ω

2π
≪ 4

8π2×10−7×5×103×107×10−4
≃ 0.10Hz , (S-6.50)

which is a very low value. Iron is a good material as the core of an electromagnet,

due to its high magnetic permeability, but a poor material as the core of a trans-

former or of an inductor, due to its high conductivity, which gives origin to high

eddy-current losses. On the other hand, manganese-zinc ferrite (a ceramic com-

pound containing iron oxides combined with zinc and manganese compounds) also

has a relative magnetic permeability μr ≃ 5000, but a much lower conductivity,
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σ ≃ 5 Ω−1m−1. The condition on the frequency of the driving current is thus

ν≪ 4

8π2×10−7×5×103×5×10−4
≃ 2×105 Hz , (S-6.51)

and ferrite is used in electronics industry to make cores for inductors and transform-

ers, and in various microwave components.

It is also instructive to compare the energy dissipated per cycle, Udiss = (2π/ω)Pdiss,

to the total magnetic energy stored in the solenoid,

UM =

〈
bm

(
B(0)

)2

2kmμr

〉
πR2ℓ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈(
B(0)

)2

2μ0μr

〉
πR2ℓ , SI,

〈(
B(0)

)2

8πμr

〉
πR2ℓ , Gaussian.

(S-6.52)

The ratio is
Udiss

UM
≃ π

4
kmbm μrσωR2. (S-6.53)

Thus, the condition (S-6.49) is also equivalent to the requirement that the energy

loss per cycle due to Joule heating is small compared to the total stored magnetic

energy.

S-6.6 Feynman’s “Paradox”

a) The mutual inductance M between the charged ring and the superconducting ring

is, assuming a≪ R (see Problem 6.12),

M = 4πkmbm
πa2

2R
. (S-6.54)

Thus, when a current I(t) is circulating in the smaller ring of radius a, the magnetic

flux through the charged ring is

ΦI = MI(t) = 4πkmbm
πa2

2R
I(t) . (S-6.55)

If ΦI is time-dependent, it gives origin to an induced electric field EI , whose line-

integral around the charged ring is

∮
EI ·dℓ = −bm

dΦI

dt
= −4πkmb2

m

πa2

2R
∂tI(t) . (S-6.56)

http://dx.doi.org/10.1007/978-3-319-63133-2_6
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Due to the symmetry of our problem, field EI is azimuthal on the xy plane, and

independent of φ. Its magnitude on the charged ring is thus

EI =
1

2πR

∮
EI ·dℓ = −kmb2

m

πa2

R2
∂tI(t) , (S-6.57)

and the force exerted on an infinitesimal element dℓ of the charged ring is

df = EIλdℓ = −φ̂kmb2
m

πa2

R2
λdℓ∂tI(t) , (S-6.58)

corresponding to a torque dτ about the center of the ring

dτ = r×df = −ẑkmb2
m

πa2

R
λdℓ∂tI(t) . (S-6.59)

The total torque on the charged ring is thus

τ =

∫
dτ = −ẑkmb2

m

πa2

R
λ2πR∂tI(t) = −ẑkmb2

m

πa2

R
Q∂tI(t) , (S-6.60)

where Q = 2πRλ is the total charge of the ring. The equation of motion for the

charged ring is thus

mR2 dω

dt
= τ = −kmb2

m

πa2

R
Q∂tI(t) , (S-6.61)

where mR2 is the moment of inertia of the ring. The solution for ω(t) is

ω(t) = −kmb2
m

πa2

mR3
Q

∫ t

0

∂tI(t′)dt′ = kmb2
m

πa2

mR3
Q [I0− I(t)] , (S-6.62)

and the final angular velocity is

ωf = kmb2
m

πa2

mR3
Q I0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ0a2Q

4mR3
I0 , SI,

πa2Q

c3mR3
I0 , Gaussian,

(S-6.63)

corresponding to a final angular momentum

Lf = mR2ωf = kmb2
m

πa2Q

R
I0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ0a2Q

R
I0 , SI,

πa2Q

c3R
I0 , Gaussian,

(S-6.64)
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independent of the mass m of the ring.

b) The rotating charged ring is equivalent to a circular loop carrying a current

Irot = Qω/2π. Thus, after the current in the small ring is switched off, there is still a

magnetic field due to the rotation of the charged ring. The final magnetic field at the

center of the rings is

Bc = ẑ
km

2

Irot

R
= ẑ

km

4π

Qωf

R

= ẑ
k2

mb2
ma2Q2

4mR4
I0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẑ
μ2

0
a2Q2

64π2mR4
I0 , SI,

ẑ
a2Q2

4c4mR4
I0 , Gaussian,

(S-6.65)

parallel to the initial field B0 = ẑkmI0/(2a), in agreement with Lenz’s law. We further

have

πa2Bc = MIrot , (S-6.66)

where M is the mutual inductance of the rings (S-6.54).

c) As seen above at point b), the rotating charged ring generates a magnetic field all

over the space. This field modifies the magnetic flux through the rotating ring itself,

giving origin to self-induction. Let L be the “self-inductance” of the rotating ring.

The magnetic flux generated by the rotating ring through itself is

Φrot =
1

bm
L Irot =

1

bm
L Qω

2π
. (S-6.67)

Correspondingly, (S-6.56) for the line integral of the electric field around the

charged ring is modified as follows:

∮
EI ·dℓ = −bm

(
dΦI

dt
+

dΦrot

dt

)
= −

4π2kmb2
ma2

2R
∂tI−L

Q

2π

dω

dt
. (S-6.68)

The torque on the ring becomes

τ = −ẑ

(
kmb2

mπa
2Q

R
∂tI+L

Q2a2

2π

dω

dt

)
, (S-6.69)

and the equation of motion (S-6.61) becomes

mR2 dω

dt
= −

kmb2
mπa

2Q

R
∂tI−L

Q2a2

2π

dω

dt
,

or (
mR2+L Q2a2

2π

)
dω

dt
= −

kmb2
mπa

2Q

R
∂tI , (S-6.70)
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which is equivalent to (S-6.61) if we replace the mass of the charged ring by an

effective value

meff = m+L Q2a2

2πR2
. (S-6.71)

Thus we obtain for the dependence of ω on I(t)

ω(t) = kmb2
m

πa2Q

meffR3
[I0− I(t)] , (S-6.72)

and for its final value

ωf = kmb2
m

πa2Q

meffR3
I0 , (S-6.73)

corresponding to a final angular momentum

Lf = mR2ωf = kmb2
m

πa2Q

R+La2Q2/(2πmR)
I0

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ0

4π

πa2Q

R+La2Q2/(2πmR)
I0 , SI,

1

c3

πa2Q

R+La2Q2/(2πmR)
I0 , Gaussian.

(S-6.74)

The final magnetic flux through the charged ring is

Φf =
1

bm
L Qωf

2π
= kmbm

La2Q2

2mR3+LQ2a2R/π
I0 , (S-6.75)

and the approximations of point a) are valid only if

Φf ≪Φ0 = 4πkmbm
πa2

2R
I0 , or

LQ2

4π2mR2+2πLQ2a2
≪ 1. (S-6.76)

S-6.7 Induced Electric Currents in the Ocean

S

B

J

y

xz

Fig. S-6.10

a) We choose a Cartesian coordinate system with

the y axis parallel to the velocity v of the fluid and

the z axis parallel to the magnetic field, as shown

in Fig. S-6.10. Due to the motion of the fluid, the

charge carriers (mainly the Na+ and Cl− ions of the

dissolved salt) are subject to a force per unit charge

equal to bm v×B, parallel to the x axis. This is equiv-

alent to an electric field Eeq ≡ bm v×B. The induced
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current density is thus

J = σEeq = bmσv×B. (S-6.77)

b) Inserting the typical values given in the text into (S-6.77) we obtain

J ≃

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4×1×5×10−5 = 2×10−4 A/m2 , SI,

3.6×1010× 100

c
×0.5 = 60statA/cm2 , Gaussian.

(S-6.78)

c) We evaluate the force on a fluid element of cylindrical shape, with area of the

bases δS and height |δℓ|, where ℓ is parallel to J and to the x axis. The current

intensity in the cylinder is I = JδS , and the force acting on it is thus δF= bmIδℓ×B=

−bmBJ δS δℓ ŷ = −bmBJ δV ŷ, where δV is the volume of the cylinder. The mass

of the cylinder is δm = ρδV, with ρ = 103 kg/m3 (1 g/cm3 in Gaussian units), for

water. Both v and δF are parallel to the y direction, and the equation of motion can

be written in scalar form

δm
dv

dt
= δF . (S-6.79)

Replacing the values of δm and δF we obtain

ρδV dv

dt
= −bmBJ δV ,

ρ
dv

dt
= −b2

mB2σv , (S-6.80)

where we have divided both sides by δV and replaced J by its expression (S-6.77).

The solution is a decreasing exponential v = v0e−t/τ with a time constant

τ =
ρ

σb2
mB2

≃ 1011 s ≃ 3×103 yr . (S-6.81)

S-6.8 A Magnetized Sphere as Unipolar Motor

a

I

M

r
B

df

B O

P
z

d

Fig. S-6.11

a) We recall from Problem 5.10 that the magnetic

field inside a uniformly magnetized sphere is uni-

form and equals

B =
8π

3

km

bm
M =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2μ0

3
M , SI,

8π

3
M , Gaussian.

(S-6.82)

http://dx.doi.org/10.1007/978-3-319-63133-2_5
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Outside of the sphere we have the same magnetic field that would be generated by

a magnetic dipole of moment m =M4πa3/3, located at the center of the sphere.

When an electric current I flows in the circuit, the magnetic force on an element

dℓ of the “meridian” wire BP is df = Idℓ×B, directed out of paper in Fig. S-6.11.

Since the component of B perpendicular to dℓ is continuous across the surface of

the sphere, there is no ambiguity. The torque dτ on the wire element dℓ is

dτ = r×df = Ir× (dℓ×B) = ẑ IasinθadθBcosθ

= ẑ Ia2Bcosθ sinθdθ , (S-6.83)

where r is the distance of dℓ form the rotation axis of the sphere (r = asinθ), and

we have used adθ = dℓ. The total torque on the meridian wire BP is thus

τ =

∫
dτ = ẑ Ia2B

∫ π/2

0

sinθcosθdθ = ẑ
1

2
Ia2B , (S-6.84)

I

+

−

M

R

V

I

d

df
B

B

A P

Fig. S-6.12

while the torque on the current-carrying portion AB

of the “equatorial” wire is zero, because the mag-

netic force is radial, as shown in Fig. S-6.12. Thus,

(S-6.84) is the total torque on the sphere.

b) When the sphere rotates, the total electromotive

force Etot in the circuit is the sum of the electromo-

tive force of the voltage source and the electromotive

force Erot due to the rotation of the of the wires

Etot = V +Erot = V −bm
dΦ

dt
, (S-6.85)

R

V

D

+

−
P

B
A

M

I

C

E
O

Fig. S-6.13

whereΦ is the flux of the magnetic field through any

surface bounded by the closed path ABPCDEA in

Fig. S-6.13. Lines PC, CD, DE and EA are copla-

nar lines, lying on a plane containing also the rota-

tion axis OP of the sphere and the meridian arc PA,

while AB is an equatorial arc, and BP a meridian arc,

both lying on the surface of the sphere. The flux of

B through any surface bounded by the closed path

ABPCDEA is the same, because ∇ ·B = 0. For sim-

plicity, we choose a surface comprising two parts:

1. the planar surface PCDEA, its perimeter being closed by the arc AP, through

which the flux is zero, and

2. the spherical polar triangle PAB shaded in Fig. S-6.13.
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The flux through PAB can be easily calculated remembering that the flux of B

through any closed surface is zero. Consider the closed surface formed by PAB

and the three circular sectors OAP, OBP and OAB. The flux through OAP and OBP

is zero, thus the flux ΦPAB through PAB and the flux ΦOAB through OAB must be

equal (ΦOAB must be taken with the minus sign when evaluating its contribution

to the flux through the total closed surface, since the magnetic field enters through

OAB and exits through PAB), and we have

ΦPAB =ΦOAB =
1

2
Ba2φ, (S-6.86)

where φ is the angle ÂOB. We thus have

Etot = V −bm
dΦ

dt
= V −bm

Ba2

2

dφ

dt
= V −bm

Ba2

2
ω, (S-6.87)

and the current flowing in the circuit is

I =
Etot

R
=

1

R

(
V −bm

Ba2

2
ω

)
. (S-6.88)

The torque on the sphere is zero when I = 0, thus the terminal angular velocity of

the sphere is

ωt =
2V

bmBa2
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2V

Ba2
, SI,

2V

Ba2
c , Gaussian,

(S-6.89)

independent of the moment of inertia of the sphere I and of the resistance R of the

circuit. The equation of motion for the sphere is

I dω

dt
= τ =

1

2
Ba2I =

Ba2

2R

(
V −bm

Ba2

2
ω

)
, (S-6.90)

which, using (S-6.89), can be rewritten as

I dω

dt
= −bm

(Ba2)2

4IR
(ω− 2V

bmBa2
) ≡= −1

τ
(ω−ωt) , (S-6.91)

where

τ =
4IR

bm(Ba2)2
. (S-6.92)

Assuming that the sphere is at rest at t = 0, the solution is

ω(t) = ωt

(
1− e−t/τ

)
. (S-6.93)
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S-6.9 Induction Heating

a) When the displacement current is neglected, (6.5) can be written as

∇×B = 4πkm(Jf +Jm) = 4πkm μr Jf , (S-6.94)

where Jf is the free current density and Jm is the magnetization current density.

Now, using (A.12),

∇× (∇×B) = −∇2B+∇(∇ ·B) = 4πkmμr∇×Jf , (S-6.95)

and recalling that ∇ ·B = 0 and Jf = σE we obtain

−∇2B = 4πkmμrσ∇×E . (S-6.96)

Finally, using ∇×E = −bm ∂tB we have

∂tB = (4πkmbm μrσ)−1∇2B ≡ α∇2B , (S-6.97)

where

α =
1

4πkmbm μrσ
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

μ0μrσ
, SI,

c2

4πμrσ
, Gaussian.

(S-6.98)

b) The tangential component of the auxiliary vector H must be continuous through

the x = 0 plane, thus, the tangential component of B/μr must be continuous. In the

vacuum half-space (x < 0) we have B = ŷ B0 cos(ωt), correspondingly, the field at

x = 0+ (just inside our medium) is

B(0+, t) = ŷμrB0 cos(ωt) . (S-6.99)

In one dimension, (6.6) is rewritten

∂tB = α∂
2
xB , (S-6.100)

and, as an educated guess, we look for a solution of the form B(x, t)=Re
[
B̃(x)e−iωt

]
.

The differential equation for the time-independent function B̃(x) is

− iωB̃ = α∂2
xB̃ , (S-6.101)

and we look for an exponential solution of the form B̃(x) = B̃(0)eγx, with B̃(0) and

γ two constants to be determined. The boundary condition gives B̃(0) = μrB0, and,

by substituting into (S-6.101), we have

− iωμrB0 eγx = αγ2μrB0 eγx , (S-6.102)

http://dx.doi.org/10.1007/978-3-319-63133-2_6
http://dx.doi.org/10.1007/978-3-319-63133-2_6
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which leads to αγ2 = −iω, so that

γ = ±
√
−i
ω

α
= ±1− i
√

2

√
ω

α
= ±(1− i)

1

ℓs
(S-6.103)

where (1− i)/
√

2 =
√
−i, and the quantity

ℓs =

√
2α

ω
=

√
2

4πkmbmμrσω
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

μ0μrσω
, SI,

√
c2

2πμrσω
, Gaussian,

(S-6.104)

which has the dimension of a length, is called the (resistive) skin depth. We dis-

regard the positive value of γ, which would lead to a magnetic field exponentially

increasing with distance into the material, and obtain

B = ŷ Re
[
μrB0 e−(1−i)x/ℓs−iωt

]
= ŷμrB0 e−x/ℓs cos

(
x

ℓs
−ωt

)
. (S-6.105)

Thus the magnetic field decreases exponentially with distance into the material, with

a decay length ℓs. A slab of our material can be considered as semi-infinite if its

depth is much larger than ℓs.

c) The electric field E(x) inside the material can be evaluated from ∇×E = −bm ∂tB.

Assuming E(x, t) = Re
[
Ẽ(x)e−iωt

]
we have

(∇×E)y = −∂x Re
[
Ẽz(x)e−iωt

]
,

∂tB = Re
[
−iωμrB0 e−(1−i)x/ℓs−iωt

]
, (S-6.106)

thus E(x, t) = ẑ Re
[
Ẽz(x)e−iωt

]
, with ∂xẼz = −ibmωμrB0 e−(1−i)x/ℓs . Integrating with

respect to x we obtain

Ẽz =
i

1− i
bmωμrℓsB0 e−(1−i)x/ℓs = −1− i

2
bmωμrℓsB0 e−(1−i)x/ℓs . (S-6.107)

The dissipated power per unit volume, due to the free currents only, is thus

〈Jf ·E〉 =
σ

2

∣∣∣Ẽz

∣∣∣2 = σ
4

b2
m μ

2
rω

2ℓ2s B2
0e−2x/ℓs =

σ

4
b2

m

2μ2
rω

2B2
0

4πkmbmμrσω
e−2x/ℓs

= bm

μrωB2
0

8πkm
e−2x/ℓs =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

μrωB2
0

2μ0
e−2x/ℓs , SI,

μrωB2
0

32π2
e−2x/ℓs , Gaussian,

(S-6.108)
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where we have substituted (S-6.104) for ℓs in the fraction. The total dissipated power

per unit surface of the slab is

∫ ∞

0

〈Jf ·E〉dx = bm

μrωB2
0

16πkm
ℓs =

B2
0

16π

√
bmμrω

2kmσ
. (S-6.109)

One might wonder if there is also a contribution of the magnetization volume and

surface current densities, Jm and Km, to the dissipated power. In the presence of the

magnetic field (S-6.105), our medium of relative magnetic permeability μr acquires

a magnetization M

M =
bm

4πkm

μr−1

μr
B = ŷ

bm

4πkm
(μr−1)Re

[
B0 e−(1−i)x/ℓs−iωt

]
, (S-6.110)

which corresponds to

Jm =
1

bm
∇×M . (S-6.111)

Taking the symmetry of the problem into account, and introducing the complex

amplitudes J̃m and J̃m z such that Jm = Re
(
J̃m e−iωt

)
= ẑ Re

(
J̃m ze−iωt

)
, we have

J̃m z =
μr−1

4πkmμr
∂xB̃ = −μr−1

4πkm

1− i

ℓs
B0 e−(1−i)x/ℓs . (S-6.112)

The corresponding power per unit volume is

〈Jm ·E〉 =
1

2
Re

(
J̃m zẼ∗z

)
= bm (μr−1)

μrωB2
0

8πkm
e−2x/ℓs = (μr −1)〈Jf ·E〉 , (S-6.113)

and the total power per unit surface is

∫ ∞

0

〈Jm ·E〉dx = (μr−1)

∫ ∞

0

〈Jf ·E〉dx = bm (μr−1)
μrωB2

0

16πkm
ℓs . (S-6.114)

However, we also have a surface magnetization current density Km flowing on the

x = 0 plane, given by

Km =
1

bm
M(0+)× n̂ = ẑ

μr −1

4πkm
Re

(
B0 e−iωt

)
= ẑ Km zcos(ωt) , (S-6.115)

where n̂ = −x̂ is the outward-pointing unit vector on the x = 0 boundary plane. This

surface current density corresponds to a power per unit surface

〈Km(t) ·E(0, t)〉 = 1

2
Re

[
Km zẼz(0)

]
= −bm(μr−1)

μrωB2
0

16πkm
ℓs , (S-6.116)



S-6.9 Induction Heating 249

which cancels out the contribution (S-6.114). Thus, the total dissipated power in

the medium is due to the free current only, and given by (S-6.109). Note that the

parallel component of the electric field must be continuous at the boundary between

two media, so that Ez(0, t) appearing in (S-6.116) is a well defined quantity.

S-6.10 A Magnetized Cylinder as DC Generator

a) We can consider the magnetic field as due to the azimuthal magnetization surface

current density Km, flowing on the lateral surface of the cylinder. We have Km =M×
n̂/bm, where n̂ is the outward unit vector normal to the surface. Thus, the magnetized

cylinder is equivalent to a solenoid of the same sizes, with n turns per unit length,

current I per turn, and the product nI = Km. Far from the two bases we have an

approximately uniform field B0, independent of the radius and height of the cylinder,

h

a

M

Bz

B0

Fig. S-6.14

B0 ≃ 4πkmKm ẑ

= 4π
km

bm
M =

{
μ0M , SI,

4πM , Gaussian.
(S-6.117)

The field at, for instance, the upper base, can be

evaluated by considering an “extended” cylinder,

obtained by joining an identical, coaxial cylinder, at

the base we are considering, as shown in Fig. S-6.14.

The total field at the base is now due to both cylin-

ders, and, being far from both bases of the extended

cylinder, its value is B0 ≃ 4π(km/bm)M. Both cylin-

ders contribute to this field, and, for symmetry rea-

sons, the z components Bz of both contributions

are equal, while the radial components cancel each

other. The dashed lines of Fig. S-6.14 represent three

B field lines for each cylinder, one along the axis and

two off-axis. Thus, the z component of the field gen-

erated by the single cylinder at its base is

Bz = 2π
km

bm
M =

B0

2
. (S-6.118)
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h
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Fig. S-6.15

b) We apply Faraday’s law of induction to the

flux of the magnetic field through the closed path

AEFGBCDA, represented by the thick line in

Fig. S-6.15. Points A, E, F, G, and B are fixed in the

laboratory frame, while points C and D rotate with

the magnetized cylinder. We have

E = −bm
dΦ

dt
, (S-6.119)

where E is the electromotive force around the closed

path, measured by the voltmeter V , and Φ is the flux

of the magnetic field through any surface bounded

by the closed path. We choose a surface consisting

of three parts:

1. the plane surface bounded by the path AEFGBHA, fixed in the laboratory frame,

through which the flux of B is zero;

2. the surface bounded by the path BCDHB, lying on the lateral surface of the

cylinder; and

3. the circular sector AHD on the upper base, where points A and H are fixed, while

point D is rotating.

The flux of B through the two surfaces BCDH and AHD can be calculated analo-

gously to the flux through the polar spherical triangle PAB of Fig. S-6.13, Problem

6.8. We consider the closed surface comprising, in addition to BCDH and AHD, the

circular sector OBC and the two rectangles COAD and BOAH. The flux must be

zero through the total closed surface, and is zero through the two rectangles because

B is parallel to their surfaces. Thus we have

ΦAHD+ΦBCDH +ΦOBC = 0 , (S-6.120)

and

ΦAHD+ΦBCDH = −ΦOBC =
1

2
B0 a2φ, (S-6.121)

where φ is the angle B̂OC = ĤAD, and the sign accounts for the fact that the mag-

netic field is entering the closed surface through OBC. The electromotive force is

E = −bm
dΦ

dt
= −bm

1

2
B0 a2 dφ

dt
= 2πkmMa2ω =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ0

2
Ma2ω, SI,

2π

c
Ma2ω, Gaussian.

(S-6.122)

The same result can be obtained by evaluating the electromotive force E as the

integral of bm(v×B) ·dℓ along the path AOB

http://dx.doi.org/10.1007/978-3-319-63133-2_6


S-6.10 A Magnetized Cylinder as DC Generator 251

E = bm

∫ O

A

(v×B) ·dℓ+bm

∫ B

O

(v×B) ·dℓ = bm

∫ a

O

ωrB0 dr

= bm
1

2
B0a2ω = 2πkmMa2ω, (S-6.123)

since v = 0 along the path AO, which lies on the rotation axis of the cylider.

S-6.11 The Faraday Disk and a Self-sustained Dynamo

a) The magnetic force on the each charge carrier of the rotating disk is qbmv×B,

where q is the charge of the carrier (−e for the electrons), and v = ω × r is the

velocity of a charge-carrier at a distance r from the rotation axis, at rest relative to

the disk. At equilibrium, carriers must be at rest relative to the disk, and the magnetic

force must be compensated by a static electric field E such that E+bm v×B= 0. This

corresponds to an electric potential drop V between the center and the circumference

of the disk

V = ϕ(a)−ϕ(0) = −
∫ a

0

E ·dr = bm

∫ a

0

ωrBdr = bmωB
a2

2
. (S-6.124)

The rotating disk is thus a voltage source, known as a Faraday disk.

b) In the presence of the brush contacts at points O and A of Fig. 6.9, the electromo-

tive force E of he circuit equals the voltage drop V of (S-6.124). The total current I

circulating in the circuit is thus

I =
E
R
= bm

ωBa2

2R
. (S-6.125)

d

z

h

B

J × B

a

dr

J

I

A

Fig. S-6.16

The power dissipated in the circuit by Joule

heating is Pd = I2R=E2/R, and there must an

external a torque τext providing a mechanical

power Pm = τext ·ω = Pd in order to maintain

a rotation at constant angular velocity. Thus,

τext = ẑb2
m

ωB2a4

4R
. (S-6.126)

Alternatively, the external torque must com-

pensate the torque of the magnetic forces

on the disk. Since the current exits the disk

through the brush contact A, it is difficult to

make assumptions on the symmetry of the current density distribution. However, the

problem can be tackled as follows. The torque on an infinitesimal volume element,

http://dx.doi.org/10.1007/978-3-319-63133-2_6
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r dφdr dz in cylindrical coordinates (Fig. S-6.16), is dτ = bm r× (J×B)r dφdr dz,

and the total magnetic torque on the disk is obtained by integrating dτ over the disk

volume

τB = bm

∫ a

0

dr

∫ h

0

dz

∫ 2π

0

r dφr× (J×B) . (S-6.127)

The vector triple product in (S-6.127) can be rewritten

r× (J×B) = J (r ·B)−B (r ·J) = −ẑ BrJr , (S-6.128)

since (r ·B) = 0 because r and B are orthogonal to each other, and Jr is the r

R

I
r

h
J A

a

Fig. S-6.17

component of J. We further have

∫ h

0

dz

∫ 2π

0

r dφ Jr = I , (S-6.129)

independently of r, since the double

integral is the flux of J through a

lateral cylindrical surface of radius r

and height h, as shown in Fig. S-6.17.

Thus we have for the torque exerted

by the magnetic forces on the disk

τB = −ẑbm BI

∫ a

0

r dr , (S-6.130)

and finally, substituting (S-6.125) for I,

τb = −ẑbm BI
a2

2
= −ẑb2

m

ωB2a4

4R
= −τext . (S-6.131)

c) If the disk acts as the current source for the solenoid we must have

B = 4πkm nI = 4πkmbm n
ωBa2

2R
, (S-6.132)

from which we find that the frequency must be a function of the circuit parameters

ω =
2R

4πkmbm na2
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2R

μ0na2
, SI,

Rc2

2πna2
, Gaussian,

(S-6.133)

independently of the intensity of the magnetic field B.
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S-6.12 Mutual Induction Between Circular Loops

a) We can assume the magnetic field generated by the current I circulating in loop

B to be uniform and equal to B0 ẑ = ẑ2πkm I/b all over the surface of loop A, since

a≪ b. The angle between the axis of loop A and the z axis is θ = ωt, and the flux of

the magnetic field through the surface of loop A is

Φ = B0 πa
2 cosωt =

2πkmI

b
πa2 cosωt =

2π2a2kmI

b
cosωt . (S-6.134)

Thus, according to Faraday’s law of induction, there is an induced electromotive

force E on loop A

E = −dΦ

dt
=

2π2a2kmI

b
ωsinωt , (S-6.135)

and the current circulating in loop A is

IA =
2π2a2kmI

Rb
ωsinωt . (S-6.136)

b) The power dissipated into Joule heating is

Pdiss = RI2
A =

4π4a4ω2k2
mI2

Rb2
sin2ωt . (S-6.137)

c) The torque acting on loop A is τ = m×B0, where m = n̂ IAπa
2 is the magnetic

moment of loop A, and n̂ is the unit vector perpendicular to its surface, directed so

that its tip sees IA circulating counterclockwise. Thus

τ =
2π2a2kmI

Rb
ωsinωtπa2 2πkmI

b
sinωt =

4π4a4ωk2
mI2

Rb2
sin2ωt , (S-6.138)

and the corresponding mechanical power is

Pmech = τ ·ω =
4π4a4ω2k2

mI2

Rb2
sin2ωt = Pdiss , (S-6.139)

and all the mechanical power needed to keep loop A rotating at constant angular

velocity is turned into Joule heating.

d) The flux through the surface of loop B of the magnetic field generated by the

current I circulating in loop A is

ΦB = MABI , (S-6.140)
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where MAB is the coefficient of mutual induction between loop A and loop B. We

know that MAB = MBA, and from (S-6.134) we have

MAB = MBA =
2π2a2km

b
cosωt , (S-6.141)

thus

ΦB =
2π2a2kmI

b
cosωt , (S-6.142)

and

E = −dΦ

dt
=

2π2a2kmI

b
ωsinωt , (S-6.143)

as (S-6.134) and (S-6.135) .

S-6.13 Mutual Induction between a Solenoid and a Loop

a) Neglecting boundary effects, the magnetic field inside the solenoid is uniform,

parallel to the solenoid axis z, and equal to

B = 4πkmnI ẑ . (S-6.144)

Thus, its flux through the surface S of the rotating coil is

Φa(t) = B ·S(t) = 4πkmnIπa2 cosωt = 4π2a2kmnI cosωt = Msl(t) I , (S-6.145)

where

Msl(t) = 4π2a2kmncosωt (S-6.146)

is the coefficient of mutual inductance between solenoid and loop, time dependent

because the loop is rotating. The coefficient of mutual inductance is symmetric,

Msl = Mls, i.e., the inductance by the solenoid on the loop equals the inductance by

the loop on the solenoid, we shall use this property for the answer to point c).

b) The electromotive force acquired by the loop equals the rate of change of the

magnetic flux through it,

E = −dΦ

dt
= 4π2a2kmnIωsinωt , (S-6.147)

and the current circulating in the loop is

Ia =
4π2a2kmnIω

R
sinωt . (S-6.148)
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The loop dissipates a power Pdiss due to Joule heating

Pdiss = RI2
a =

(4π2a2kmnIω)2

R
sin2ωt . (S-6.149)

This power must be provided by the work of the torque τ applied to the loop in order

to keep it in rotation at constant angular velocity. The time-averaged power is

〈Pdiss〉 =
(4π2a2kmnIω)2

2R
, (S-6.150)

since
〈
sin2ωt

〉
= 1/2.

c) The magnetic field generated by a magnetic dipole m is identical to the field

generated by a current-carrying loop of radius a and current Il such that bmπa
2Il =m,

at distances r ≫ a from the center of the loop. The result of point a) is valid, in

particular, in the case a≪ b. In this case we can replace the magnetic dipole by a

loop, and use the symmetry property of the mutual-inductance coefficient. The flux

Φs generated by the dipole through the solenoid is thus

Φs = Mls(t) Il = 4π2a2kmnIl cosωt = 4π
km

bm
nmcosωt . (S-6.151)

S-6.14 Skin Effect and Eddy Inductance in an Ohmic Wire

Assuming a very long, straight cylindrical wire, the problem has cylindrical sym-

metry. We choose a cylindrical coordinate system (r,φ,z) with the z axis along the

axis of the wire, and expect that the electric field inside the wire can be written as

E = ẑ E(r, t) = ẑ Re
[
Ẽ(r)eiωt

]
, (S-6.152)

where Ẽ(r) is the static complex amplitude associated to the electric field. We start

from the two Maxwell equations

∇×E = −bm ∂tB , ∇×B = 4πkm J+
1

bmc2
∂tE , (S-6.153)

where we have assumed εr = 1 and μr = 1 inside copper. If we substitute J = σE

into the second of (S-6.153) we obtain



256 S-6 Solutions for Chapter 6

∇×B = 4πkmσE+
1

bmc2
∂tE = 4πkmσE+ ẑ

ω

bmc2
Re

[
iẼ(r)eiωt

]

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ0σE+ ẑ
ω

c2
Re

[
iẼ(r)eiωt

]
, SI,

4πσ

c
E+ ẑ

ω

c
Re

[
iẼ(r)eiωt

]
, Gaussian.

(S-6.154)

In SI units, the conductivity of copper is σ = 5.96× 107Ω−1m−1, and the product

μ0σc2 is

μ0σc2 = 6.77×1018 s−1 . (S-6.155)

Alternatively, in Gaussian units, the conductivity of copper is σ = 5.39× 1017 s−1

and the product 4πσ is 6.77× 1018 s−1. Thus the displacement current is negligible

compared to the conduction current J for frequencies ν = ω/(2π)≪ 1018 Hz, i.e.,

up to the ultraviolet. In other words, the displacement current can be neglected

compared to the conduction current for all practical purposes in good conductors,

and we can rewrite the second of (S-6.153) simply as ∇×B = 4πkmσE. Evaluating

the curl of both sides of the first of (S-6.153) we have

∇× (∇×E) = −bm∂t(∇×B) = −4πkmbmσ∂tE , (S-6.156)

which, remembering that

∇× (∇×E) = ∇(∇ ·E)−∇2E , (S-6.157)

and assuming ∇ ·E = 0, turns into a diffusion equation for the electric field E

∇2E = 4πkmbmσ∂tE . (S-6.158)

Introducing our assumption (S-6.152), we have the following equation in cylindrical

coordinates for the complex amplitude Ẽ(r),

∇2Ẽ(r) =
1

r
∂r[r∂rẼ(r)] = iω4πkmbmσ Ẽ(r) (S-6.159)

or
1

r
∂r[r∂rẼ(r)] = i

2

δ2
Ẽ(r) , (S-6.160)

where we have introduced the skin depth

δ =

√
1

2πkmbmσω
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
2

μ0σω
, SI,

c
√

2πσω
, Gaussian.

(S-6.161)
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Equation (S-6.160), multiplied by r2, is Bessel’s differential equation with n = 0.

However, in this context, we prefer to find the approximate solutions for the two

limiting cases δ≫ r0 and δ≪ r0, where r0 is the radius of the wire. For the weak

skin effect, i.e., for δ≫ r0, we write the solution of (S-6.160) as a Taylor series

Ẽ(r) = E0

∞∑

n=0

an

(
r

δ

)n

(S-6.162)

which, substituted into the left-hand side of (S-6.160) gives

1

r
∂r[r∂rẼ(r)] =

1

r
∂r

⎡⎢⎢⎢⎢⎢⎢⎣rE0

∞∑

n=0

annrn−1

δn

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

r
E0 ∂r

∞∑

n=0

annrn

δn

=
1

r
E0

∞∑

n=0

ann2rn−1

δn
= E0

∞∑

n=0

ann2rn−2

δn
, (S-6.163)

while the right-hand side is

i
2

δ2
Ẽ(r) = 2i E0

∞∑

n=0

anrn

δn+2
. (S-6.164)

Comparing the coefficients of the same powers of r in (S-6.163) and (S-6.164) we

obtain the recurrence relation

an+2 =
2i

(n+2)2
an , (S-6.165)

which leads to

a2n =
in

2n(n!)2
and a2n+1 = 0 , (S-6.166)

for all n ≥ 0 and n ∈ N. We thus have

Ẽ(r) = E0

∞∑

n=0

in

2n(n!)2

(
r

δ

)2n

= E0

[
1+

i

2

r2

δ2
− 1

16

r4

δ4
− i

48

r6

δ6
+ · · ·+ in

2n(n!)2

r2n

δ2n
+ . . .

]
. (S-6.167)

The complex amplitude I associated to the total current through the wire is
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I =

∫ r0

0

J2πr dr = 2πσ

∫ r0

0

Ẽ(r)r dr

= 2πσE0

∫
r0

0

[
1+

i

2

r2

δ2
− 1

16

r4

δ4
− i

48

r6

δ6
+ · · ·+ in

2n(n!)2

r2n

δ2n
+ . . .

]
r dr

= 2πσE0

⎡⎢⎢⎢⎢⎢⎣
r2

0

2
+

i

8

r4
0

δ2
− 1

96

r6
0

δ4
− i

2304

r8
0

δ6
+ · · ·+ in

2n(n!)2(2n+2)

r2n+2
0

δ2n

⎤⎥⎥⎥⎥⎥⎦

= πr2
0σE0

⎡⎢⎢⎢⎢⎢⎣1+
i

4

r2
0

δ2
− 1

48

r4
0

δ4
− i

1152

r6
0

δ6
+ · · ·+ in

2n(n+1)!n!

r2n
0

δ2n
+ . . .

⎤⎥⎥⎥⎥⎥⎦ . (S-6.168)

We can define the impedance per unit length of the wire, Zℓ = Rℓ + iωLℓ (where Rℓ
is the resistance per unit length, and Lℓ the self-inductance per unit length), as the

ratio of the electric field at the wire surface to the total current through the wire,

i.e., as

Zℓ =
1

πr2
0
σ

[
1+

i

2

(
r0

δ

)2

− 1

16

(
r0

δ

)4

− i

48

(
r0

δ

)6

+ . . .

]

︸������������������������������������������������︷︷������������������������������������������������︸
A

×
[
1+

i

4

(
r0

δ

)2

− 1

48

(
r0

δ

)4

− i

1152

(
r0

δ

)6

+ . . .

]−1

︸������������������������������������������������������︷︷������������������������������������������������������︸
B−1

, (S-6.169)

where A and B are Taylor expansions in even powers of r0/δ≪ 1, which we have

truncated at the 6th order. The first four expansion coefficients of B−1, i.e., 1, b1, b2,

and b3,

B−1 =

[
1+b1

(
r0

δ

)2

+b2

(
r0

δ

)4

+b3

(
r0

δ

)6

+ . . .

]
, (S-6.170)

can be evaluated by requiring that the product BB−1 equals 1 with a remainder of

the order of (r0/δ)
8, i.e.,

1 = BB−1 ≃
[
1+

i

4

(
r0

δ

)2

− 1

48

(
r0

δ

)4

− i

1152

(
r0

δ

)6

+ . . .

]

×
[
1+b1

(
r0

δ

)2

+b2

(
r0

δ

)4

+b3

(
r0

δ

)6

+ . . .

]
(S-6.171)

leading to

b1 = −
i

4
, b2 = −

1

24
, and b3 =

7i

1152
(S-6.172)
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Thus we have for Zℓ

Zℓ ≃
1

πr2
0
σ

[
1+

i

2

(
r0

δ

)2

− 1

16

(
r0

δ

)4

− i

48

(
r0

δ

)6

+ . . .

]

×
[
1− i

4

(
r0

δ

)2

− 1

24

(
r0

δ

)4

+
7i

1152

(
r0

δ

)6

+ . . .

]

≃ 1

πr2
0
σ

[
1+

i

4

(
r0

δ

)2

+
1

48

(
r0

δ

)4

− i
23

1152

(
r0

δ

)6

+ . . .

]
. (S-6.173)

The zeroth-order term of the expansion,

R
(0)

ℓ
=

1

πr2
0
σ
, (S-6.174)

is simply the direct-current resistance per unit length of the wire. The third term

R
(1)

ℓ
=

r2
0

48πσδ4
=

k2
mb2

mπr
2
0
σω2

12
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ2
0
πr2

0
σω2

192
, SI,

πr2
0
σω2

12c4
, Gaussian

(S-6.175)

is the lowest order contribution of the weak skin effect to the resistance increase.

The second-order term of the expansion can be interpreted as

i

4πr2
0
σ

(
r0

δ

)2

= iωL
(0)

ℓ
, (S-6.176)

leading to

L
(0)

ℓ
=

1

4πσωr2
0

(
r0

δ

)2

=
1

2
kmbm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ0

8π
, SI,

1

2c2
, Gaussian,

(S-6.177)

r

a

z

x

Fig. S-6.18

which is the DC self-inductance per unit length of a

straight cylindrical wire, while the sixth-order term

is the lowest order contribution of the weak skin-

effect to the self-inductance of the cylindrical wire.

Thus, at the low-frequency limit, the current depends

on the radial coordinate, but no true skin effect

is observed. According to (S-6.168), the current is

actually stronger on the axis of the wire than at its

surface.
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Things are different at the high-frequency limit. As the frequency increases, the

skin depth becomes progressively smaller. When δ≪ a, the fields will be varying in

space on a distance much smaller than the wire radius, so that we expect the effect

of the curvature to be negligible. For a strong skin effect, i.e., for δ≪ a, the electric

field is significantly different from zero only close to the wire surface. Thus, we

introduce the variable x = a−r, shown in Fig. S-6.18, and assume r ≃ a in (S-6.160).

Using ∂r = −∂x we get

∂2
xẼ = i

2

δ2
Ẽ . (S-6.178)

Substituting Ẽ = E0 eαx, we have

α = ±
√

i
2

δ2
= ±1+ i

δ
, (S-6.179)

and the solution corresponding to a field decreasing for increasing x (increasing

depth into the wire) is

Ẽ ≃ E0 e−x/δ e−ix/δ = E0 e−(a−r)/δ e−i(a−r)/δ , (S-6.180)

where E0 eiωt is the electric field at the wire surface. The complex amplitude corre-
sponding to the total current current through the wire is thus

I =

∫ a

0

J 2πr dr = 2πσ

∫ a

0

Ẽ(r)r dr = 2πσE0

∫ a

0

e−(a−r)/δ e−i(a−r)/δ eiωtr dr

= 2πσE0e−a(1+i)/δ+iωt

∫ a

0

er(1+i)/δr dr . (S-6.181)

Remembering that ∫
xeaxdx = eax

(
x

a
− 1

a2

)
, (S-6.182)

and neglecting terms in δ2, we obtain finally

I = πaδσ(1− i) E0 . (S-6.183)

The impedance per unit length of the wire, Zℓ, can again be defined as

Zℓ = Rℓ + iXℓ =
E0

I
=

1

πaδσ(1− i)
=

1

2πaδσ
+

i

2πaδσ
, (S-6.184)

so that the magnitudes of the resistance per unit length Rℓ, and of the reactance per

unit length Xℓ, are equal at the high frequency limit:

Rℓ = Xℓ =
1

2πaδσ
. (S-6.185)
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The value of Rℓ shows that the current actually flows through a thin annulus close

to the surface (the “skin” of the wire), of width δ and approximate area 2πaδ. The

reactance per unit length can be considered as due to a self-inductance per unit

length Lℓ, according to Xℓ = ωLℓ, with

Lℓ =
1

2πaδσω
=

√
kmbm

2πa2σω
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
μ0

8π2a2σω
, SI,

√
1

2πc2a2σω
, Gaussian.

(S-6.186)

S-6.15 Magnetic Pressure and Pinch Effect for a Surface Current

a) We use a cylindrical coordinate system (r,φ,z), with the cylinder axis as z axis.

The field lines of B are circles around the z axis because of symmetry. Thus, Bφ(r)

is the only nonzero component of B. According to Ampère’s law we have

Bφ(r) =

⎧⎪⎪⎨⎪⎪⎩
0 , r < a ,

2km
I

r
= 4πkm K

a

r
, r > a .

(S-6.187)

b) First approach (heuristic). The current dI flowing in an infinitesimal surface strip

parallel to z, of width adφ, is dI = Kadφ. The force df exerted by an azimuthal

magnetic field B ≡ (0,Bφ,0) on an infinitesimal strip portion of length dz is

df = bm dzdI ẑ×B = −bmKaBφ dφdz r̂ , (S-6.188)

directed towards the axis, i.e., so to shrink the conducting surface (pinch effect).

However, here we must remember that Bφ(r) is discontinuous at the cylinder sur-

face, being zero inside. Therefore, we replace the value of Bφ in (S-6.188) by its

“average” value Baver
φ
= [Bφ(a

+)−Bφ(a
−)]/2 = 2πkm K (the point is the same as for

the calculation of electrostatic pressure on a surface charge layer). Thus, the absolute

value of the force acting on an infinitesimal area dS = adφdz is

|d f | = 2πkmbmK2 dS =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ0

2
K2 dS , SI

2π

c2
K2 dS , Gaussian ,

(S-6.189)
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and the magnetic pressure on the surface is

P =
|d f |
dS
= 2πkmbmK2 = kmbm

I2

2πa2
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ0I2

2(2πa)2
, SI

1

c2

I2

2πa2
, Gaussian.

(S-6.190)

Second method (rigorous). The magnetic force per infinitesimal volume d3r,

where a current density J is flowing in the presence of a magnetic field B, is

d3f = bm J×Bd3r . (S-6.191)

Due to the symmetry of our problem, the term (B · ∇)B appearing in (6.7) is

(B · ∇)B =

(
Bφ

1

r
∂φ

)
B = 0 , (S-6.192)

where we have used the gradient components in cylindrical coordinates of Table

A.1, and the fact that the only nonzero component of B, i.e., Bφ, is independent of

φ. The infinitesimal volume element in cylindrical coordinates is d3r = r dr dφdz,

thus

z

d

a −
a +

dz

r

Fig. S-6.19

d3f = −r̂
bm

8πkm

[
∂rB2

φ(r)
]

r dr dφdz . (S-6.193)

Now we integrate (S-6.193) with respect to dr

between r = a− ε and a+ ε, obtaining the force d2f

acting on the small shaded volume of Fig. S-6.19,

delimited by the two cylindrical surfaces r = a− ε
and r = a+ ε, with infinitesimal azimuthal aperture

dφ, and longitudinal length dz. Integrating by parts

we have

∫ a+ε

a−ε

[
∂rB2

φ(r)
]
r dr =

[
rB2
φ(r)

]a+ε

a−ε−
∫ a+ε

a−ε
B2
φ(r)dr , (S-6.194)

At the limit ε → 0, the first term on the right-hand side equals B2
φ(a
+), because

B2
φ(r) = 0 for r < a. At the same limit ε→ 0, the integral on the right-hand side

approaches zero because, according to the mean-value theorem, it equals 2εB2
φ(r̄),

with r̄ some value in the range (a−ε,a+ε). We thus have

d2f = −r̂
bm

8πkm
B2
φ(a
+)adφdz . (S-6.195)

http://dx.doi.org/10.1007/978-3-319-63133-2_6
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where adφdz is the infinitesimal surface element on which d2f is acting. The pres-

sure is thus

P =
bm

8πkm
B2
φ(a
+) =

bm

8πkm

(4πkm K)2 = 2πbmkmK2, (S-6.196)

in agreement with (S-6.190). Now we prove (6.7):

4πkm(J×B)i = [(∇×B)×B]i = εi jk

(
ε jlm

∂Bm

∂xl

)
Bk = εi jkε jlm

∂Bm

∂xl

Bk

= (δklδim−δkmδil) Bk

∂Bm

∂xl

= Bk

∂Bi

∂xk

−Bk

∂Bk

∂xi

= (B×∇)Bi−
1

2

∂(BkBk)

∂xi

= (B×∇)Bi−
1

2
∇iB

2 , (S-6.197)

where the subscripts i, j,k, l,m range from 1 to 3, and x1,2,3 = x,y,z, respectively.

The symbol εi jk is the Levi-Civita symbol, defined by εi jk = 1 if (i, j,k) is a cyclic

permutation of (1,2,3), εi, j,k = −1 if (i, j,k) is an anticyclic permutation of (1,2,3),

and εi, j,k = 0 if at least two of the subscripts (i, j,k) are equal.

c) The magnetic energy ∆UM stored in the infinite layer between z and z+∆z equals

the volume integral

∆UM =

∫

layer

uM d3r =

∫

layer

bm

8πkm
B2(r)d3r

= 2π∆z

∫ ∞

a

bm

8πkm
B2
φ(r)r dr , (S-6.198)

which, involving the integral
∫ ∞

a
r−1dr, is infinite. However, if the radius of the

cylinder increases by da, the integrand does not change for r > a+ da, while the

integration (Fig. S-6.20) volume decreases. Correspondingly, the (infinite) value of

the integral decreases by the finite value

K B

a

um

z

daz z

z

z

Fig. S-6.20

d(∆UM) = −∆z
bm

8πkm
B2
φ(a
+)2πada .

(S-6.199)

Thus, an expansion of the current

carrying surface leads to a decrease

of the magnetic energy. If the sys-

tem were isolated, the force df acting

on the surface element dS = adφdz

would be directed radially outwards,

leading to an expansion of the cylinder. However, the system is not isolated, because

a current source is required to keep the current surface density K constant. An

increase of the radius da leads to a decrease of the magnetic flux in the layer equal

http://dx.doi.org/10.1007/978-3-319-63133-2_6
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to d(∆Φ) = Bφ(a
+)∆zda (see figure), which, in turn, implies the appearance of an

electromotive force ∆E. In fact, in order to keep K constant during the time inter-

val dt in which the cylinder radius increases by da, the source must provide to the

layer the energy d(∆Usource), that compensates the work d(∆W) = ∆E I dt done by

the electromotive force ∆E = −bm d(∆Φ)/dt, so that

d(∆Usource) = −bmI d(∆Φ) = 2πbmaKBφ(a
+)∆zda

= bm 2πa
1

4πkm
B2
φ(a
+)∆zda = −2d(∆Um) . (S-6.200)

Thus, the total energy balance for the layer is given by

d(∆Utot) = d(∆Usource)+d(∆Um) = −d(∆Um) , (S-6.201)

and the force per unit surface is

P = − 1

2πa∆z

d(∆Utot)

da
= +

1

2πa∆z

d(∆Um)

da
, (S-6.202)

in agreement with (S-6.190).

S-6.16 Magnetic Pressure on a Solenoid

a) The magnetic force df on an infinitesimal coil arc of length dℓ, carrying a current

I, is

df = bm I dℓ×B . (S-6.203)

Thus, the force dF on the surface element dS = dℓ×dz of the solenoid, of width

dℓ, is

dF = bm IBndℓ×dz = bm IBndS , (S-6.204)

since the surface element comprises ndz coil arcs, each of length dℓ. The force dF

is directed towards the exterior of the solenoid, and the solenoid tends to expand

radially.

The magnetic field B is discontinuous at the surface of the solenoid, due to the

presence of the electric current in the coils. At the limit of an infinitely long solenoid

we have

B = B0 = 4πkmnI ẑ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

μ0nI ẑ , SI,

4π

c
nIẑ , Gaussian,

(S-6.205)
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B

df

d

Ia

Fig. S-6.21

inside, where ẑ is the unit vector along the solenoid

axis, and B = 0 outside. Thus we substitute the aver-

age value

B(a+)+B(a−)

2
=

B0

2
= 2πkm nI

for B in (S-6.204), obtaining

dF = 2πbmkm n2I2dS . (S-6.206)

The pressure P on the solenoid surface is obtained by dividing dF by dS , thus

P =
dF

dS
= 2πbmkm n2I2 =

bmB2
0

8πkm
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ0

2
n2I2 =

B2
0

2μ0
, SI,

2πn2I2 =
B2

0

8π
, Gaussian.

(S-6.207)

b) The magnetic energy of the solenoid can be written in terms of the magnetic

energy density uM associated to the magnetic field B0

uM =
bm

8πkm
B2

0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

B2
0

2μ0
, SI,

B2
0

8π
, Gaussian.

(S-6.208)

Neglecting the boundary effects, we obtain the total magnetic energy of the solenoid

UM by multiplying uM by the solenoid volume

UM = πa
2huM =

a2hbmB2
0

8km
= 2π2a2hbmkmn2I2 , (S-6.209)

thus, if the solenoid radius a increases by da the energy UM increases by

dUM = 4π2ahbmkmn2I2 da , (S-6.210)

while B0, given by (S-6.205), and thus uM, remain constant. This implies an increase

in the flux Φ of B0 through each coil of the solenoid

dΦ = 2πaB0 da = 8π2kmanI da , (S-6.211)

corresponding to a total electromotive force (the solenoid comprises hn coils)

E = −bm
dΦ

dt
= −bmkm 8π2ahn2I2 da

dt
(S-6.212)
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that must be compensated by the current source in order to keep I constant. The

work dWsource done by the current source is thus

dWsource = −EI dt = bmkm 8π2an2hI2 da . (S-6.213)

Thus the total energy of the system solenoid+current source changes by

dUtot = dUM−dWsource = −4π2ahbmkmn2I2 da . (S-6.214)

The pressure on the solenoid surface is P = −dUtot/dV , where V = πa2h is the vol-

ume of the solenoid. Thus

P = −dUtot

dV
= − 1

2πah

dUtot

da
= 2πbmkm n2I2 , (S-6.215)

in agreement with (S-6.207).

S-6.17 A Homopolar Motor
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Fig. S-6.22

The motor is schematized in the diagram of

Fig. S-6.22, that displays only one “half” of the cir-

cuit because of the symmetry of the problem. We use

cylindrical coordinates (r,φ,z) with the origin O at

the center of the cylindrical magnet, of radius b and

length l. The z axis coincides with the axes of the

magnet and of the cell, which here is represented by

the voltage source V . The circuit ACDEF is closed

by brush contacts (white arrows in the figure) to the

magnet at points A ≡ (0,φ, l/2) and F ≡ (b,φ,0), so

that the current I can flow through the conducting

magnet. The circuit is free to rotate around the z axis.

Let a > b and h be the horizontal and vertical sizes of

the circuit, respectively. We denote by B = B(r,φ,z)

the magnetic field generated by the magnet, indepen-

dent of φ, and with Bφ ≡ 0. Some field lines of B are

sketched in Fig. S-6.22. The magnetic field on the

z = 0 plane is parallel to the z axis, directed upwards for r < b, and downwards for

r > b. For simplicity, we approximate B(r,φ,0) = B0 ẑ for r < b, with B0 independent

of r, even if this approximation is valid only for l≫ b.
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Fig. S-6.23

The voltage source drives a current I through the

circuit. When the circuit is at rest we simply have

I = V/R, but, when the circuit rotates, we must take

into account the motion of the circuit in the presence

of the magnetic field. Since the magnetic field B lies

on the plane of the circuit, the force df = I dℓ×B on

an infinitesimal segment of the circuit dℓ is perpen-

dicular to the plane of the circuit (out of paper in the

case represented in Fig. S-6.23). The corresponding

infinitesimal torque relative to the z axis is thus

dτ = r×df = bm I r× (dℓ×B) , (S-6.216)

where r is the distance of dℓ from the z axis. The

torque dτ is always parallel (or antiparallel) to ẑ, independently of the circuit ele-

ment dℓ we are considering. For the vector product dℓ×B we have

dℓ×B = −φ̂Bdℓ sinθ = −φ̂Bdℓcosψ

= −φ̂B · n̂dℓ, (S-6.217)

B

d
2

Fig. S-6.24

where θ is the angle between dℓ and B, n̂ is the

unit vector perpendicular to dℓ, and ψ = θ − π/2 is

the angle between B and n̂, as shown in Fig. S-6.24.

Since r̂ is perpendicular to φ̂ (unit vectors of the cor-

responding cylindrical coordinates), we have for the

total torque acting on the circuit

τ = bm I

∫ F

A

r× (dℓ×B) = −ẑbm I

∫ F

A

B · n̂r dℓ .

(S-6.218)

The last integral of (S-6.218) can calculated, within our approximations, if we

first demonstrate that the line integral of B · n̂r around the closed path OCDEO of

Fig. S-6.22 is zero, i.e., that

∮
B · n̂r dℓ =

∫ F

A

B · n̂r dℓ+

∫ O

F

B · n̂r dℓ+

∫ A

O

B · n̂r dℓ = 0 . (S-6.219)

First, we note that the integral along the whole OC path is zero, both because r is

zero, and because B is parallel to dℓ, thus perpendicular to n̂. Thus, the integral of

(S-6.219) becomes
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∮
B · n̂r dℓ =

∫ D

C

B · n̂r dr−
∫ E

D

B · n̂r dz−
∫ O

E

B · n̂r dr

=

∫ D

C

B · n̂r dr+

∫ D

E

B · n̂r dz+

∫ E

O

B · n̂r dr , (S-6.220)

since dℓ = dr along CD, dℓ = −dz along DE, and dℓ = −dr along EO.
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D
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I

Fig. S-6.25

As a next step, we generate a cylinder by rotating

the CDEO path around thez axis, as in Fig. S-6.25.

The outgoing flux of the magnetic field B through

the total surface of the cylinder is

∫
upper
base

B · n̂dS +

∫

lateral
surface

B · n̂dS +

∫

lower
base

B · n̂dS = 0 ,

(S-6.221)
since ∇ ·B = 0. Equation (S-6.221) can be rewritten

0 =

∫ a

0

B(r,φ,h) · n̂2πr dr+

∫ h

0

B(a,φ,z) · n̂2πr dz

+

∫ a

0

B(r,φ,0) · n̂2πr dr = 2π

∮
B · n̂r dℓ , (S-6.222)

which demonstrates (S-6.219). For the last integral appearing in (S-6.218) we thus

have ∫ F

A

B · n̂r dℓ = −
∫ O

F

B · n̂r dℓ =

∫ b

0

B0 r dr =
B0 b2

2
, (S-6.223)

where we have remembered that the line integrals are zero on the z axis, that dℓ =

−dr on the FO line, and that, within our approximations, B · n̂ = −B0, independently

of r, on the FO line. The torque on the rotating circuit is

τ = −ẑbm I

∫ F

A

B · n̂r dℓ = −ẑbm I
1

R

(
V +bmω

B0 b2

2

)
. (S-6.224)

This is why sliding contacts are needed in a homopolar motor. If the line segment

FO were rotating with the rest of the circuit, the total torque on the complete circuit

around the z axis would be zero, because the torque acting on FO would compensate

the torque on the rest of the circuit.
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If we denote by I the moment of inertia of the rotating circuit and for the

moment, neglect frictional effects, the equation of motion is

I dω

dt
= τ = −bm I

B0 b2

2
−ηω, (S-6.225)

where we have assumed the presence of a frictional torque τfr = −ηω proportional

to the angular velocity. The current I is determined by the voltage source and by

the electromotive force E, due to the rotation of the circuit in the presence of the

magnetic field B,

E = bm

∫ F

C

(ω× r)×B ·dℓ = bm

∫ F

C

ωr φ̂×B ·dℓ = −bmω

∫ F

C

r φ̂ ·dℓ×B

= bmω

∫ F

C

r B · n̂dℓ = bmω
B0 b2

2
, (S-6.226)

where we have used (S-6.217) and (S-6.223) in the last two steps. The current is

thus

I =
1

R

(
V +bmω

B0 b2

2

)
, (S-6.227)

and the equation of motion is

I dω

dt
= −bm

1

R

(
V +bmω

B0 b2

2

)
B0 b2

2
−ηω

= −bm
VB0 b2

2R
−ω

⎛⎜⎜⎜⎜⎜⎝b2
m

B2
0

b4

4R
+η

⎞⎟⎟⎟⎟⎟⎠ , (S-6.228)

with solution

ω = − 2bmVB0 b2

b2
mB2

0
b4+4Rη

(
1− e−t/T

)
, where T =

4RI
b2

mB2
0

b4+4Rη
. (S-6.229)

If we assume negligible frictional torque, i.e., η≪ b2
mB2

0
b4/(4R), (S-6.229) reduces

to

ω = − 2V

bmB0 b2

(
1− e−t/T

)
, where T =

4RI
b2

mB2
0

b4
, (S-6.230)

however, inserting “reasonable values” into (S-6.230), such as V = 1.5V, B0 =

100Gauss = 10−2 T and b = 0.5cm we obtain for the steady state solution

ω0 = −
2V

bmB0 b2
≃ −1200rad/s , i.e., ν0 ≃ 190s−1 , (S-6.231)
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which is indeed a very fast rotation! In the absence of friction, the steady state is

reached when V +E = 0, so that I = 0 and there is no torque acting on the circuit.

The final steady-state kinetic energy of the rotating circuit in these conditions is

Kss =
1

2
Iω2

0 =
1

2
I 4V2

b2
mB2

0
b4
=

2V2I
b2

mB2
0

b4
. (S-6.232)

The current flowing in the circuit is

I(t) =
1

R

(
V +

bmB0b2ω

2

)
=

V

R
e−t/T , (S-6.233)

and the total energy provided by the voltage source is

U =

∫ ∞

0

VI dt =
V2

R

∫ ∞

0

e−t/T dt =
V2

R
T =

4V2I
b2

mB2
0

b4
= 2Kss , (S-6.234)

or twice the final kinetic energy. An amount equal to Kss is dissipated into Joule heat.

More realistically, we must take the frictional torque into account. For instance,

the steady-state angular velocity is reduced by a factor 10 if we assume 4Rη =

9bm B0 b2. This, assuming R = 1Ω, means

η ≃ 6×10−5 Nms . (S-6.235)

In the presence of friction the steady-state angular velocity is

ωf = −
2bmVB0 b2

b2
mB2

0
b4+4Rη

, (S-6.236)

and the power dissipated by friction is

Pfr = τfrωf = ηω
2
f = η

⎛⎜⎜⎜⎜⎜⎝
2bmVB0 b2

b2
mB2

0
b4+4Rη

⎞⎟⎟⎟⎟⎟⎠
2

. (S-6.237)

The voltage source drives a current

If =
V

R

⎛⎜⎜⎜⎜⎜⎝1−
b2

mB2
0
b4

b2
mB2

0
b4+4Rη

⎞⎟⎟⎟⎟⎟⎠ =
4Vη

b2
mB2

0
b4+4Rη

, (S-6.238)
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and provides a power

Psource = VIf =
4V2η

b2
mB2

0
b4+4Rη

. (S-6.239)

The power dissipated into Joule heat is

PJ = RI2
f = R

⎛⎜⎜⎜⎜⎜⎝
4Vη

b2
mB2

0
b4+4Rη

⎞⎟⎟⎟⎟⎟⎠
2

, (S-6.240)

and we can easily check that

PJ+Pfr = Psource . (S-6.241)
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Solutions for Chapter 7

S-7.1 Coupled RLC Oscillators (1)

a) Assuming the two currents I1 and I2 to flow clockwise, and applying Kirchhoff’s

mesh rule to the two loops of the circuit, we have

L
dI1

dt
+

Q1

C1
+

Q0

C0
= 0 , L

dI2

dt
+

Q2

C1
− Q0

C0
= 0 , (S-7.1)

where Q1 is the charge of the left capacitor, Q2 the charge of the right capacitor, and

Q0 the charge of capacitor C0. Charge conservation in the two loops implies

dQ1

dt
= I1 ,

dQ2

dt
= I2 , (S-7.2)

while Kirchhoff’s junction rule, applied either to junction A or to junction B, leads

to dQ0

dt
= I1 − I2 . (S-7.3)

Differentiating (S-7.1), substituting (S-7.2) and (S-7.3), and dividing by L, we obtain

d2I1

dt2
= − 1

LC1
I1 −

1

LC0
(I1 − I2), or

d2I1

dt2
= −ω2

1I1 − ω2
0(I1 − I2)

d2I2

dt2
= − 1

LC1
I2 −

1

LC0
(I2 − I1), or

d2I2

dt2
= −ω2

1I2 − ω2
0(I2 − I1) , (S-7.4)

where we have introduced the quantities ω0 = 1/
√

LC0 and ω1 = 1/
√

LC1. By sub-

stituting I1 = A1e−iωt and I2 = A2e−iωt from (7.2) into (S-7.4), we obtain

(ω2
1 + ω

2
0 − ω

2) A1 − ω2
0 A2 = 0

−ω2
0 A1 + (ω2

1 + ω
2
0 − ω

2) A2 = 0 . (S-7.5)
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Non-trivial solutions for this system exist only if the determinant

D = D(ω) = (ω2
1 + ω

2
0 − ω

2)2 − ω4
0 = (ω2

1 − ω
2)(ω2

1 + 2ω2
0 − ω

2) (S-7.6)

equals zero. Thus, the frequencies of the normal modes of the circuit are the roots

of the equation D(ω) = 0, i.e.,

ω = ω1 ≡ Ω+ , ω =

√

ω2
1
+ 2ω2

0
≡ Ω− . (S-7.7)

Substituting these values for ω into (S-7.5) we obtain that A1 = A2, i.e., I1(t) = I2(t),

for the mode of frequency Ω+, and that A1 = −A2, i.e., I1(t) = −I2(t), for the mode

of frequency Ω−.

The normal modes of this simple case, with only two degrees of freedom, can

also be evaluated, more simply, by taking the sum and the difference of (S-7.4),

obtaining the harmonic oscillator equations

d2I±
dt2
= −Ω2

±I± . (S-7.8)

for the variables I± ≡ I1 ± I2 The currents in the two meshes are I1 = (I+ + I−)/2

and I2 = (I+ − I−)/2, respectively.

When the circuit is in the mode of frequencyΩ+, no current flows through the AB

branch (capacitor C0), where the two currents cancel out because I1 = I2. Frequency

Ω+ is simply the resonant frequency of a single-loop LC circuit of inductance L and

capacitance C1, i.e., the frequency at which the impedance of the loop is zero

ZLC(ω) = ZL(ω) + ZC1
(ω) = −iωL − 1

iωC1
= 0 . (S-7.9)

Since ZLC(Ω+) = 0, the current flows “freely” through each loop.

For the mode of frequency Ω−, we have I1 = −I2, and a current 2I1 flows through

the AB branch. The effective impedance of the circuit is the series of ZC0
= (iωC0)−1

with the parallel of the two impedances ZLC ,

Z = ZC0
+

ZLCZLC

ZLC + ZLC

= Z0 +
ZLC

2
= − 1

iωC0
− 1

2

(

iωL +
1

iωC1

)

, (S-7.10)

which vanishes if

ω2 =
1

L

(

2

C1
+

1

C0

)

= Ω2
− . (S-7.11)

k1 m k0 m k1

x1 x2

Fig. S-7.1

The circuit is equivalent to the two

coupled identical harmonic oscillators

of Fig. S-7.1. Each oscillator compri-

ses a mass m, connected to a fixed wall

by a spring of Hooke’s constant k1 =

mω2
1
.
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The two masses are connected to each other by a third spring of Hooke’s constant

k0 = mω2
0
. We assume that all springs have their respective rest lengths when the

two masses are at their equilibrium positions. The equations of motions for the two

masses are

m
d2x1

dt2
= −k1x1 − k0(x1 − x2), or

d2x1

dt2
= −ω2

1x1 − ω2
0(x1 − x2)

m
d2x2

dt2
= −k1x2 − k0(x2 − x1), or

d2x2

dt2
= −ω2

1x2 − ω2
0(x2 − x1) , (S-7.12)

where x1 and x2 are the displacements of the two masses from their equilibrium

positions. Equations (S-7.12) for x1 and x2 are formally equivalent to equations

(S-7.4) for I1 and I2, and thus have the same solutions. For the mode at frequency

Ω+, the two masses oscillate in phase (x1 = x2), central spring (k0) has always its

rest length, and does not exert forces on the two masses. Thus, frequency Ω+ is the

characteristic frequency each single harmonic oscillator. For the mode at frequency

Ω−, we have x1 = −x2 and the two masses oscillate with opposite phases.

b) The presence of a nonzero resistance R in series with each inductor changes

Equation (S-7.1) into

L
dI1

dt
+ RI1 +

Q1

C1
+

Q0

C0
= 0 , L

dI2

dt
+ RI2 +

Q2

C1
− Q0

C0
= 0 , (S-7.13)

By differentiating the equations and proceeding as for (S-7.8) we obtain

d2I±
dt2
= −Ω2

±I± − γ
dI±
dt
, (S-7.14)

with γ = R/L. These are the equations of two damped oscillators. The amplitudes

of the normal modes vary in time as exp(−iΩ±t − γt), decaying with a time constant

τ = γ−1. The damping rate of the normal modes can also be found by looking for

solutions in the form I1,2 = A1,2 e−iωt, but allowing A1,2 and ω to have imaginary

parts. For the equivalent mechanical system, the same equations are obtained by

inserting frictional forces fi = −mγdxi/dt in the equations of motion (S-7.12).

c) Inserting the voltage source, Equations (S-7.13) are modified as follows:

L
dI1

dt
+ RI1 +

Q1

C1
+

Q0

C0
= V0 e−iωt , L

dI2

dt
+ RI2 +

Q2

C1
− Q0

C0
= 0 , (S-7.15)

and, by proceeding as for (S-7.8) and (S-7.14), we have

d2I±
dt2
= −Ω2

±I± − γ
dI±
dt
− iωV0

L
e−iωt , (S-7.16)

which are the equations of two forced oscillators with a driving term

−(iωV0/L)e−iωt. Resonances are observed when ω = Ω+ and for ω = Ω+, i.e., when

the driving frequency equals one of the frequencies of the normal modes.
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S-7.2 Coupled RLC Oscillators (2)

a) Proceeding as in Solution S-7.1, we assume I1 and I2 to flow clockwise. Applying

Kirchhoff’s mesh rule to both meshes of the circuit we obtain

L
dI1

dt
+

Q1

C
+ L0

(

dI1

dt
− dI2

dt

)

= 0,

L
dI2

dt
+

Q2

C
− L0

(

dI1

dt
− dI2

dt

)

= 0 , (S-7.17)

again with I1 = dQ1/dt and I2 = dQ2/dt. Differentiating (S-7.17) with respect to t

we obtain

(L + L0)
d2I1

dt2
+

I1

C
− L0

d2I2

dt2
= 0

(L + L0)
d2I2

dt2
+

I2

C
− L0

d2I1

dt2
= 0 . (S-7.18)

The sum and difference of the two equations of (S-7.18) give the following equations

for the new variables I± ≡ I1 ± I2

d2I+

dt2
= − I+

LC
≡ −Ω2

+I+ ,
d2I−
dt2
= − I−

(L + 2L0)C
≡ −Ω2

−I− , (S-7.19)

which show that I± are the normal oscillation modes of the circuit, and Ω± the

corresponding frequencies.

b) Inserting R � 0, (S-7.17) turn into

L
dI1

dt
+ RI1 +

Q1

C
+ L0

(

dI1

dt
− dI2

dt

)

+ R(I1 − I2) = 0

L
dI2

dt
+ RI2 +

Q2

C
− L0

(

dI1

dt
− dI2

dt

)

− R(I1 − I2) = 0 . (S-7.20)

Performing again the sum and difference of the two equations we obtain

d2I+

dt2
= −γ+

dI+

dt
− Ω2

+I+ ,
d2I−
dt2
= −γ−

dI−
dt
− Ω2

−I− , (S-7.21)

with γ+ = R/L, and γ− = 3R/(L + 2L0). These are the equations for two damped

oscillators, with different damping rates γ±.

S-7.3 Coupled RLC Oscillators (3)

a) Let us denote by Q1 and Q2 the charges of the capacitors on the AB and on the

DE branches, respectively. According to Kirchhoff’s mesh rule we have, for the

three meshes of the circuit,
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L
dI1

dt
= −Q1

C
, L

dI2

dt
=

Q1

C
− Q2

C
, L

dI3

dt
=

Q2

C
, (S-7.22)

and, according to Kirchhoff’s junction rule applied to the A and D junctions,

dQ1

dt
= I1 − I2 ,

dQ2

dt
= I2 − I3 . (S-7.23)

Differentiating Equations (S-7.22) with respect to t, and substituting dQ1/dt and

dQ2/dt from (S-7.23), we obtain

d2I1

dt2
=

1

LC
(−I1 + I2) ,

d2I2

dt2
=

1

LC
(I1 − 2I2 + I3) , (S-7.24)

d2I3

dt2
=

1

LC
(I2 − I3) .

k mm k m

Fig. S-7.2

Mathematically, the circuit is equivalent to

a mechanical system comprising three identical

masses m, coupled by two identical springs of

Hooke’s constant k, as shown in Fig. S-7.2. If we

denote by x1, x2, and x3 the displacement of each

mass from its rest position, the equations of motion for the three masses are

d2x1

dt2
=

k

m
(x2 − x1) ,

d2x2

dt2
= − k

m
(x2 − x1) +

k

m
(x2 − x3) , (S-7.25)

d2x3

dt2
= − k

m
(x2 − x3) ,

which are identical to (S-7.25), after substituting I j → x j, with j = 1, 2, 3, and

1/(LC)→ k/m.

b) The frequencies of the normal modes can be found by looking for solutions of

(S-7.25) in the form
I j(t) = A j e−iωt . (S-7.26)

After substituting (S-7.26) and ω2
0
= 1/(LC) into (S-7.25), and dividing by the com-

mon exponential factor, we obtain the system of linear equations in matrix form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(ω2
0
− ω2) −ω2

0
0

−ω2
0

(2ω2
0
− ω2) −ω2

0

0 −ω2
0

(ω2
0
− ω2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A1

A2

A3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0 , (S-7.27)

which has non-trivial solutions only if the determinant of the matrix is zero, i.e., if
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(

ω2
0 − ω

2
) [(

2ω2
0 − ω

2
) (

ω2
0 − ω

2
)

− ω4
0

]

− ω4
0

(

ω2
0 − ω

2
)

= 0 . (S-7.28)

Equation (S-7.28) is a cubic equation in ω2, in the following we shall consider only

the corresponding nonnegative values of ω. A first solution is ω = ω0 = Ω1. If we

substitute ω = Ω1 into (S-7.27) we obtain A1 = −A3, and A2 = 0, corresponding to

zero current in the central mesh, and I1 and I2 oscillating with opposite phases. For

the mechanical system of Fig. S-7.2, this solution corresponds to the central mass at

rest, while the left and right masses oscillate with opposite phases.

Dividing (S-7.28) by (ω2
0
− ω2) we obtain the equation

− 3ω2
0ω

2 + ω4 = 0 , (S-7.29)

which has the two solutions ω =
√

3ω0 = Ω2 and ω = 0 = Ω3. The mode of zero

frequency (Ω3) corresponds to a DC current I = I1 = I2 = I3 flowing freely through

the inductors, while I1 and I2 cancel out in branch AB, and I2 and I3 cancel out in

branch DE. For the mechanical system, this solution correspond to a pure transla-

tional motions of the three masses.

Substituting Ω2 into (S-7.27) we obtain

A2 = −2A1 , A3 = A1 , (S-7.30)

i.e., I1 and I3 have the same amplitude and oscillate in phase, while I2 oscillates with

double amplitude and opposite phase. The two external masses of Fig. S-7.2 oscil-

late in phase, at constant distance from each other, while the central mass oscillates

with opposite phase and double amplitude, so that the center of mass is at rest.

The three quantities

J0 = I1 + I2 + I3 , J1 = I1 − I3 , J2 = I1 − 2I2 + I3 , (S-7.31)

corresponding to the three normal modes of the circuits, oscillate at the frequencies

Ω0 = 0, Ω1, and Ω2, respectively.

c) Taking the finite resistances into account, (S-7.22) become

dI1

dt
+ RI1 = −

Q1

C
,

dI2

dt
+ RI2 =

Q1

C
− Q2

C
,

dI3

dt
+ RI3 =

Q2

C
, (S-7.32)

which give for the normal modes

d2J0

dt2
+

R

L

dJ0

dt
= 0 ,

d2J1

dt2
+

R

L

dJ1

dt
+ Ω2

1J1 = 0 , (S-7.33)

d2J2

dt2
+

R

L

dJ2

dt
+ Ω2

2J2 = 0 .
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The solution for J0 describes a non-oscillating, exponentially decreasing current

J0 = C0 e−γt, with decay rate γ = R/L. The last two equations describe damped

oscillating currents J1,2 = C1,2 exp(−iΩ̃1,2t − γt), with

Ω̃1,2 =

√

ω2
1,2
− γ

2

4
, (S-7.34)

where we have assumed Ω1,2 > γ/2.

S-7.4 The LC Ladder Network

a) Let Qn be the charge on the nth capacitor. Kirchhoff’s junction rule at junction D

of Fig. 7.4 implies
dQn

dt
= In−1 − In , (S-7.35)

while Kirchhoff’s mesh rule applied to mesh DEFG implies

Qn

C
− Qn+1

C
= L

dIn

dt
. (S-7.36)

Now we differentiate (S-7.36) with respect to time, and insert (S-7.35) for the deriv-

atives of Qn, obtaining

d2In

dt2
= ω2

0 (In−1 − 2In + In+1) , where ω2
0 =

1

LC
. (S-7.37)

κ m

xn−1 xn xn+1

Fig. S-7.3

The equivalent mechanical system is a linear sequence of N identical masses m,

each pair of consecutive masses being bound to each other by a spring of Hooke’s

constant κ (we use the Greek letter κ here because we shall need the letter k for the

wavevector later on), as shown in Fig. S-7.3. We denote by xn the displacement of

each mass from its equilibrium position, i.e., its position when all springs have their

rest length. Thus, the equation of motion of the nth mass is

m
d2xn

dt2
= −κ (xn − xn−1) + κ (xn+1 − xn) , (S-7.38)

which, divided by m, and after introducing ω2
0
= κ/m becomes

http://dx.doi.org/10.1007/978-3-319-63133-2_7


280 S-7 Chapter Solutions for Chapter 7

d2xn

dt2
= ω2

0 (xn−1 − 2xn + xn+1) , (S-7.39)

mathematically equivalent to (S-7.37). This equation can be generalized to the case

of a mechanical system where transverse displacements are allowed, in addition to

the longitudinal displacements. If the masses can move in three dimensions, and we

denote by rn the displacement of the nth mass from its equilibrium position, the

equation of motion is written

d2rn

dt2
= ω2

0 (rn−1 − 2rn + rn+1) ,

which is separable into three one-dimensional equations, each identical to (S-7.37).

b) First, we note that, without loss of generality, we can assume the wavevector k

appearing in Equation (7.3) to be positive (k > 0), so that (7.3) represents a wave

traveling from left to right. Changing the sign of k simply gives a wave of the same

frequency propagating in the opposite direction, whose dispersion relation is the

same as for the forward-propagating wave, because of the inversion symmetry of

the problem.

Inserting (7.3) in (S-7.37), and dividing both sides by Ce−iωt we obtain

− ω2 eikna = ω2
0

[

eik(n+1)a − 2eikna + eik(n−1)a
]

, (S-7.40)

where, again, we have substitutedω2
0
= 1/LC. Dividing both sides by eikna we obtain

ω2 = ω2
0

(

2 − eika − e−ika
)

= 2ω2
0 (1 − cos ka) = 4ω2

0 sin2(ka/2) , (S-7.41)

O

2ω0

π

a

ω

k

Fig. S-7.4

or, performing the square root,

ω = 2ω0

∣

∣

∣

∣

∣

∣

sin

(

ka

2

)
∣

∣

∣

∣

∣

∣

. (S-7.42)

The dispersion relation (S-7.42) is shown in

Fig. S-7.4 for 0 < k ≤ π/a, this range being

sufficient to describe all waves propagating in

the system. In fact, although (S-7.42) seems

to imply that ω(k) is a periodic function of

k, with period 2π/a, the wavevectors k and

k′ = k + 2πs/a, with s any integer, actually represent the same wave, since

eik′na = ei(k+2πs/a)na = eiknae2πisn = eikna , (S-7.43)

sn being an integer. This is why it is sufficient to consider the range 0 < k ≤ π/a.

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
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x = na

x = na

t = t1I

I

t = t1 +
π

ω

O

O

(n − 1) a

na

na

(n + 1) a(n − 1) a

(n + 1) a

Fig. S-7.5

The existence of a maximum

wave vector and of a cut-off fre-

quency is related to the discrete

periodic nature of the network,

which imposes a minimum sam-

pling rate a. The value kmax = π/a

corresponds to λmin = 2π/kmax =

2a, and waves with a smaller

wavelength cannot exist. In these

waves, the current intensity value

is repeated every two meshes

of the network, as shown in

Fig. S-7.5. A wave with a smaller

period cannot exist because of the geometry of the network. One can also note that

the direction of wave propagation cannot be determined by observing the wave pro-

file a two instants t1 and t1 + π/ω (half a period later, upper and lower parts of

Fig. S-7.5). This is consistent with the group velocity vg(kmax) = (∂kω)(kmax) = 0.

The maximum wavevector corresponds to a high cut-off frequency ωmax = 2ω0.

Since higher frequencies cannot be transmitted, the LC network is a low-pass fil-

ter.

c) The general monochromatic solution of frequency ω is a standing wave, i.e., the

sum of two waves, one propagating from left to right and the other form right to left

In(t) = Aeikna−iωt + Be−ikna−iωt , (S-7.44)

where ω and k are related by the dispersion relation (S-7.42). Because of our bound-

ary conditions we must have

x0(t) = 0⇒ A + B = 0 ; xN(t) = 0⇒ AeikNa + Be−ikNa = 0. (S-7.45)

This gives the condition eikNa − e−ikNa = 2i sin(kNa) = 0, i.e., k = πl/Na with l =

1, 2, 3, . . . ,N − 1,N. We have N allowed wavevectors kl and frequencies ωl = ω(kl).

Note that kmin = π/Na corresponds to λmax = 2π/kmin = 2Na, this is a standing

wave of wavelength twice the length of the system.

d) We obtain the limit to a continuous by letting a→ 0 and n→ ∞ with na = x =

constant so that

lim
a→0

In+1(t) − 2In(t) + In−1(t)

a2
= lim

a→0

I(x + a, t) − 2I(x, t) + I(x − a, t)

a2

= ∂2
xI(x, t) . (S-7.46)

At this limit we can define a capacity per unit length Cℓ, and an inductance per

unit length Lℓ, of the circuit, such that the capacitance and inductance of a circuit

segment of length ∆x are, respectively,
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C = Cℓ∆x and L = Lℓ∆x. (S-7.47)

If we further introduce the quantity

v =

√

1

LℓCℓ
, (S-7.48)

which has the dimensions of a velocity, (S-7.37) is written for the continuous system

∂2
t I(x, t) = lim

a→0

v
2

a2
[I(x + a, t) − 2I(x, t) + I(x − a, t)]

= v
2 ∂2

xI(x, t) . (S-7.49)

This is the equation for a wave propagating with velocity v, independent of the

wave frequency ω. At the limit of a continuous system there is no dispersion. This

is the case of ideal transmission lines, like parallel wires and coaxial cables with no

resistance. See Prob. 7.6 for the case of a realistic transmission line with resistive

losses where, however, dispersion can be eliminated.

S-7.5 The CL Ladder Network

a) We have the same electric potential on the lower horizontal branch of each mesh,

and we assume it to be zero. The voltage drop across the nth capacitor is

Vn−1 − Vn =
Qn

C
. (S-7.50)

The current in the nth inductor is In − In+1, corresponding to a voltage drop across

the inductor L (dIn/dt − dIn+1/dt). Thus we have

Vn−1 = L

(

dIn−1

dt
− dIn

dt

)

, Vn = L

(

dIn

dt
− dIn+1

dt

)

, (S-7.51)

which, inserted into (S-7.50), give

L

(

dIn−1

dt
− 2

dIn

dt
+

dIn+1

dt

)

=
Qn

C
. (S-7.52)

Differentiating (S-7.52) with respect to time, and using dQn/dt = In, we obtain

L

(

d2In−1

dt2
− 2

d2In

dt2
+

d2In+1

dt2

)

=
In

C
, (S-7.53)

which is (7.4).

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
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b) By substituting In = Aeikna−iωt and In±1 = Aeik(n±1)a−iωt into (S-7.53), defining

ω2
0
= (LC)−1, and dividing both sides by LA eikna−iωt, we obtain

− ω2
(

eika − 2 + e−ika
)

= ω2
0 . (S-7.54)

The left-hand side can be rewritten

−ω2
(

eika − 2 + e−ika
)

= −ω2 [2 cos(ka) − 2] = −2ω2 [cos(ka) − 1]

= −2ω2

[

cos(ka) − cos2

(

ka

2

)

− sin2

(

ka

2

)]

= −2ω2

[

cos2

(

ka

2

)

− sin2

(

ka

2

)

− cos2

(

ka

2

)

− sin2

(

ka

2

)]

= 4ω2 sin2

(

ka

2

)

. (S-7.55)

ω

π

a

kO

ω0

2

Fig. S-7.6

Substituting into (S-7.54) we have

ω2 =
ω2

0

4 sin2(ka/2)
, (S-7.56)

or

ω =
ω0

2| sin(ka/2)|
. (S-7.57)

Fig. S-7.6 shows the plot of the disper-

sion relation. Compare this behavior

with the dispersion relation shown in

Fig. S-7.4 for an LC network, where

capacitors and inductors are swapped

with respect to the present case (Problem 7.4). In the LC network 2ω0 is an upper

cut-off frequency. Here, in the CL network, we have a lower cut-off frequency ω0/2,

and the CL ladder network acts as a low-pass filter.

S-7.6 A non-dispersive transmission line

a) The voltage drop from x to x + dx is

V(x, t) − V(x + dx, t) = ∂tI(x, t)L + I(x, t)R , (S-7.58)

which yields, after replacing R by Rℓdx and L by Lℓdx,

∂xV = −Lℓ∂tI − RℓI . (S-7.59)

The charge associated to the capacitance per unit length is Q = Q(x, t) = CV(x, t),

and charge conservation yields

http://dx.doi.org/10.1007/978-3-319-63133-2_7
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∂tQ(x, t) = I(x − dx, t) − I(x, t) − IL(x, t) , (S-7.60)

with the leakage current given by

IL = IL(x, t) = V(x, t)/Rp = V(x, t) Gℓdx . (S-7.61)

We thus obtain, by eliminating Q and replacing C by Cℓdx,

Cℓ∂tV = −∂xI −GℓV . (S-7.62)

Now we eliminate V by calculating

∂2
xI = −Cℓ∂t∂xV −Gℓ∂xV

= +LℓCℓ∂
2
t I +CℓRℓ∂tI +GℓLℓ∂tI +GℓRℓI , (S-7.63)

which yields Eq. (7.6).

b) By substituting (7.7) in (7.6) we obtain

− k2 +
ω2

v
2
0

= −iω(RℓCℓ + LℓGℓ) + RℓGℓ , (S-7.64)

where v
2
0
= (LℓCℓ)

−1. Thus, the wavevector k is a complex number. Writing k =

kr + iki we obtain

k2
r − k2

i =
ω2

v
2
0

− RℓGℓ , (S-7.65)

2krki = ω(RℓCℓ + LℓGℓ) . (S-7.66)

The wave is thus evanescent,

I(x, t) = I0e−ki xeikr x−iωt , (S-7.67)

where the acceptable values for ki are positive. Since in general kr = kr(ω) if Rℓ � 0

or Gℓ � 0, resistive effects make the line to be dispersive, so that a wavepacket is

distorted along its propagation.

c) If we assume that k2
i
= RℓGℓ in (S-7.65), then kr = ω/v0, which means that the

propagation is non-dispersive: the phase velocity vp = ω/kr = v0 is independent of

frequency. In addition, since ki does not depend on ω, the evanescence length k−1
i

is also frequency-independent. By substituting ki =
√

RℓGℓ and kr = ω(LℓCℓ)
1/2 in

(S-7.66) we obtain the condition

2
√

RℓGℓ
√

LℓCℓ = RℓCℓ + LℓGℓ . (S-7.68)

Squaring both sides and rearranging the terms yields (RℓCℓ − LℓGℓ)
2 = 0, which

leads to the simple, equivalent condition

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
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RℓCℓ = LℓGℓ . (S-7.69)

This is the condition for a non-dispersive or distortionless transmission line due to

O. Heaviside.

If the input current at one side of the line, say at x = 0, is

I(0, t) = I0(t) =

∫

Ĩ0(ω) e−iωtdω , (S-7.70)

where Ĩ0(ω) is the Fourier transform, then the current along the line will be given

by

I(x, t) =

∫

Ĩ0(ω)eikr x−iωte−ki xdω = e−ki x

∫

Ĩ0(ω)e−iω(t−x/v0)dω

= e−ki xI0(t − x/v0) , (S-7.71)

since ki is independent on ω. This is equivalent to state that the general solution of

(7.6) with the condition (S-7.69) has the form (7.8) with v = v0 and κ = ki.

The same conclusion may be obtained by direct substitution of (7.8) into Eq. (7.6).

The partial derivatives are given by

∂tI = −ve−κx f ′(x − vt) ,

∂2
t I = v

2e−κx f ′′(x − vt) ,

∂xI = −κe−κx f (x − vt) + e−κx f ′(x − vt) ,

∂2
xI = κ2e−κx f (x − vt) − 2κe−κx f ′(x − vt) + e−κx f ′′(x − vt) , (S-7.72)

where f ′(x) = d f (x)/dx and f ′′(x) = d2 f (x)/dx2. Thus Eq. (7.6) becomes

(κ2 − RℓGℓ) f + (v(RℓCℓ + LℓGℓ) − 2κ) f ′ + (1 − LℓCℓv
2) f ′′ = 0 . (S-7.73)

For this equation to be true for arbitrary f , the coefficients of f , f ′ and f ′′ must be

all zero. Thus

κ2 = RℓGℓ , 2κ = v(RℓCℓ + LℓGℓ) , v
2 = (LℓCℓ)

−1 , (S-7.74)

which bring again the conditions on the line parameters found above.

S-7.7 An “Alternate” LC Ladder Network

a) Let Qn be the charge of the capacitor at the right of mesh n. Applying Kirchhoff’s

mesh rule to the even and odd meshes of the ladder network we have, respectively,

− Q2n−1

C
+ L2

dI2n

dt
+

Q2n

C
= 0 , −Q2n

C
+ L1

dI2n+1

dt
+

Q2n+1

C
= 0 , (S-7.75)

while Kirchhoff’s junction rule gives

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7


286 S-7 Chapter Solutions for Chapter 7

dQ2n−1

dt
= I2n−1 − I2n ,

dQ2n

dt
= I2n − I2n+1 . (S-7.76)

Differentiating (S-7.75) with respect to time, and inserting (S-7.76), we obtain

L2
d2I2n

dt2
=

1

C

(

dQ2n−1

dt
− d2Q2n

dt2

)

=
1

C
(I2n−1 − 2I2n + I2n+1)

L1
d2I2n+1

dt2
=

1

C

(

dQ2n

dt
− d2Q2n+1

dt2

)

=
1

C
(I2n − 2I2n+1 + I2n+2) , (S-7.77)

identical to (7.9).

M Mm mκ κ κ κκ

x2n−1 x2n x2n+1 x2n+2

Fig. S-7.7

A mechanical equivalent to our network is the one-dimensional sequence of

masses and springs shown in Fig. S-7.7, where the masses have, alternately, the val-

ues M and m, while all springs are identical, with Hooke’s constant κ. If we denote

by x2n+1 the positions of the odd masses M, and by and x2n the positions of even

masses m, the equations of motion for the system are

m
d2x2n

dt2
= −κ(x2n − x2n+1) + κ(x2n−1 − x2n) = κ(x2n−1 − 2x2n + x2n+1)

M
d2x2n+1

dt2
= −κ(x2n+1 − x2n+2) + κ(x2n − x2n+1) = κ(x2n − 2x2n+1 + x2n+2),

(S-7.78)

which, after the substitutions m→ L2, M → L1, x→ I, and κ → 1/C, are identical

to (S-7.77).

b) Substituting (7.10) into (S-7.77), and dividing both sides by e−iωt, we obtain

−ω2L2Ie ei(2n) ka =
1

C

(

Io ei(2n−1) ka − 2Ie ei(2n) ka + Io ei(2n+1) ka
)

−ω2L2Io ei(2n+1) ka =
1

C

(

Ie ei(2n) ka − 2Io ei(2n+1) ka + Ie ei(2n+2) ka
)

. (S-7.79)

Now we define the two angular frequencies ωo = 1/
√

L1C and ωe = 1/
√

L2C, and

divide (S-7.79) by ei(2n) ka, obtaining

(2ω2
e − ω2) Ie − 2ω2

e cos(ka) Io = 0

2ω2
o cos(ka) Ie − (2ω2

o − ω2) Io = 0 . (S-7.80)

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7


S-7.7 An “Alternate” LC Ladder Network 287

This system of linear equations has non-trivial solutions if and only if its determi-

nant is zero, i.e., if

(2ω2
e − ω2)(2ω2

o − ω2) − 4ω2
oω

2
e cos2(ka) = 0 , (S-7.81)

the solution of this quadratic equation in ω2 is

ω2 = ω2
e + ω

2
o ±

√

(

ω2
e + ω

2
o

)2
− 4ω2

oω
2
e sin2(ka) . (S-7.82)

Both solutions are physically acceptable: the system allows for two types of propa-

gating waves, described by two different dispersion relations.

At the limit L2 ≪ L1 (or m ≪ M, for the equivalent mechanical system) we have

ω2
o ≪ ω2

e , and (S-7.82) can be approximated as

ω2 ≃ ω2
e + ω

2
o ± ω2

e

√

1 + 2
ω2

o

ω2
e

− 4
ω2

o

ω2
e

sin2(ka) (S-7.83)

where we have disregarded the fourth-order term ω4
o/ω

4
e inside the square root.

If we further use the approximation
√

1 + x ≃ 1 + x/2, valid for x ≪ 1, (S-7.83)

becomes

ω2 ≃ ω2
e + ω

2
o ± ω2

e

{

1 +
ω2

o

ω2
e

[

1 − 2 sin2(ka)
]

}

, (S-7.84)

corresponding to the two dispersion relations

ω ≃
⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

2(ω2
e + ω

2
o) − 2ω2

o sin2(ka)√
2ωo sin(ka)

(S-7.85)

κO
π

a

ω1

ω2

ω

ω3

Fig. S-7.8

The lower branch can propagate for fre-

quencies between 0 and ω1 =
√

2ωo, while

the upper branch lies between ω2 =

ωe

√

2(1 − ω2
o/ω

2
e) and ω3 =

√
2ωe. Thus,

there is a gap of “forbidden” frequencies

between ω1 and ω2. Figure S-7.8 shows the

exact solution (continuous lines), and the

approximate solution (dashed lines), still in

good agreement, for ω2
o/ω

2
e = 0.25.

Of course, the two branches are present

also in the case of the alternating mechanical

oscillators, and provide a model for an effect

known in solid state physics. The vibrations
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of a lattice formed by identical ions have a single branch (Problem 7.4), with a dis-

persion relation similar to the lower branch, which is named “acoustic branch”. In

an ionic crystal, formed by two ion species alternating on the sites of the lattice, we

observe also the upper branch, named “optical branch”.

S-7.8 Resonances in an LC Ladder Network

a) According to Problem 7.4, the current flowing in the nth mesh is

d2In

dt2
= ω2

0(In+1 − 2In + In−1) . (S-7.86)

We are looking for a propagating wave solution, and define the phase

φ ≡ ka , (S-7.87)

where a is the length of a single mesh, to be substituted into (S-7.44), writing In(t)

as

In(t) = Aeinφ−iωt . (S-7.88)

Substituting (S-7.88) into (S-7.86), and dividing by e−iωt, we get

− ω2einφ = ω2
0

[

ei(n+1)φ − 2einφ + ei(n−1)φ
]

, (S-7.89)

from which we obtain the dispersion relation

ω2 = ω2
0 (2 − eiφ − e−iφ) = 2ω2

0 (1 − cos φ) = 4ω2
0 sin2(φ/2) , (S-7.90)

whose inverse is

sin

(

φ

2

)

=
ω

2ω0
, or φ = 2 arcsin

(

ω

2ω0

)

, (S-7.91)

that shows that φ is a real number if ω < 2ω0.

Due to the presence of the current source, (S-7.88) holds if the current in the 0th

mesh is

I0(t) = Ise
−iωt , (S-7.92)

thus we must have A = Is, and the final expression for In(t) is

In(t) = Ise
inφ−iωt , (S-7.93)

where φ is given by (S-7.91)

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
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b) Ifω > 2ω0 the current wave cannot propagate in the ladder. We look for a solution

of the form suggested by the hint. Substituting (7.12) into (S-7.86) we obtain

− ω2α−n = ω2
0

[

α−(n+1) − 2α−n + α−(n−1)
]

, (S-7.94)

which, multiplied by αn/ω2
0
, turns into

α2 +

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ω2

ω2
0

− 2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

α + 1 = 0 . (S-7.95)

The solutions are

α = 1 − ω
2

2ω2
0

±

√

√

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 − ω
2

2ω2
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

− 1 . (S-7.96)

We must have |α| < 1 for an infinite ladder, otherwise the current would grow indef-

initely in successive meshes. Thus, we keep the solution with the plus sign, because

ω > 2ω0 implies that all solutions of (S-7.96) are negative, obtaining

In(t) = Is(−1)n|α|ne−iωt, |α| = ω
2

2ω2
0

− 1 −

√

√

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ω2

2ω2
0

− 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

− 1 , (S-7.97)

that we can rewrite as

In(t) = Is e−γn−iωt , where γ = iπ + ln |α| . (S-7.98)

c) We consider the case of the propagating wave (ω < 2ω0) first. If the ladder com-

prises N meshes numbered as in Fig. 7.8, the boundary condition at the right end is

IN(t) ≡ 0 (mesh number N does not exist!). The most general solution is the sum of

two counterpropagating waves

In(t) = Aeinφ−iωt + Be−inφ−iωt . (S-7.99)

Imposing the conditions I0 = Is and IN = 0, we obtain

A + B = Is, AeiNφ + Be−iNφ = 0 , (S-7.100)

with solutions

A = +
i

2
Is

e−iNφ

sin(Nφ)
, B = − i

2
Is

e+iNφ

sin(Nφ)
, (S-7.101)

where φ = φ(ω) depends on ω according to (S-7.91). We observe resonances when

sin(Nφ) = 0, i.e., for φ = mπ/N with m an integer. Remembering (S-7.87)

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
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N = m
π

φ
= m

π

ka
= m
π

a

λ

2π
= m

1

a

λ

2
, (S-7.102)

and, multiplying both sides by a

L = Na = m
λ

2
, (S-7.103)

where L is the total length of the ladder network. This corresponds to the case when

the frequency of the current source equals the frequency of one of the standing

waves allowed in the network, i.e., when the length of the ladder network is an

integer multiple of a half wavelength.

If ω > 2ω0, the general solution is

In(t) = Aαn
+e−iωt + Bαn

−e−iωt, (S-7.104)

where α± = α±(ω) are the two solutions of (S-7.96). Here also the case |α| > 1 is

allowed, because |α|n cannot diverge if n is limited. The boundary conditions are

A + B = Is , AαN
+ + Bα+N

− = 0 , (S-7.105)

with solutions

A = +Is

αN
−

αN
− − αN

+

, B = −Is

αN
+

αN
− − αN

+

. (S-7.106)

The A and B coefficients diverge if α− = α+ = 1, i.e., if ω = 2ω0. Thus, for ω > 2ω0

there are no resonances, but the response of the system diverges as the frequency

approaches the cut-off value, i.e. as ω→ 2ω0.

S-7.9 Cyclotron Resonances (1)

a) The rotating electric field can be written as

E = E(t) = E0 (x̂ cosωt ± ŷ sinωt) , (S-7.107)

where the positive (negative) sign indicates counterclockwise (clockwise) rotation.

From the equation of motion

m
dv

dt
= q

(

E +
v

c
× B

)

, (S-7.108)

we see that dvz/dt = 0, thus, if we assume that vz(0) = 0, the motion occurs in the

(x, y) plane. The equations of motion along the x and y axes are
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dvx

dt
= +qvy

B0

mc
+

qE0

m
cosωt

dvy

dt
= −qvx

B0

mc
± qE0

m
sinωt . (S-7.109)

In principle, we can differentiate both equations with respect to time, and then sub-

stitute the expressions for dvx,y/dt, thus obtaining two uncoupled second-order dif-

ferential equations for a driven harmonic oscillator.

But we prefer a a more “elegant” approach, introducing the complex variable

ζ = vx + ivy. The velocity is thus represented by a complex vector in the (Reζ, Imζ)

plane. Adding the second of (S-7.109), multiplied by i, to the first, we obtain

dζ

dt
= −iωc ζ +

qE0

m
e±iωt, (S-7.110)

where ωc = qB0/mc is the cyclotron (or Larmor) frequency. The solution of the

associated homogeneous equation is

ζ(t) = A e−iωct , (S-7.111)

where A is an arbitrary complex constant. Equation (S-7.111) describes the motion

in the absence of the electric field, when the velocity rotates clockwise with fre-

quency ωc in the ζ plane. We then search for a particular integral of the inhomoge-

neous equation in the form

ζ = ζ0 e±iωt ,

and find, by direct substitution,

ζ0 = −i
qE0

m (ωc ± ω)
. (S-7.112)

Thus the general solution of (S-7.110) is

ζ(t) = A e−iωct − i
qE0

m (ωc ± ω)
e±iωt . (S-7.113)

Assuming ωc > 0, we observe a resonance at ω = ωc only if the field rotates clock-

wise. In this case the electric field accelerates the particle along the direction of its

“natural” motion.

b) At resonance (ω = ωc), we search for a non-periodic solution of the form

ζ(t) = ζR(t) e−iωt , (S-7.114)

which, substituted into (S-7.110), gives
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(

dζR

dt

)

e−iωt − iωζR e−iωt = −iωc ζR e−iωt +
qE0

m
e−iωt , (S-7.115)

and, since ωc = ω,

(

dζR

dt

)

=
qE0

m
. (S-7.116)

The solution of (S-7.116) is

ζR(t) = ζ(0) +
qE0

m
t , (S-7.117)

which gives

ζ(t) =

[

ζ(0) +
qE0

m
t

]

e−iωt . (S-7.118)

The trajectory is a spiral, with the radial velocity increasing linearly with time.

c) Introducing a viscous force fv = −mγv we obtain the following equation for ζ

dζ

dt
= −iωc ζ − γζ +

qE0

m
e−iωt . (S-7.119)

The solution has the form of (S-7.113) with ωc replaced by (ωc − iγ),

ζ = −i
qE0

m(ωc − ω − iγ)
e−iωt + A e−iωct−γt , (S-7.120)

where the second term undergoes an exponential decay, and any memory of the

initial conditions is lost after a transient phase, while the periodic part of the solution

does not diverge at resonance, due to the presence of iγ in the denominator. Thus,

the steady-state solution at resonance is

ζR =
qE0

mγ
e−iωt . (S-7.121)

The average dissipated power is the time average of the instantaneous dissipated

power over a period

P = 〈f · v〉 = 〈qE · v〉. (S-7.122)

The components of the particle velocity in the steady state are

vx = Re(ζ) =
qE0γ

m
[

(ωc − ω)2 + γ2
] cosωt − qE0 (ωc − ω)

m
[

(ωc − ω)2 + γ2
] sinωt ,

vy = Im(ζ) = − qE0γ

m
[

(ωc − ω)2 + γ2
] sinωt − qE0 (ωc − ω)

m
[

(ωc − ω)2 + γ2
] cosωt . (S-7.123)



S-7.9 Cyclotron Resonances (1) 293

Thus, inserting (S-7.123) and the relations

Ex = E0 cosωt , Ey = −E0 sinωt , 〈cos2 ωt〉 = 〈sin2 ωt〉 = 1

2
,

〈cosωt sinωt〉 = 0 , (S-7.124)

into (S-7.122), we obtain for the average dissipated power

P =
q2E2

0
γ

m
[

(ωc − ω)2 + γ2
] . (S-7.125)

At resonance we have

P =
q2E2

0

mγ
. (S-7.126)

S-7.10 Cyclotron Resonances (2)

a) The equations of motion are

dvx

dt
= +ωcvy +

qE0

m
cosωt ,

dvy

dt
= −ωcvx , (S-7.127)

where ωc = qB0/m. By differentiating (S-7.127) with respect to time, and substitut-

ing the values for v̇x and v̇y from (S-7.127) itself, we obtain the two equations

d2
vx

dt2
= +ωc

dvy

dt
− qE0ω

m
sinωt = −ω2

cvx −
qE0ω

m
sinωt ,

d2
vy

dt2
= −ωc

dvx

dt
= −ω2

cvy −
qE0ωc

m
cosωt , (S-7.128)

each of which describes the velocity of a driven harmonic oscillator. The steady

state solutions are

vx =
qE0ω

m (ω2 − ω2
c)

sinωt , vy =
qE0ωc

m (ω2 − ω2
c)

cosωt . (S-7.129)

We observe a resonance if ω = |ωc|, independently on the signs of q and B0. With

respect to Problem 7.9, where a rotating electric field was assumed, here a resonance

is always found because the linearly oscillating electric field can be decomposed

into two counter-rotating fields of the same amplitude, of which one will excite the

resonance.

b) In the presence of a frictional force f = −mγv the equations of motion become

http://dx.doi.org/10.1007/978-3-319-63133-2_7
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dvx

dt
= +ωcvy − γvx +

qE0

m
cosωt ,

dvy

dt
= −ωcvx − γvy , (S-7.130)

and cannot be uncoupled by the procedure of point a). Analogously to Problem 7.9,

we introduce the complex quantity ζ = vx + ivy, obtaining the single equation

dζ

dt
= −iωcζ − γζ +

qE0

2m

(

eiωt + e−iωt
)

, (S-7.131)

where we have used Euler’s formula for the cosine. Differently from Problem 7.9,

now we search for a steady-state solution of the form

ζ = Ae−iωt + Beiωt , (S-7.132)

where A and B are two complex constants to be determined. By direct substitution
into (S-7.131) we have

−iωAe−iωt + iωBeiωt = −(iωc + γ)Ae−iωt − (iωc + γ)Beiωt +
qE0

2m

(

eiωt + e−iωt
)

,

which is separable into two equations relative, respectively, to the terms rotating

clockwise and counterclockwise in the complex plane

− iωA = −(iωc + γ)A +
qE0

2m
, iωB = −(iωc + γ)B +

qE0

2m
. (S-7.133)

The solutions for A and B are

A =
qE0

2m[i(ωc − ω) + γ]
=

qE0γ

2m[(ωc − ω)2 + γ2]
− i

qE0(ωc − ω)

2m[(ωc − ω)2 + γ2]

B =
qE0

2m[i(ωc + ω) + γ]
=

qE0γ

2m[(ωc + ω)2 + γ2]
− i

qE0(ωc + ω)

2m[(ωc + ω)2 + γ2]
,

(S-7.134)

from which we obtain the stationary-state velocity components of the particle

vx = [Re(A) + Re(B)] cosωt + [Im(A) − Im(B)] sinωt

vy = [Im(A) + Im(B)] cosωt − [Re(A) − Re(B)] sinωt . (S-7.135)

The average absorbed power is

P = 〈qv · E〉 = 〈qvxEx〉 = q[Re(A) + Re(B)]E0
1

2

=
q2E2

0
γ

4m[(ωc − ω)2 + γ2]
+

q2E2
0
γ

4m[(ωc + ω)2 + γ2]
, (S-7.136)

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
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since Ex = E0 cosωt, 〈cos2 ωt〉 = 1/2, and 〈cosωt sinωt〉 = 0. Thus, again, we

observe a resonance at ω = |ωc|, independently of the signs of q and B0. Assum-

ing γ ≪ ωc the power absorbed at resonance is

Pmax ≃
q2E2

0

4mγ
. (S-7.137)

S-7.11 A Quasi-Gaussian Wave Packet

We need to evaluate the inverse transform

f (x) = A

∫ +∞

−∞
e−L2(k−k0)2

eiφ(k)eikxdk

≃
∫ +∞

−∞
exp

[

−L2(k − k0)2 + iφ0 + iφ′0(k − k0)+

+
i

2
φ′′0 (k − k0)2 + i(k − k0)x + ik0x

]

dk , (S-7.138)

where, for brevity, we wrote x instead of (x − vt), and φ0, φ′
0
, . . . instead of φ(k0),

φ′(k0), . . . By using (7.1) we obtain

f (x) ≃ Aeik0 x+iφ0

∫ +∞

−∞
exp

[

−L2(k − k0)2

(

1 − i
φ′′

0

2L2

)

+ i(k − k0)(x + φ′0)

]

dk

= C exp

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
(x + φ′

0
)2

4L2(1 − iφ′′
0
/2L2)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (S-7.139)

where C is a constant, whose value is not relevant for our purposes. By substituting

1

1 − iφ′′
0

(2L2)
=

1 + iφ′′
0
/(2L2)

1 + φ′′2
0
/(4L4)

(S-7.140)

we obtain the wave packet profile as

f (x − vt) = C exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
(x − vt + φ′

0
)2[1 + iφ′′

0
/(2L2)]

L2[1 + φ′′
0

2/(4L4)]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (S-7.141)

We thus see that the packet is wider than the purely Gaussian case, since L2[1 +

φ′′
0

2/(4L4)] > L2. In addition, the center of the packet is shifted from (x − vt) to

(x − vt + φ′
0
), and there is an aperiodic (anharmonic) modulation due to the factor

(iφ′′
0
/2L2) in the numerator of the exponent.

http://dx.doi.org/10.1007/978-3-319-63133-2_7
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S-7.12 A Wave Packet Traveling along a Weakly Dispersive Line

a) There is no dispersion if b = 0. In these conditions the signal propagates at veloc-

ity v keeping its shape:

f (x − vt) = Ae−iω0(t−x/v)e−(t−x/v)2/τ2 . (S-7.142)

b) The phase velocity and the group velocity are, by definition,

vφ =
ω

k
= v(1 + bk) , vg =

∂ω

∂k
= v(1 + 2bk) . (S-7.143)

We can write vφ and vg as functions of ω by first inverting (7.17), obtaining for

k = k(ω)

k =

√

1

(2b)2
+
ω

bv

− 1

2b
. (S-7.144)

Then we expand the square root to the second order in ω/v, obtaining

k ≃ ω
v

− ω
2b

v
2
. (S-7.145)

The same result can also be obtained by an iterative procedure, by inserting the first

order value for k, i.e., k = ω/v, into the bracket at the right hand side of (7.17). Thus,

the phase and group velocities to the first order are, using (S-7.143),

vφ0 ≃ v + bω0 , vg0 ≃ v + 2bω0 . (S-7.146)

c) The peak of the signal propagates at the group velocity, thus tx = x/vg0. The

spectral width of the wave packet may be estimated as ∆ω ≃ 1/τ, which corresponds

to a spread in the propagation velocity of its Fourier components

∆v ≃ v

(

2b

v

∆ω

)

≃ 2b

τ
. (S-7.147)

Thus the spread of the wave packet in time and space can be estimated as

∆t ≃ ∂tx

∂vg

∆v = tx

∆v

vg

, ∆x ≃ vg∆t =
2bx

vgτ
. (S-7.148)

d) We approximate

k(ω) ≃ k0 + k′0(ω − ω0) +
1

2
k′′0 (ω − ω0)2 , (S-7.149)

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_7
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where

k′0 =
∂k

∂ω

∣

∣

∣

∣

∣

ω0

≃ 1

v

− 2
ω0b

v
2
≃ 1

vg

, k′′0 =
∂2k

∂ω2

∣

∣

∣

∣

∣

∣

ω0

≃ −2
b

v
2
. (S-7.150)

The spectrum of the wave packet (i.e., its Fourier transform) is

f̃ (ω) =
√
πτAe−[ω−ω0]2τ2/4 . (S-7.151)

Since we are only interested in the behavior of the function, we evaluate the follow-

ing integral forgetting proportionality constants,

f (x, t) ∼
∫

exp

[

ik(ω)x − iωt −
(ω − ω0)2 τ2

4

]

dω

∼
∫

exp

[

ik0x + ik′0x(ω − ω0) + i
k′′

0
x

2
(ω − ω0)2 − (ω − ω0)2τ2

4

]

dω

∼ exp(ik0x − iω0t)

∫

exp

[

−i(t − k′0x)ω′ +

(

−τ
2

4
+ i

k′′
0

x

2

)

ω′2
]

dω′

∼ exp

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ik0x − iω0t −
(t − k′

0
x)2

τ2 − 2ik′′
0

x

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (S-7.152)

The factor which describes the envelope of the wave packet (recalling that k′
0
=

1/vg0) is

exp

⎡

⎢

⎢

⎢

⎢

⎣

−
(t − x/vg)2

τ2 − 2ik′′
0

x

⎤

⎥

⎥

⎥

⎥

⎦

= exp

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−(t − x/vg)2
τ2 + 2ik′′

0
x

τ4 + (2k′′
0

x)2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−(t − x/vg)2
1 + 2ik′′

0
x/τ2

τ2[1 + (2k′′
0

x/τ)2]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (S-7.153)

The temporal width of the wave packet increases during the propagation as

∆t(x) = τ

√

1 +

(

2k′′
0

x

τ

)2

. (S-7.154)



Chapter S-8

Solutions for Chapter 8

S-8.1 Poynting Vector(s) in an Ohmic Wire

For symmetry reasons, the magnetic field is azimuthal and depends only on the

radial coordinate r. Applying Ampère’s law to a circular path of radius r < a around

the wire axis yields
2πrB =

4π

c
(πr2J) , (S-8.1)

which leads to
B =

2π

c
rσEφ̂ , (S-8.2)

where φ̂ is the azimuthal unit vector. Thus, the Poynting vector at a distance r from

the axis is

S =
c

4π
E×B = −r

σ

2
E2 . (S-8.3)

a

r
J

dA
S

S

dA

h

Fig. S-8.1

The energy flux ΦS ≡ Φ(S) through the sur-

face of a cylinder of radius r < a and length h

and coaxial to the wire is thus

ΦS =

∮

S ·dA = −2πrhS (r)

= −πr2hσE2 , (S-8.4)

where dA is the vector surface element of the

cylinder. The energy flows inwards, and is entirely dissipated into Joule heating

inside the cylinder volume, as we can check by calculating

W =

∫

J ·EdV = πr2hJE = πr2hσE2 , (S-8.5)
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where the integral is extended to the volume the cylinder. The equality W = −ΦS

satisfies Poynting’s theorem since there is no variation in time of the EM energy.

Note that, in the approximation of an infinitely long wire, the electric field is

uniform also for r > a (in the case of a finite wire of length 2h≫ a, this is a good

approximation in the central region for r≪ h, see Problem 4.9), while the magnetic

field B = 2πJa2/rc. Within this approximation, S = −(a2σE2/2r)r̂ for r > a, so that

the energy flux is independent of r and it is still equal to minus the total dissipated

power:
ΦS = −2πrhS (r) = −πa2hσE2 (r > a) . (S-8.6)

b) We must show that ∇ · (S−S′) = 0, i.e., that S−S′ = ∇× f, where f is a vector

function of the coordinates. Let us substitute E = −∇ϕ into (8.7)

S =
c

4π
E×B = −

c

4π
∇ϕ×B . (S-8.7)

Now from the vector identity

∇× (ϕB) = ∇ϕ×B+ϕ∇×B = ∇ϕ×B+ϕ

(

4π

c
J

)

(S-8.8)

we obtain

∇ϕ×B = ∇× (ϕB)−ϕ

(

4π

c
J

)

, (S-8.9)

which can be substituted into (S-8.7), leading to

S = ϕJ−
c

4π
∇× (ϕB) . (S-8.10)

Thus, we are free to redefine the Poynting vector as

S′ = ϕJ, (S-8.11)

since

S−S′ = ∇×

(

−
c

4π
ϕB

)

. (S-8.12)

a

r
J

dA
S

S

dA

h

Fig. S-8.2

We can show that S′ is equivalent to S by

computing its flux through the same cylindri-

cal surface as above. Since S′ is parallel to

the wire axis, only the two base surfaces con-

tribute to the flux ΦS ′ ≡Φ(S′)

http://dx.doi.org/10.1007/978-3-319-63133-2_4
http://dx.doi.org/10.1007/978-3-319-63133-2_8
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ΦS ′ = πa
2[−S (z)+S (z+h)]

= πa2J[ϕ(z+h)−ϕ(z)] . (S-8.13)

Since ϕ = −Ez, we finally obtain

ΦS ′ = πa
2[−S (z)+S (z+h)] = −πa2hJE , (S-8.14)

which gives again minus the total dissipated power.

S-8.2 Poynting Vector(s) in a Capacitor

a) The magnetic field has azimuthal symmetry, i.e., B = B(r) φ̂, and can be evaluated

from the equation c∇×B = ∂tE, which, with our assumption E = E0 t/τ, leads to

B(r) =
r

2c
∂tE =

r

2cτ
E0 . (S-8.15)

b) The corresponding Poynting vector S is

S =
c

4π
E ẑ× (B φ̂) = −

r

8π
(E∂tE)

(

ẑ× φ̂
)

= −
1

2
∂t

(

E2

8π

)

r. (S-8.16)

We evaluate the flux of S through the smallest closed cylindrical surface enclosing

our capacitor, shown in Fig. S-8.3. Since S is radial, only the lateral surface of the

cylinder contributes to the flux, and we have

Φ(S) = −2πahS (a) = −πa2h∂t

(

E2

8π

)

. (S-8.17)

S(a

S (z + h)

S (z)

S(a)

Fig. S-8.3

Quantity (E2+B2)/8π is the energy density asso-

ciated to the EM field, and, since in our case B

does not depend on time, is also the total EM

energy density inside the capacitor. Thus, Φ(S)

equals minus the time derivative of the energy

stored in the capacitor. For a general dependence

of Ez(t) on time, B is also time-dependent, and

the flux of S equals the time derivative of the

electrostatic energy to the first order, within the

slowly varying current approximation.

c) The electric potential is ϕ = −Ez. By substituting E = −∇ϕ into (8.7) we obtain

S =
c

4π
(−∇ϕ)×B = −

c

4π

[

∇× (ϕB)−ϕ∇×B
]

. (S-8.18)

http://dx.doi.org/10.1007/978-3-319-63133-2_8
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Thus, the vector

S′ ≡
c

4π
ϕ∇×B =

1

4π
ϕ∂tE = S+

c

4π
∇× (ϕB) (S-8.19)

equals S plus the curl of a vector function, and is thus another suitable Poynting

vector. Since S′ is perpendicular to the capacitor plates, its flux through our closed

cylindrical surface is (see Fig. S-8.3)

Φ(S′) = πa2 [

S ′(z+h)−S ′(z)
]

= −πa2h

(

E∂tE

4π

)

= −πa2h∂t

(

E2

8π

)

,

(S-8.20)

in agreement with (S-8.17).

S-8.3 Poynting’s Theorem in a Solenoid

a) We take a cylindrical coordinate system with the z axis along the solenoid axis.

Inside an infinite solenoid the magnetic field is uniform and equals B = B ẑ =

(4π/c)nI ẑ. According to Faraday’s law of induction, the rate of change of B = B(t),

due to the time dependence of I = I(t), generates an electric field E associated to the

induced electromotive force. For symmetry reasons, the field lines of E are circles

coaxial to the solenoid, i.e., we have E = E(r) φ̂. Applying Faraday’s law to a circle

of radius r < a, coaxial to the solenoid, we have

2πrE(r) = −πr2 1

c
∂tB = −πr

2 4πnI0

c2τ
, (S-8.21)

from which E(r) = −2πnI0r/(c2τ).

b) The Poynting vector inside the solenoid (r < a) is

S =
c

4π
E×B = −

2π (nI0)2 rt

(cτ)2
(φ̂× ẑ) = −

2π (nI0)2t

(cτ)2
r . (S-8.22)

Thus, the flux of S = S(r) through the surface of a closed cylinder of radius r and

height h is nonzero only through the lateral surface, and we have

Φ(S) = 2πrhS · r̂ = −

(

2πnI0r

cτ

)2

ht . (S-8.23)
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The magnetic energy enclosed by the cylinder surface is

UM = uMV =
B2

8π
πr2h = 2π2r2h

(

nI0 t

cτ

)2

, (S-8.24)

where V is the volume of the cylinder, thus

dUM

dt
= 4π2r2ht

(

nI0

cτ

)2

= −Φ(S) , (S-8.25)

according to Poynting’s theorem, since the electric field is constant in time, and

J ·E = 0 for r < a, i.e., inside the solenoid.

c) Outside the solenoid (r > a) we have B = 0. Correspondingly, also S = 0 and

Φ(S) = 0. The rate of change of the magnetic energy is given by (S-8.25) with r = a,

and must equal the volume integral of J ·E, which is the work done by the induced

field on the current flowing in the coils (notice that this is different from the electric

field driving the current and causing Joule heating in the coils, see Problem 13.18).

In our representation, the current is distributed on the surface r = a, thus Jd3r is

replaced by nI dS = nIadφdz in the integral, and E is evaluated at r = a. We thus

obtain

∫

V

J ·Ed3r =

∫

S

nI E(a)dS = −2πah

(

nI0
t

τ

)

(

2πnI0 a

c2τ

)

= −4πa2ht

(

nI0

cτ

)2

= −
dUM

dt

∣

∣

∣

∣

∣

r=R
. (S-8.26)

S-8.4 Poynting Vector in a Capacitor with Moving Plates

a) We use a cylindrical coordinate system (r,φ,z), with the z axis along the symmetry

axis of the capacitor, and the origin on the fixed plate. Thus, within the limits of our

approximations, the electric field is uniform and parallel to ẑ inside the capacitor,

whose capacitance is

C =
πa2

4πh(t)
=

a2

4(h0+ vt)
. (S-8.27)

In the case of the isolated plates the charge is constant and equal to Q0, while the

voltage between the plates V and the electric field E between the plates are, respec-

tively,

V =
Q0

C
= Q0

4(h0+ vt)

a2
, E =

V

h
=

4Q0

a2
. (S-8.28)

http://dx.doi.org/10.1007/978-3-319-63133-2_13
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In the case of constant voltage between the plates, V = V0, the charge Q of the

capacitor and the electric field E are, respectively.

Q =CV0 = V0
a2

4(h0+ vt)
, E =

V0

h0+ vt
. (S-8.29)

In the case of constant charge, the electrostatic force between the plates Fes is also

constant and equals

Fes = −Q
E

2
= −

2Q2
0

a2
, (S-8.30)

while in the case of constant voltage we have

Fes = −Q
E

2
= −V2

0

a2

8(h0+ vt)2
, (S-8.31)

in both cases the minus signs means that the force is attractive. In both cases the

applied external force Fmech must cancel the electrostatic force, i.e., we must have

Fmech = −Fes, for the plates to move at constant velocity.

b) The electrostatic energy can be written as

U =
1

2

Q2

C
=

1

2
CV2 , (S-8.32)

so that at constant charge we have

U = Q2
0

2(h0+ vt)

a2
,

dU

dt
=

2vQ2
0

a2
> 0 , (S-8.33)

while at constant voltage we have

U = V2
0

a2

8(h0+ vt)
,

dU

dt
= −

a2vV2
0

8(h0+ vt)2
< 0 . (S-8.34)

c) At constant charge, the electric field E= E0 ẑ is also constant, with E0 =Q0/(πa
2),

therefore the displacement current density JD = ∂tE/c is zero. Also the conduction

current density JC is zero between the plates (actually, there is a conduction current

localized on the moving plate, we shall come back to this point below), so that also

the magnetic field B is zero between the plates.
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At constant voltage, the electric field is E = ẑV0/h(t) = ẑV0/(h0 + vt), implying

the presence of a displacement current along ẑ. The magnetic field can be calculated

by taking the path integral of B over a circumference of radius r < a coaxial with,

and located between, the plates, which equals the flux of the displacement current

through the enclosed circle. Due to the cylindrical symmetry of the system, the only

nonzero component of B is azimuthal, B = B(r, t) φ̂, and calculating its path integral

over the circle of radius r corresponding to a field line we have for B = B(r, t)

2πrB = −
πr2

c
∂tE = −

πr2

c

V0 v

(h0+ vt)2
, (S-8.35)

so that

B = −
r

2c

V0 v

(h0+ vt)2
. (S-8.36)

d) At constant charge we have B = 0, and the Poynting vector S = (c/4π)E×B is

also zero. In this case, (S-8.30) and (S-8.33) tell us that the rate of work done against

the electric force Wmech

Wmech = Fmech · v = −Fes · v =
2Q2

0
v

a2
(S-8.37)

equals the rate of change the electrostatic energy dU/dt. This rate of work must

also equal minus the integral of J ·E over the whole space, according to Poynting’s

theorem. We verify this at the end of this answer.

At constant voltage, the Poynting vector is radial, S = S r̂, and, according to

(S-8.29) and (S-8.36), we have

S = −
c

4π
EzBφ =

V2
0

vr

8π (h0+ vt)3
. (S-8.38)

Evaluating the flux of S through the minimum closed surface enclosing the capaci-

tor, of lateral surface 2πa (h0+ vt), we obtain

ΦS = 2πa(h0+ vt)
V2

0
va

8π (h0+ vt)3
=

a2V2
0

v

4(h0+ vt)2
. (S-8.39)

Through (S-8.31) and (S-8.34) we can verify that

−ΦS =
dU

dt
+Fv . (S-8.40)
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Note also that, in this case, ΦS equals the power absorbed by the voltage source. In

fact, the current flowing through the circuit is

I =
dQ

dt
= −

a2v

4(h0+ vt)2
V0 , (S-8.41)

where we have inserted the first of (S-8.29), corresponding to a power absorption

by the source

W = −V0 I =
a2v

4(h0+ vt)2
V2

0 =Φs . (S-8.42)

We avoided so far to discuss the role of the conduction current circulating in the

plates [the following discussion will require some familiarity with the distributions

δ(x) and Θ(x), where Θ(x) is the Heaviside step function, defined by Θ(x) = 1 for

x > 0 and Θ(x) = 0 for x < 0; notice that dΘ(x)/dx = δ(x)]. Let us consider the

constant charge case. Since the upper plate has a charge Q0 distributed on the surface

z = −h0+ vt and moves with velocity v, there is actually a current density

JC =
Q0

πa2
vδ(z−h0− vt) . (S-8.43)

On the other hand, the electric field between the plates may be written as

E = −
4Q0

a2
[Θ(z)−Θ(z−h0− vt)] ẑ , (S-8.44)

where Θ(z) is the Heaviside step function, defined by Θ(z) = 1 for z > 0 and Θ(z) = 0

for z < 0. This expression takes into account the fact that at each time t the field

exists only in the 0 < z < vt region, so it is actually a time-dependent field. Since

dΘ(z)/dz = δ(z), the displacement current is

JD =
1

c
∂tE = −

4Q0v

a2c
δ(z−h0− vt) ẑ = −

4π

c
JC , (S-8.45)

so that the source term for the magnetic field (4π/c)JC +JD is zero. It also follows

that

JC ·E = −
1

4π
(∂tE) ·E = −

1

8π
∂tE

2 , (S-8.46)
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which ensures energy conservation, since the work done on the current equals the
rate of change of the electrostatic energy. In detail, we have

∂tE
2 =

(

4πσup

)2
∂tΘ(z−h0 − vt) = −v

(

4Q0

a2

)2

δ(z−h0 − vt) , (S-8.47)

thus

∫

JC ·Ed3r =
v (4πσ)2

8π

∫

δ(z−h0− vt)d3r

= 2π2a2σ2v =
2vQ2

0

a2
=

dU

dt
. (S-8.48)

S-8.5 Radiation Pressure on a Perfect Mirror

cτ

x

A

A

cτ

Fig. S-8.4

a) We consider the case of perpendicular inci-

dence first, and choose a Cartesian reference

frame with the x axis perpendicular to the mir-

ror surface. The incident plane wave packet has

duration τ (with τ≫ 2π/ω, the laser period), cor-

responding to a length cτ, and propagates along

x̂. We want to calculate how much momentum is

transferred to an area A of the mirror surface dur-

ing the reflection of the whole wave packet. The

momentum transferred per unit time and area is

the pressure exerted by the radiation.

The momentum density of an EM field is

S/c2, where S = cE×B/4π is the Poynting vector. Thus the total momentum deliv-

ered by the incident wave packet on the area A is

pi =

〈

Si

c2

〉

cτA = x̂
I

c
τA (S-8.49)

where the angle brackets denote the average over one cycle, Si is the Poynting vector

of the incident packet, and I = |〈Si〉| is the intensity of the incident pulse (the average

flux of energy per unit time and area), according to Poynting’s theorem of energy

conservation.

The reflected wave packet carries a total momentum, over the area A,

pr =

〈

Sr

c2

〉

cτA = −x̂
I

c
τA (S-8.50)
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where Sr = −Si is the Poynting vector of the reflected packet. The momentum trans-

ferred to the mirror over the surface area A during the time interval τ is thus

∆p = pi−pr = |∆p| x̂ (S-8.51)

and the corresponding pressure is

Prad =
|∆p|

τA
= 2

I

c
. (S-8.52)

Using a similar heuristic argument, it is quite straightforward to find the radiation

pressure for oblique incidence at an angle θ from the normal to the mirror surface.

In fact, in this case the momentum transferred to the mirror along the normal is

∆p = pi−pr = 2x̂
I

c2
cτAcosθ = 2x̂

I

c
τAcosθ , (S-8.53)

and the area of incidence is now A/cosθ. Thus

Prad = |pi−pr|
cosθ

τA
= 2

I

c
τAcosθ

cosθ

τA
= 2

I

c
cos2 θ . (S-8.54)

b) The mechanical force on a closed system of charges, currents and fields is given

by the following integral over the volume of the system

Fmech =
dpmech

dt
=

∫

V

(

̺E+
1

c
J×B

)

d3r. (S-8.55)

From now on, we shall consider the case of perpendicular incidence only, and leave

the case of oblique incidence as a further exercise for the reader. In the present case,

̺ = 0 everywhere and only the magnetic term contributes. Thus, in plane geometry

the time-averaged force on a planar surface of area A is

〈Fmech〉 =

∫

+∞

0

〈

1

c
J×B

〉

Adx (S-8.56)

and is directed along x̂ for symmetry reasons.

The current in a perfect mirror is localized on the surface, where the magnetic

field is discontinuous. Here we assume that the wave fields B and E are parallel to ẑ

and ŷ, respectively. Let Ei(x, t) = ŷEi cos(kx−ωt) be the incident electric field. The

total field E(x, t) is the sum of Ei and the field Er(x, t) = −ŷEi cos(−kx−ωt) of the

reflected wave, so that E(0, t) = 0. Thus the total fields for x < 0 have the form of

standing waves
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Ey(x, t) = 2Ei sin(kx) sinωt , (S-8.57)

Bz(x, t) = 2Ei cos(kx)cosωt . (S-8.58)

The discontinuity of Bz leads to a surface current Jy = Ky δ(x) where

Ky = −
c

4π

[

Bz(0
+, t)−Bz(0

−, t)
]

=
c

4π
Bz(0

−, t) =
c

2π
Ei cosωt , (S-8.59)

where we have used Stokes’ theorem and Bz(0
+, t) = 0. The force per unit surface,

i.e., the pressure, is given by the surface current multiplied by the mean value of the

field across the current layer (the argument is identical to the one used for calculating

the electrostatic pressure on a surface charge layer in electrostatics):

Prad =

〈

Ky

1

2c

[

Bz(0
+, t)+Bz(0

−, t)
]

〉

=
c

8π

〈

B2
z (0−, t)

〉

=
c

8π

(

1

2
4 |Ei|

2

)

= 2
I

c
, (S-8.60)

since Bz(0
−, t) = 2Ei cosωt, and I = (c/4π)

(

|Ei|
2/2

)

. This is equivalent to evaluate

the integral in (S-8.56) as

∫ +∞

0−
JyBzdx = −

∫ +∞

0−

(

c

4π
∂xBz−

1

4π
∂tEy

)

Bzdx = −
c

4π

∫ +∞

0−

1

2
∂xB2

z dx

=
c

8π
B2

z (0−, t), (S-8.61)

where we used the fact that Ey = 0 and ∂tEy = 0 for x ≥ 0−.

c) The momentum conservation theorem (8.8) states that, for a closed system of

charges, currents and EM fields bounded by a closed surface S, the following bal-

ance equation holds:

d

dt
(pmech+pEM)i =

∮

S

∑

j

Ti j n̂ j d2r , (S-8.62)

where i, j = x,y,z, Ti j is the Maxwell stress tensor, and n̂ j is the j component of

the outward-pointing unit vector locally normal to S. Thus, the integral on the right-

hand side is the outward the flux of the vector T · n̂ through S. In (S-8.62), pmech

is the mechanical momentum of the system, while the momentum associated to the

EM field is

pEM =

∫

V

gd3r , (S-8.63)

http://dx.doi.org/10.1007/978-3-319-63133-2_8
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where g = S/c2 is the momentum density (8.9), and the integral is evaluated over

the volume bounded by S.

In our case, we take the front surface A of the mirror and close it by adding a

surface extending deep into the mirror, where the fields are zero. Thus, the amount

of EM momentum which flows into the mirror (and “transformed” into mechanical

momentum) is given by the integral

∫

A

∑

j

Ti j n̂ jd
2r = A

∑

j

Ti j(0
−, t) n̂ j . (S-8.64)

The radiation pressure on the mirror is the time-averaged momentum flow per unit

area,

Prad =
〈

∑

j T1 j(0
−, t) n̂ j

〉

= −〈T11(0−, t)〉, (S-8.65)

since, in our case, n̂ = (−1,0,0). Thus we actually need to evaluate T11(0, t) only:

T11(0, t) = −
1

8π
B2

z (0−, t) . (S-8.66)

The radiation pressure is thus

Prad = −〈T11(0, t)〉 =
1

8π

〈

B2
z (0−, t)

〉

=
1

4π
|Ei|

2 = 2
I

c
. (S-8.67)

S-8.6 Poynting Vector for a Gaussian Light Beam

a) The divergence of the electric field in vacuum is zero. With our geometry, this

means that, since we have assumed Ey = 0, we have

0 = ∇ ·E = ∂xEx +∂zEz . (S-8.68)

From (S-8.68) and (8.14) we obtain

∂zEz = −∂xEx = −2E0 xe−r2/r2
0 cos(kz−ωt) , (S-8.69)

where the divergence is calculated in the generic point (x,y,z), and we have used

r2 = x2+ y2. Integrating with respect to z, we have

Ez = −E0
2x

kr2
0

e−r2/r2
0 sin(kz−ωt) . (S-8.70)

Analogously, we obtain for the longitudinal component of B

http://dx.doi.org/10.1007/978-3-319-63133-2_8
http://dx.doi.org/10.1007/978-3-319-63133-2_8
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Bz = −B0
2y

kr2
0

e−r2/r2
0 sin(kz−ωt) . (S-8.71)

Let us verify if these fields are consistent with Maxwell’s equations. First, we check

if ∂tEz = c (∇×B)z = c∂xBy holds. We have

∂xBy = −B0
2x

r2
0

e−r2/r2
0 cos(kz−ωt) , (S-8.72)

∂tEz = −E0ω
2x

kr2
0

e−r2/r2
0 cos(kz−ωt) , (S-8.73)

which implies B0 = (ω/kc) E0 = E0. Analogously we can check that ∂tBz = −c (∇×

E)z.

b) The Poynting vector is

S =
c

4π
E×B =

c

4π

(

x̂EzBy− ŷExBz+ ẑExBy

)

, (S-8.74)

and its components overaged over one cycle are

〈

S x

〉

=
c

4π

2x

kr2
0

E2
0 e−2r2/r2

0 〈sin(kz−ωt)cos(kz−ωt)〉 = 0 , (S-8.75)

〈

S y

〉

= −
c

4π

2y

kr2
0

E2
0 e−2r2/r2

0 〈cos(kz−ωt) sin(kz−ωt)〉 = 0 , (S-8.76)

〈

S z

〉

=
c

4π
E2

0 e−2r2/r2
0

〈

cos2(kz−ωt)
〉

=
c

8π
E2

0 e−2r2/r2
0 . (S-8.77)

Thus, we can define the local intensity and the total power of the beam as

I(r) = 〈S z〉 , P =

∫ ∞

0

I(r)2πrdr . (S-8.78)

c) We have

∇2Ex =
1

r

∂

∂r

(

r
∂Ex

∂r

)

−
∂2Ex

∂z2
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

4

r2
0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

r2

r2
0

−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

− k2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Ex (S-8.79)

(see Table A.1 for the Laplacian operator in cylindrical coordinates; notice that here

the fields are independent of φ). We can easily check that (∇2 +ω2/c2)Ex � 0; the

“extra” terms being of the order of ∼ 1/(kr0)2. Thus we expect our approximate

expressions for the fields to be accurate as long as r0≫ 1/k = λ/2π, i.e., if the beam

is much wider than one wavelength.

It is known that a beam with finite width actually undergoes diffraction. The

width of a Gaussian beam doubles after a typical distance, called Rayleigh length,
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rR = kr2
0
. This corresponds to an aperture angle

θd ≃
r0

zR
=

1

kr0
≃
λ

r0
. (S-8.80)

It might be interesting to notice that this result may be inferred from the values

for the longitudinal field components obtained at point a). In fact, the beam may be

obtained as a linear superposition of plane waves of the same frequency but different

wavevectors. For the plane wave, the electric and magnetic field are perpendicular to

the wavevector k. Thus, the typical ratio Ez/Ey ∼ 2/(kr0) (at r = r0) also corresponds

to a typical value kx/kz ∼ 2/(kr0), which should determine the typical angular spread

of the wavevector spectrum, hence the spreading angle of the beam.

S-8.7 Intensity and Angular Momentum of a Light Beam

a) First, we define the shorthand symbols C = cos(kz−ωt), S = sin(kz−ωt), and

E′
0
= ∂rE0(r), that we shall use throughout the solution of the problem. We have for

the intensity of the beam

I(r) ≡ S z =
c

4π
(ExBy−EyBx) =

c

4π
E2

0(r) [CC− (−S S )]

=
c

4π
E2

0(r)
[

C2+S 2
]

=
c

4π
E2

0(r) . (S-8.81)

b) The divergence of the fields in vacuum must be zero. For the electric field we

have

0 = ∇ ·E = ∂xEx +∂yEy+∂zEz , (S-8.82)

thus

∂zEz = −∂xEx −∂yEy = −
x

r
E′0(r)C+

y

r
E′0(r)S ,

and, integrating with respect to z,

Ez = −
1

kr
E′0(r)

[

xS + yC
]

. (S-8.83)

Analogously, we can evaluate Bz:

∂zBz = −∂xBx −∂yBy = −
x

rc
E′0(r)S −

y

rc
E′0(r)C ,

Bz = +
1

krc
E′0(r)

[

xC− yS
]

. (S-8.84)

c) The x and y components of the Poynting vector are
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S x =
c

4π
(EyBz −EzBy)

=
c

4π

{

(−E0S )

[

E′
0

krc
(xC− yS )

]

−

[

−
E′

0

kr
(xS + yC)

]

1

c
E0C

}

=
c

4π

E0E′
0

kr

(

−xS C+ yS 2 + xS C+ yC2
)

=
c

4π
E0E′0

y

kr
. (S-8.85)

S y =
c

4π
(EzBx −ExBz)

=
c

4π

{[

−
E′

0

kr
(xS + yC)

]

1

c
E0S − (E0C)

[

E′
0

krc
(xC− yS )

]}

=
c

4π

E0E′
0

kr

(

−xS 2 − yCS − xC2 + yCS
)

= −
c

4π
E0E′0

x

kr
(S-8.86)

Since we have

c

4π
E0(r)E′0(r) =

c

8π
∂rE2

0(r) =
1

2
∂rI(r) , (S-8.87)

the Poynting vector can be written

S =

(

y

2kr
∂rI(r), −

x

2kr
∂rI(r), I(r)

)

. (S-8.88)

Assuming a Gaussian beam, we have E0(r) ∝ e−r2/r2
0 , and S x,y ∝ S z/(kr0) ∝ θd S z,

with θd the diffraction angle of (S-8.80).

d) We have

ℓz =
1

c2
(xS y− yS x) =

−x2− y2

2krc2
∂rI(r) = −

r

2kc2
∂rI(r)

= −
r

2cω
∂rI(r). (S-8.89)

We eventually obtain the total angular momentum by integrating the above expres-

sion by parts,

Lz =

∫ ∞

0

ℓz(r)2πr dr = −

∫ ∞

0

r

2cω
∂rI(r)2πr dr

=
1

cω

∫ ∞

0

I(r)2πr dr =
W

cω
. (S-8.90)
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S-8.8 Feynman’s Paradox solved

a

B(t)
z

Fig. S-8.5

a) We use a cylindrical coordinate system (r,φ,z)

with the cylinder axis as z axis. The induced elec-

tric field Eind has azimuthal symmetry, i.e., Eind =

Eφ(r, t)φ, and can be obtained from Faraday’s law by

equating its line integral over the circumference of

radius r to the temporal derivative of the magnetic

field flux through the circle:

Eφ = −
r

2c
∂tBext(t) . (S-8.91)

(We assumed the slowly varying current approxima-

tion, whose validity is ensured by the t f ≫ a/c con-

dition.)

On an infinitesimal surface element of the cylindrical surface dS = adφdz the

induced electric field exerts a force

df = φd f = φσEφ(r = a)dS = −φσ
a

2c
∂tBext(t)dS , (S-8.92)

where σ = Q/(2πa) is the surface charge density. The corresponding mechanical

torque is dτ= ẑad f . By integrating over the whole surface of the cylinder we obtain

for the total torque

τ = −
πa3hσ

c
∂tBext(t) . (S-8.93)

The equation of motion for the rotation of the cylinder is

I
dω

dt
= τ = −

πa3hσ

c
∂tBext(t) , (S-8.94)

with solution (the total time derivative being trivially equivalent to the partial deriv-

ative when applied to Bext(t))

ω(t) = −
πa3h

Ic
σ

[

Bext(t)−Bext(0)
]

= −
a2Q

2Ic

[

Bext(t)−Bext(0)
]

. (S-8.95)

The angular momentum is Lc(t) = Iω(t). The final values depend only on the initial

value of Bext and not on its temporal profile,

ω(t f ) = −
a2

2Ic
QB0 . (S-8.96)
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b) The rotation of the charged cylinder leads to a surface current K at r = a,

K = σv = σaω φ̂ . (S-8.97)

This current generates a uniform magnetic field Bind inside the long cylinder (equiv-

alent to a solenoid where nI = K),

Bind =
4π

c
Kẑ =

4π

c
σaω . (S-8.98)

We now proceed as in point a) but adding the induced field Bind to the external field

Bext:

I
dω

dt
= τ = −

πa3hσ

c
∂t [Bext(t)+Bind(t)]

= −
a2Q

2c
∂t

[

Bext(t)+
4π

c
σaω

]

= −
a2Q

2c
∂tBext(t)−

a2Q2

hc2

dω

dt
, (S-8.99)

which can be rewritten as

I′
dω

dt
= τ = −

πa3hσ

c
∂tBext(t) , (S-8.100)

I′ = I+
a2Q2

hc2
. (S-8.101)

Equation (S-8.100) is identical to (S-8.94) but for the replacement I → I′, which

means that the effects of the rotation-induced magnetic field Bind are equivalent to

an additional inertia of the cylinder. The final velocity becomes

ω′(t f ) = −
a2

2I′c
QB0 . (S-8.102)

Notice that the total magnetic field does not vanish inside the cylinder at t = t f , being

equal to the induced field

Btot(t f ) = Bind(t f ) =
4π

c
σaω′(t f ) . (S-8.103)

c) For a magnetic field B = Bzẑ and a configuration with cylindrical symmetry the

density of EM angular momentum (8.18) becomes

ℓ ≡ r×g = −
1

4π
rErBzẑ . (S-8.104)

http://dx.doi.org/10.1007/978-3-319-63133-2_8
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The contribution of the induced electric field Eφ vanishes in the vector product.

However, the angular momentum is not zero because of the radial electrostatic field

inside the cylinder, which is easily found from Gauss’s theorem:

Er(r) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2λ

r
= −

2Q

hr
(r < a)

0 (r > a)
. (S-8.105)

Thus, ℓ � 0 inside the cylinder (r < a). The total EM angular momentum is thus

LEM =
1

4π
Bz

∫ a

0

r
2λ

r
2πrhdr =

1

2
Bzλha2ẑ =

Qa2

2
B . (S-8.106)

Notice that B represents the total field inside the cylinder and that the equation for

LEM is valid at any time. Now, (S-8.95) can be rewritten (using the total field) as

Iω(t)+
a2Q

2c
Bext(t) =

a2Q

2c
Bext(0) , (S-8.107)

which is equivalent to

Lc(t)+LEM(t) = LEM(0) , (S-8.108)

thus showing that the total angular momentum of the system is conserved, since

Lc(0) = 0. The “paradox” thus consists in ignoring that a static EM field can contain

a finite angular momentum. Similar considerations hold for Problem 6.6 where,

however, the EM angular momentum is more difficult to calculate.1

S-8.9 Magnetic Monopoles

a) We build a magnetic dipole m by locating two magnetic charges (magnetic

monopoles) +qm and −qm at a distance h from each other, so that m = qmh. The

magnetic field at distances r ≫ h can be evaluated from (8.19), using the same

approximations as for the field of an electric dipole, obtaining

Bdip = α
(m · r̂) r̂−m

r3
. (S-8.109)

1The present explanation of Feynman’s “paradox” is taken from J. Belcher and K. McDonald

(http://cosmology.princeton.edu/∼mcdonald/examples/feynman cylinder.pdf) who further discuss

subtle aspects of this problem.

http://dx.doi.org/10.1007/978-3-319-63133-2_6
http://dx.doi.org/10.1007/978-3-319-63133-2_8
http://cosmology.princeton.edu/~mcdonald/examples/feynman_cylinder.pdf
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On the other hand, the field of a usual magnetic dipole m = I S, consisting of a small

circular loop of surface S carrying a current I, with the head of S pointing so that it

“sees” I circulating counterclockwise, is

Bdip = km
(m · r̂) r̂−m

r3
. (S-8.110)

Comparing the formulas, we obtain α = km, i.e., α = μ0/4π = 1/4πε0c2 in SI units,

and α = 1/c in Gaussian units.

The magnetic force on an electric charge qe, moving with velocity v in the pres-

ence of a magnetic field B, is fL = qe bm v×B. The force exerted by a magnetic field

B on a magnetic monopole of charge qm is fm = qm B. Thus the physical dimensions

of the magnetic charge qm are

[qm] = [qe bm v] =

{

[qe v] , SI

[qe] , Gaussian
(S-8.111)

i.e., the same physical dimensions as an electric charge in Gaussian units, and the

dimensions of an electric charge times a velocity in SI units.

b) In analogy with the equation ∇ ·E = 4πke ̺e, where ̺e is the volume density of

electric charge, Maxwell’s equation ∇ ·B = 0 is modified as

∇ ·B = 4πkm ̺m =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

μ0 ̺m SI
4π

c
̺m Gaussian,

(S-8.112)

where ̺m is the volume density of magnetic charge. Equation (S-8.112) can be

proved by first observing that, in the presence of magnetic charges, Gauss’s law

for the magnetic field is

∮

B ·dS = 4πkm Qm = 4πkm

∫

̺m d3x , (S-8.113)

where the flux of B is evaluated through any closed surface, and Qm is the net mag-

netic charge inside the surface, then applying the divergence theorem.

The conservation of magnetic charge is expressed by the continuity equation

∇ ·Jm = −∂t̺m . (S-8.114)

Maxwell’s equation for ∇×E (describing Faraday’s law of induction) must be com-

pleted in order to take the magnetic current density into account, by writing

∇×E = ηJm−bm ∂tB . (S-8.115)
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The constant η can be determined, for instance, by applying the divergence operator

to both sides of the equation, remembering the divergence of the curl of any vector

field is always zero,

0 = ∇ · (∇×E) = η∇ ·Jm−bm ∂t∇ ·B = η∇ ·Jm−4πkm ∂t̺m,

(S-8.116)

from which η = −4πkm follows. We thus obtain

∇×E = −4πkmJm−bm∂tB =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−μ0Jm−∂tB , SI

−
4π

c
Jm−

1

c
B , Gaussian.

(S-8.117)

c) We choose a cylindrical reference frame (r,φ,z) with the z axis coinciding with

the axis of the beam. Because of the cylindrical symmetry of our magnetic charge

distribution, the only non-zero component of the magnetic field is Br. Applying

Gauss’s law to a cylindrical surface coaxial with the beam we obtain

Br =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2πkmnqmr , r � a

2πkmnqma2

r
, r � a .

(S-8.118)

The electric field E is solenoidal and can be obtained by applying Kelvin-Stokes

theorem to a circular path of radius r coaxial with the beam

∮

E ·dℓ = 2πrEφ =

∫

∇×E ·dS =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−πr24πkmnqmv , r � a

−πr24πkmnqm
a2

r
v , r � a ,

(S-8.119)

leading finally to

Eφ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2πkmnqmvr if r ≤ a

2πkmnqmva2

r
if r ≥ a .

(S-8.120)

Thus, for instance for r � a, we have

Eφ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

μ0nqmvr

2
, SI

2πnqmvr

c
, Gaussian.

(S-8.121)



Chapter S-9

Solutions for Chapter 9

S-9.1 The Fields of a Current-Carrying Wire

a) In the S reference frame the wire generates an azimuthal magnetic field B =

Bφ(r) φ̂. In cylindrical coordinates we have Bφ = Bφ(r) = (2I/rc). The Lorentz force

on the charge q is

F = q
v

c
×B = r̂ Fr = −r̂qBφ(r)

v

c
= −r̂

2qIv

rc2
. (S-9.1)

S

q

F = q
v

c
× B

= 0

S

q

< 0

v

v = 0

F = F = qE

I = I

I

Fig. S-9.1

The S ′ frame moves with velocity v with

respect to S . Applying the Lorentz transfor-

mations, in S ′ the force on q is F′ = r̂ F′r =

r̂γFr (where γ = 1/
√

1−β2, and β = v/c with

v = |v|), see Fig. S-9.1. Since q is at rest in S ′,

the force F′ is due to the electric field E′ only,

with E′ = r̂ E′r = r̂ F′r/q. This corresponds to

the transformation E′⊥ = r̂ E′r = −r̂γβBφ or, in

vector form,

E′⊥ = γ (β×B) , (S-9.2)

where the subscript “⊥” refers to the direction

perpendicular to v. At the limit |v| ≪ c (for

which F = F′) we get E′⊥ ≃ β×B, which is
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correct up to first order in β = v/c, and may be called the “Galilei” transformation

of the field. The electric field1

E′r = −γβBφ(r
′) = −2γβI/(r′c) (S-9.3)

is generated by a uniform linear charge density λ′ = −βγI/c on the wire, as can be

easily verified by applying Gauss’s law. Thus the wire is negatively charged in S ′.2

Since the force is purely magnetic in S and purely electric in S ′, at this point we

cannot say much about the magnetic field in S ′.

b) We know that J = (ρc,J) is a four-vector. The cross-section W of the wire is

invariant for a Lorentz boost along the wire axis, thus the linear charge density

λ =Wρ and the electric current I =WJ transform like ρ and J. Therefore the linear

charge density of the wire in S ′ is

λ′ = γ

(

λ−β
I

c

)

= −γβ
I

c
, (S-9.4)

which, according to Gauss’s law, generates the radial electric field E′r = 2λ′/r, in

agreement with our result of point (a). We also obtain the current intensity in S ’,

I′ = γ(I−βcλ) = γI , (S-9.5)

which generates the magnetic field B′φ = 2I′/(r′c) = γBφ.

The same results can be obtained through the transformation of the four-potential

(φ,A). In S , we have obviously φ = 0, since there is no net charge, while the vector

potential A satisfies the equation

∇2A = −
4π

c
J (S-9.6)

1In general, the complete transformation is E′⊥(r′, t) = γβ×B[r(r′, t′), t(r′, t′)], where r = r(r′, t′)

and t = t(r′, t′), according to the Lorentz transformations of the coordinates. Since in cylindrical

coordinates Bφ depends on r only, and for the coordinates in the plane transverse to the boost

velocity r′⊥ = r⊥, in the present case we have the trivial transformation r′ = r.
2It might seem that the law of charge conservation is violated in the transformation from S to

S ′. Actually, this a consequence of the somewhat “pathological” nature of currents which are not

closed in a loop, as in the case of an infinite wire. In fact, strictly speaking, the infinite current-

carrying wire is not a steady system, since charges of opposite sign are accumulating at the two

“ends” of the wire, i.e., at z = ±∞. If we introduce “return” currents to close the loop in S , e.g.,

if we assume the wire to be the inner conductor of a coaxial cable, or if we add a second wire

carrying the current −I at some distance, we find that the return currents would appear as opposite

charge densities in S ′, as required by charge conservation.
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Thus, A is parallel to the wire and its only non-zero component is Az, which can be

evaluated from the equation

∇2Az = −
4π

c
I δ(r) . (S-9.7)

This is mathematically identical to the Poisson equation for the electrostatic poten-

tial of a uniformly charged wire, thus the solution is

Az = −
2I

c
ln

(

r

a

)

, (S-9.8)

where a is an arbitrary constant. It is straightforward to verify that Bφ = −∂rAz.

The scalar potential in S ′ is

φ′ = γ(φ−βAz) = −γβAz = −
2γβI

c
ln

(

r

a

)

,= −2λ′ ln

(

r

a

)

, (S-9.9)

where λ′ = −βγI/c. The electric field is evaluated from E′ = −∇φ′, obtaining the

same result of point a). For the vector potential in S ′, trivially A′z = γ(Az−βφ) = γAz

from which we get B′φ = γBφ again.

These results are in agreement with the explicit formulas for the transformation

of the EM field (9.3), which, in our case, lead to E′ = γβ×B and B′ = γB.

c) Let us first consider the linear charge densities of both ions (λi = ZeniW) and elec-

trons (λe = −eneW) in S , where ∋ and ne are the ion and electron volume densities,

respectively. Since there is no net charge on the wire in S , we have λi = −λe.

Let us evaluate the charge densities λ′
i

and λ′e in S ′ from relativistic kinematics.

In S , a wire segment of length ∆L carries an ion charge ∆Q = λi∆L. In S ′, the

segment has the same charge as in S (the charge is a Lorentz invariant), but the

length undergoes a Lorentz contraction, ∆L′ = ∆L/γ. Thus we have a higher charge

density λ′
i
= ∆Q/∆L′ = γλi. This is a quite general result: in a frame where a fluid

moves at velocity v, the fluid has a higher density (by a factor γ) than in its rest

frame.

On the other hand, the electrons are not at rest in S : they move along the wire

with a velocity ve < 0 such that I = −eneveW = λeve = −λive. Thus, their density is

already higher by a factor γe = 1/

√

1− v2
e/c

2 than the density λe0 in the rest frame

of the electrons: we have λe0 = λe/γe. In S ′, the electrons drift with a velocity v′e

v′e =
ve− v

1− vev/c2
, (S-9.10)

http://dx.doi.org/10.1007/978-3-319-63133-2_9
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according to Lorentz transformations. Thus, the electron density in S ′ is

λ′e = γ
′
eλe0 =

γ′e

γe
λe , (S-9.11)

where γ′e = 1/

√

1− v′2e /c
2. The expression for γ′ can be put in a more convenient

form by some algebra:

γ′e =
1

√

√

√

√

√

1−
(ve− v)2

c2

(

1−
vev

c2

)2

=

√

√

√

√

√

√

√

√

√

√

(

1−
vev

c2

)2

(

1−
vev

c2

)2

−
(ve− v)2

c2

=

(

1−
vev

c2

)

1
√

1−2
vev

c2
+

v2
ev2

c4
−

v2
e

c2
+2

vev

c2
−

v2

c2

=

(

1−
vev

c2

)

1
√

(

1−
v2

e

c2

)(

1−
v2

c2

)

=

(

1−
vev

c2

)

γeγ . (S-9.12)

We thus obtain for the total charge density in S ′

λ′ = λ′i +λ
′
e = λi

(

γ−
γ′e

γe

)

= λiγ

(

1−1+
vev

c2

)

= λiγ
vev

c2

= −γv
I

c2
, (S-9.13)

as previously found on the basis of Lorentz transformations for the forces, charge

and current densities, and EM fields.

It might be interesting to remark that there is an issue of charge conservation

already in the S frame. The wire is electrically neutral, thus its ion and electron

charge densities are exactly equal and opposite when it is disconnected from any

voltage or current source, and in the absence of external fields. Now assume that we

drive a steady current I through the wire, keeping the conduction electrons in motion

with a velocity ve along the wire axis. If the wire is still electrically neutral, as we

assumed, the absolute values of the charge densities of ions and electrons must still

be equal and opposite. However, while the charge density of the ions, at rest, has

not changed, the charge density of the moving electrons undergoes a “relativistic

increase” by a factor γe. If the total charge density does not change (the wire must
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still be neutral), some electrons must have left the wire.3 We can explain where

the missing electrons have gone only by recalling that the wire is not “open”, but

must be part of a closed current loop, with specific boundary conditions and how

the circuit is closed.

S-9.2 The Fields of a Plane Capacitor

a) We choose a Cartesian coordinate system with the y axis perpendicular to the

plates, so that the lower plate is at y = 0 and the upper plate at y = h, and the x axis

parallel to v, so that v = βc x̂. The only non-vanishing component of the EM field in

S is Ey = 4πσ. By applying a Lorentz transformation we find for the fields in S ′

E′y = γEy = 4πγσ , B′z = −βγEy = −4πβγσ . (S-9.14)

b) In S ′ the electric field E′y is generated by the surface charge densities ±σ′ =

±E′y/4π = ±γσ on the capacitor plates. Similarly, the magnetic field B′z is generated

by the two surface current densities ±K′ = ±K′x x̂ with K′x = cB′z/(4π) = −βγσc,

flowing on the two capacitor plates.

These results are in agreement with the Lorentz transformation of the four-vector

Kµ = (cσ,K) . (S-9.15)

We can check that Kµ is actually a four-vector, by imagining two volume four-

current densities Jµ = (cρ,±J) distributed over the two thin layers, |y| < δ/2 and

|h− y| < δ/2, around the capacitor plates, such that σ = ρδ and K = Jδ. Since δ is

invariant for transformations with velocity parallel to J, it follows that also Kµ ≡ Jµδ

transforms as a four-vector:

σ′ = γ(σ−βKx/c) = γσ , K′x = γ(Kx −βcσ) = −βγσc . (S-9.16)

c) In S there is a perpendicular force per unit surface p = σEy/2 = 2πσ2 on the

internal surfaces of the plates, such that the plates attract each other. In S ′, the

force per unit surface is the sum of two terms of electrostatic and magnetic nature,

respectively,

p′ =
1

2
σ′E′y+

1

2
K′xB′z = 2πσ2γ2−2πσ2β2γ2 = 2πσ2γ2(1−β2) = 2πσ2

= p . (S-9.17)

3Of course, the effect is negligibly small for ordinary conduction in metals, for which the typical

electron velocities ve are of the order of 10−10 c. On the other hand, this issue if very important for

relativistic hydrodynamics, i.e., for contexts where fluids move at velocities close to c.
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The invariance of p is also proven from the equivalent expression

p′ =
1

8π
E
′2
y −

1

8π
B
′2
z =

1

8π
(E
′2−B

′2) , (S-9.18)

which is a Lorentz invariant.

In S , the total force is F = pA. In S ′, due to the Lorentz contraction of lengths,

A′ = (L/γ) L = A/γ, so that F′ = p′A′ = pA/γ = F/γ.

S-9.3 The Fields of a Solenoid

a) We choose a Cartesian reference frame with the solenoid axis as z axis, and the

x axis such that v = vxx̂. In addition, we shall also use a cylindrical reference frame

sharing the z axis with the Cartesian frame, and with the azimuthal coordinate φ

such that the φ = 0 plane coincides with the xz plane. In S , the magnetic field inside

the solenoid is longitudinal and uniform, B = B ẑ, with B = 4πnI/c, and the force on

q is F = qv×B/c = −qβB ŷ.

In the S ′ frame the charge q is at rest, thus the force on it must be due to an

electric field only. According to the Lorentz transformations of the fields we have

E′x = Ex = 0 , B′x = Bx = 0 ,

E′y = γ(Ey−βBz) = −γβB , B′y = γ(By+βEz) = 0 ,

E′z = γ(Ez+βBy) = 0 , B′z = γ(Bz−βEy) = γB , (S-9.19)

and the force on q is thus F′ = qE′y ŷ = −qγβBz ŷ = γF.

b) Since we are assuming β≪ 1, we have γ = 1/
√

1−β2 = 1+β2/2+ · · · ≃ 1 up to the

first order in β, and we can neglect the relativistic contraction of lengths. Thus the

cross-section of the solenoid remains circular in S ′ to within our approximations.

The electric field outside the solenoid is zero (we discuss this point further below),

thus the electric field component perpendicular to the solenoid winding surface is

discontinuous, implying the presence of surface charge density σ′. We have from

Gauss’s theorem

σ′ =
E′⊥

4π
=

E′y

4π
sinφ = −β

B

4π
sinφ = −βn

I

c
sinφ , (S-9.20)

where the subscript ⊥ means perpendicular to the solenoid winding surface.

This result is in agreement with the transformation laws for the four-vector Kµ =

(cσ,K), where K is the surface current density on the walls of the solenoid (see

Problem 9.2). In S we have K = nIφ̂ = nI(−x̂ sinφ+ ŷ cosφ), and in S ′

σ′ = γ

(

σ−β
Kx

c

)

≃ −β
Kx

c
= βn

I

c
sinφ . (S-9.21)

http://dx.doi.org/10.1007/978-3-319-63133-2_9
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A surface charge density varying as sinφ on the lateral surface of an infinite

cylinder generates a uniform electrostatic field inside the cylinder, as seen in

the solution of Problem 3.11. But there we also saw that surface charge density

E

φ

a

B

− b

C

Fig. S-9.2

generates a “two-dimensional dipole” field out-

side the cylinder. This might seem in contradic-

tion with the fact that, since the external EM

field is zero in the S frame, it must be zero

in S ′ as well. But there are not only static

fields in S ′, because the transverse motion of

the solenoid generates a time-dependent mag-

netic field, which, in turn, is related to a non-

conservative electric field and to boundary con-

ditions which are different from the static case.

We start by noting that an electric field that is

uniform (and nonzero) inside the solenoid, and

zero outside, is not conservative. Let us choose a rectangular path C of sides a and b

crossing the solenoid winding as in Fig. S-9.2. The path C is at rest in S ′, while the

solenoid moves toward the left with velocity −v. At t = 0 the upper side of length

a is tangent to the winding at its central point, and a is sufficiently small for the

enclosed winding arc to be well approximated by a straight line segment. We also

have b≪ a. The field E′ is not conservative because the line integral of E′ along C

does not vanish:

∮

C

E′ ·dℓ = E′
‖
a = E′y acosφ . (S-9.22)

This is consistent with the fact that the flux of B′ through the rectangle enclosed

by the path C is time-dependent. The winding arc enclosed by the rectangle moves

towards the lower side of length a with velocity vcosφ, and the flux of B′ through

the rectangle is

ΦC(B′) =

∫

C

B′ ·dS = B′a[b− (vcosφ) t] , (S-9.23)

corresponding to a line integral

−
1

c

dΦC(B′)

dt
=

v

c
B′acosφ = E′yacosφ , (S-9.24)

in agreement with (S-9.22).

S-9.4 The Four-Potential of a Plane Wave

a) The fields of the plane wave may be written in complex notation as

http://dx.doi.org/10.1007/978-3-319-63133-2_3
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E = ŷ E0 eikx−iωt , B = ẑ B0 eikx−iωt , (S-9.25)

with E0 = B0. A vector potential of the form A = ŷ A0 eikx−iωt generates an electric

field along ŷ and a magnetic field along ẑ given by

E = −
1

c
∂tA−∇ϕ, B = ∇×A . (S-9.26)

In the absence of electric charges we have ϕ ≡ 0, and we obtain from (S-9.26)

A0 = −
ic

ω
E0 , A0 = −

i

k
B0 , (S-9.27)

which are equivalent since ω = kc. The vector potential A = ŷ A0 eikx−iωt obviously

satisfies the wave equation in vacuum, and also respects the Lorenz gauge condition.

b) The Lorentz transformations from S to S ′ give ω′ = γω (transverse Doppler

effect), and k′x = kx = k, k′y = −ω
′v/c2 = −γβkx. The nonzero components of the

fields in S ′ are E′y = Ey, E′x = γβBz, and B′z = γBz. We may thus write

E′ = (x̂γβ+ ŷ)E0 ei(k′x x′+k′yy′−ω′t′) , B′ = ẑγB0ei(k′x x′+k′yy′−ω′t′) , (S-9.28)

The polarization is linear and directed along the unit vector ε = βx̂+ ŷ/γ.

c) Assuming ϕ′ = 0, we have in S ′

E′ = −
1

c
∂′tA

′ , B′ = ∇′×A′ , (S-9.29)

which are both satisfied if we choose

A′ = −
c

ω′
E′ =

(

x̂β+ ŷ
1

γ

)

A0 ei(k′x x′+k′yy′−ω′t′) , (S-9.30)

being ω′ = γω.

d) The Lorentz transformation from S to S ′ for the four-potential Aµ = (ϕ,A) =

(0,0,Ay,0) gives

Ā′µ = (−γβAy,0,γAy,0) ≡ (ϕ̄′,0, Ā′y,0) . (S-9.31)

The fields derived from this four-potential are
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Ē′x = −∂
′
xϕ̄
′ = −ik′xϕ̄

′ = ikcγβAy = γβ(iωAy) = γβEy = E′x , (S-9.32)

Ē′y = −
1

c
∂′t Ā
′
y−∂

′
yϕ̄
′ = i
ω′

c
Ā′y− ik′yϕ̄

′ = i

(

γ
ω

c

)

γAy− i(−γβk)(−γβc)Ay

= i
ω

c
γ2
(

1−β2
)

Ay = Ey = E′y , (S-9.33)

B̄′z = ∂
′
xĀ′y = ik′xĀ′y = ikγAy = γBz = B′z , (S-9.34)

in agreement with the results of point c).

e) The expressions A′µ = (0,A′) and Ā′µ = (ϕ̄′, Ā′) are two possible choices for the

four-potential. Thus they must differ at most by a gauge transformation, i.e., there

must be a scalar function f = f (x′, t′) such that

A′ = Ā′+∇′ f , ϕ′ = ϕ̄′−
1

c
∂′t f . (S-9.35)

Since ϕ′ = 0 we find ∂′t f /c = ϕ̄′, i.e.,

f =
c

ω′
ϕ̄′ = −

ic

ω′
γβAy , (S-9.36)

Now, since

∇
′ f = (x̂ ik′x + ŷ ik′y) f =

(

x̂β− ŷγβ2
)

Ay , (S-9.37)

we also have that

Ā′+∇′ f =
[

x̂β+ ŷ
(

γ−γβ2
)]

Ay =

(

x̂β+ ŷ
1

γ

)

Ay = A′ . (S-9.38)

S-9.5 The Force on a Magnetic Monopole

a) In the reference frame S ′, where the magnetic monopole is at rest (v′ = 0), the

magnetic field is

B′ = −γ
v

c
×E , (S-9.39)
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thus the force on the monopole is F′ = qmB′. On the other hand we must have

F′ = γF, since F is perpendicular to v, so that in the laboratory frame S we have

F =
qm

γ
B′ = −qm

v

c
×E , (S-9.40)

which proves (9.8).

b) The equation of motion for a magnetic monopole in the presence of a uniform

electric field E = ẑ E alone is identical to the equation of motion at for a an electric

charge in the presence of a uniform magnetic field B = ẑ B, after replacing −qmE

by qB. The solution is a helicoidal motion, with a constant drift velocity parallel

to E, and a constant angular velocity ωm = ẑqmE/mc. (Notice that, for a magnetic

monopole, the angular velocity vector is parallel to E, while it is antiparallel to B in

the case of an electric charge.)

In the case of crossed electric and magnetic fields, the condition E > B ensures

that there is a reference frame S ′ where the magnetic field vanishes. In fact, taking

a Lorentz boost with β = (E×B)/E2 we have

B′ = γ(B−β×E) = γ

(

B+
E2B− (E ·B)E

E2

)

= 0 , (S-9.41)

since E ·B = 0. Thus, in the boosted frame there is only the electric field

E′ = γ(E+β×B) = γ

(

E−
B2

E2
E

)

=
E

γ
, (S-9.42)

since γ = 1/
√

1−β2 = 1/
√

1−B2/E2. Thus the motion in S ′ is a circular orbit with

angular frequency ω′ = (qmE/γc). By transforming back to the laboratory frame S

we add a drift velocity −cβ, and the trajectory in S is a cycloid.

S-9.6 Reflection from a Moving Mirror

a) As an ansatz, we write the total electromagnetic field as the sum of the fields

of the incident wave and the fields of a reflected wave of the same frequency and

polarization, but opposite direction

E(x, t) = ŷ Ey(x, t), B = ẑ Bz(x, t) ,

Ey(x, t) = Re
(

Ei eikx−iωt +Er e−ikx−iωt
)

, (S-9.43)

Bz(x, t) = Re
(

Ei eikx−iωt −Er e−ikx−iωt
)

. (S-9.44)

http://dx.doi.org/10.1007/978-3-319-63133-2_9
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The amplitude of the reflected wave Er must be determined by the boundary

condition at the mirror surface x = 0. We may already know that the electric

b
B

E

x

y

O−a a

Fig. S-9.3

field component parallel to the bounding surface

between two media is continuous across the surface,

i.e., that E‖(0
−)= E‖(0

+). However, here we prefer to

derive this result in detail, because this will help the

discussion of the reflection at the surface of a mov-

ing mirror, which we shall consider in the following.

Evaluating the line integral of E over a closed rec-

tangular loop across the boundary, as in Fig. S-9.3,

yields

∮

E ·dℓ = [Ey(a, t)−Ey(−a, t)]b

= −
1

c

dΦ(B)

dt
= −

b

c

∫ 0

−a

∂tBz dx

=
iωb

c

∫ 0

−a

Bz dx =
iω

c
B̄z ab , (S-9.45)

where B̄z is the mean value of Bz in the (−a,a) interval. If Bz is finite, the “rightmost

RHS” of (S-9.45) vanishes at the limit a→ 0, and Ey(0+, t) = Ey(0−, t).

For a perfect mirror we must have Ey(0+, t) = 0, and the boundary condition

implies that also Ey(0−, t) = 0. Thus we obtain

Ey(0, t) = (Ei+Er)e−iωt = 0, Er = −Ei. (S-9.46)

The total electric field for x � 0 is thus a standing wave

Ey = Ei

(

eikx−iωt − e−ikx−iωt
)

= 2iEy sin(kx)e−iωt, (S-9.47)

with nodes where sinkx = 0 and maximum amplitude 2Ei. Recalling that ω/k = c,

the magnetic field of the wave is

Bz = 2Ei cos(kx)e−iωt . (S-9.48)

Thus, Bz is discontinuous at the x = 0 surface. This implies the presence of a surface

current density K = ŷ Ky(t) at x = 0, corresponding to a volume current density J =

Kδ(x) = ŷ Ky(t)δ(x). By evaluating the line integral of B over a closed path crossing

the mirror surface we find the boundary condition

Bz(0
+, t)−Bz(0

−, t) =
4π

c
Ky(t), (S-9.49)
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and the surface current density on the surface of a perfect mirror is

Ky(t) = −
c

4π
Bz(0

−, t) = −
cEi

2π
e−iωt . (S-9.50)

b) Let β = v/c (in what follows v, and, consequently, β, may have both positive or

negative values, depending on whether the wave and the mirror velocity are parallel

or antiparallel, respectively). We know that (ω/c,k) is a four-vector, and that k is

parallel to v. Thus the frequency of the incident wave in S ′ is

ω′i = γ(ω−k · v) = γω(1−β) , (S-9.51)

where k = ω/c has been used. The magnitude of the incident wave vector in S ′ is

k′
i
= ω′

i
/c. If v > 0 (v < 0) we have ω′

i
< ω (ω′

i
> ω).

The Lorentz transformations give the following amplitudes for the fields in S ′

E′iy = γ
(

Eiy−βBiz

)

= γ(1−β) Ei , (S-9.52)

B′iz = γ
(

Biz−βEiy

)

= γ(1−β) Ei , (S-9.53)

since Biz = Eiy. In the S ′ frame the reflected wave has frequency ω′r = ω
′
i
, and field

amplitudes E′ry = −E′
iy

, B′rz = B′
iz

.

c) The frequency ωr of the reflected wave in the laboratory frame S can be evaluated

by applying the inverse transformation from S ′ to S

ωr = γ(ω
′
r +kr · v) = γ(ω′r − krv) = γω′r(1−β) = ωγ

2(1−β)2

= ω
1−β

1+β
. (S-9.54)

The electric and magnetic field amplitudes of the reflected wave in S ′ are E′r =−E′
i
=

−γ(1−β)Ei and B′r = B′
i
= γ(1−β)Ei. We thus have in S

Ery = γ
(

E′ry+βB
′
rz

)

= −γ(1−β) E′i = −γ
2(1−β)2Ei = −

1−β

1+β
Ei , (S-9.55)

Brz = γ
(

B′rz+βE
′
ry

)

= γ(1−β) E′i = γ
2(1−β)2Ei =

1−β

1+β
Ei . (S-9.56)
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If β < 0 we have |Er| > |Ei|: in S the reflected wave has a higher amplitude than the

incident wave.

b
B

E

x
A x(t) = t

2a

y

Fig. S-9.4

d) The complete expressions for the fields in S are

Ey(x, t) = Ei eikx−iωt −
1−β

1+β
Ei e−ikr x−iωrt , (S-9.57)

Bz(x, t) = Ei eikx−iωt +
1−β

1+β
Ei e−ikr x−iωrt , (S-9.58)

thus, also Ey has a finite value at the mirror surface

x(t) = vt, and is therefore discontinuous:

Ey[x(t), t] =
2β

1+β
Ei e−i(1−β)ωt, (S-9.59)

Bz[x(t), t] =
2

1+β
Ei e−i(1−β)ωt. (S-9.60)

This can be seen by considering again the line integral of the electric field E along

a closed rectangular path of sides 2a and b, at rest in S . We assume that the left

vertical side of the path is on the x = A line, that at time t the mirror surface cuts the

two horizontal sides, as in Fig. S-9.4, and that a≪ λ, where λ is the wavelength in

S . The flux of the magnetic field through the rectangular path at time t is thus

Φ(t) ≃ Bz[x(t), t][x(t)−A]b = Bz[x(t), t)] (vt−A)b, (S-9.61)

so that

−
1

c

dΦ(t)

dt
≃ −

1

c

[

∂tBz[x(t), t] (vt−A)b+Bz[x(t), t]vb
]

. (S-9.62)

At the limit a→ 0, A→ vt, the first term of the right-hand side vanishes, and we are

left with

−
1

c

dΦ(t)

dt
≃ −

1

c
Bz[x(t), t]vb = −Bz[x(t), t]βb . (S-9.63)

On the other hand, the line integral of E along the closed rectangular path of

Fig. S-9.4 is

∮

E ·dℓ = −Ey[x(t), t]b = −
2β

1+β
bEi e−i(1−β)ωt = −Bz[x(t), t]βb . (S-9.64)
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S-9.7 Oblique Incidence on a Moving Mirror

a) We choose a Cartesian reference frame S where v is parallel to the x axis, the

mirror surface lies on the yz plane and the wave vector ki of the incident wave lies

in the xy plane. The Lorentz transformations to the frame S ′ give

k′ix = γ

(

kix −ω
v

c2

)

= γ
ω

c
(cosθi−β) , (S-9.65)

k′iy = kiy , (S-9.66)

ω′i = γ(ωi− kxv) = γωi(1−βcosθi) , (S-9.67)

tanθ′i =
k′

iy

k′
ix

=
kix tanθi

γ(ωi/c)(cosθi−β)
=

kix sinθi

γkix(cosθi−β)
=

sinθi

γ(cosθi−β)
, (S-9.68)

where, as usual, β = v/c and γ = 1/
√

1−β2. In S ′ the reflection angle θ′r equals the

incidence angle θ′
i
, thus

k′rx = −k′ix , k′ry = k′iy , ω
′
r = ω

′
i . (S-9.69)

b) By performing the Lorentz transformations back to the laboratory frame S we

obtain

kry = kiy , (S-9.70)

krx = γ

(

k′rx +ω
′ v

c2

)

= −γ2
[

kix

(

1+β2
)

−2ωi
β

c

]

= −2γ2ω

c

[(

1+β2
)

cosθi−2β
]

, (S-9.71)

ωr = γ(ω
′
r + k′rxv) = γ2

[

ω
(

1+β2
)

−2kixv
]

= γ2ω

c

(

1+β2−2βcosθi
)

, (S-9.72)

from which

tanθr ≡ −
kry

krx

=
sinθi

γ2
[

2β−
(

1+β2
)

cosθi
] , (S-9.73)

For cosθi = v/c = β the denominator of the “rightmost right-hand side” of

(S-9.68) is zero, and the incidence angle θ′
i

in S ′ is a right angle. This means that, in

S ′, the incident wave propagates parallel to the mirror surface, without hitting the

mirror, and no reflection occurs. For incidence angles such that cosθi > β, all the

above formulas are meaningless, since they would imply k′
ix
< 0, i.e., that the wave

is incident on the other side of the mirror.
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S-9.8 Pulse Modification by a Moving Mirror

a) The number of oscillations in the wave packet is a relativistic invariant, and the

Lorentz transformations are linear in the EM fields. Thus, in the reference frame S ′,

where the mirror is at rest, the incident wave packet is still square and comprises the

same number of oscillations. On the other hand, as already seen in Problem 9.6, the

frequency ω′
i

and the amplitude E′
i

are

ω′i = γ(1−β)ωi , E′i = γ(1−β)Ei , (S-9.74)

where β = v/c. In S ′, the reflected packet has the same shape, duration, and fre-

quency of the incident packet, but opposite amplitude and direction.

E′r = −E′i , ω
′
r = ω

′
i , τ

′
r = τ

′
i = N

2π

ω′
i

= N
2π

γ(1−β)ωi

=
τi

γ(1−β)
. (S-9.75)

Back-transforming to S (see also Problem 9.6) we have

Er = −
1−β

1+β
Ei , ωr = γ(1−β)ω

′
r = γ

2(1−β2)ωi =
1−β

1+β
ωi (S-9.76)

The duration of the reflected wave packet is thus

τr = N
2π

ωr
= N

2π

ω

1+β

1−β
=

1+β

1−β
τi . (S-9.77)

If β > 0, i.e., if the mirror velocity is parallel to the packet propagation direction, the

reflected packet has a longer duration than the incident packet, while the reflected

packet is shorter if the mirror velocity is antiparallel.

b) The energy per unit surface of each packet is given by its intensity I times its

duration τ. The intensity is proportional to the square of the electric field amplitude,

thus the relation between the reflected and incident intensities is

Ir =

(

1−β

1+β

)2

Ii , (S-9.78)

and the relation between the energies per unit surface of the whole reflected and

incident packets is

Ur = Irτr =

(

1−β

1+β

)2

Ii
1+β

1−β
τi =

1−β

1+β
Iiτi =

1−β

1+β
Ui . (S-9.79)

We see that Ur � Ui, hence some work per unit surface is needed in order to keep

the mirror moving at constant velocity, namely

http://dx.doi.org/10.1007/978-3-319-63133-2_9
http://dx.doi.org/10.1007/978-3-319-63133-2_9
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W = Ur−Ui = −
2β

1+β
Ui . (S-9.80)

Thus a mirror with β < 0, i.e., moving in the direction opposite to the incident wave

packet, transfers some energy to the packet.

c) As a first step, we determine the distribution of the current density J. Since all

the fields are null inside the mirror, i.e., for x > x(t) = vt, the current must be local-

ized on the mirror surface, J(x, t)=K(t)δ(x−vt). We can evaluate the surface current

b
E

x
A x(t) = t

2a

B

z

Fig. S-9.5

evaluate the surface current density K(t) on the

mirror surface by considering the fields close to

the surface. By calculating the line integral of B

over a closed rectangular path, fixed in S , of sides

b, parallel to B and to the mirror surface, and 2a,

perpendicular to, and crossing the mirror surface,

as in Fig. S-9.5, we obtain

∮

path

B ·dℓ =
4π

c
Φ(J)+

1

c

dΦ(E)

dt
, (S-9.81)

where Φ(J) and Φ(E) are the fluxes through the

surface delimited by the path Jv and E, respec-

tively. At the limit a→ 0 and A→ vt, we have

∮

path

B ·dℓ ≃ B(vt)b , Φ(J) = K(t)b , (S-9.82)

dΦ(E)

dt
≃ ∂tE(vt) (vt−A)b+E(vt)bv ≃ E(vt)bv . (S-9.83)

From the knowledge of E and B at the mirror surface (Prob. 9.6) we obtain

K(t) =
c

4π

[

B(vt)−
v

c
E(vt)

]

=
c

4π

(

1−β2
) 2Ei

1+β
e−i(1−β)ωt

=
cEi

2π
(1−β)e−i(1−β)ωt . (S-9.84)

Thus, K and E are in phase. In order to evaluate the total mechanical work per unit

surface on the mirror, we first switch back to the real quantities

K(t) =
cEi

2π
(1−β)cos[(1−β)ωt] , (S-9.85)

E(vt) =
2β

1+β
Ei cos[(1−β)ωt] , (S-9.86)

and evaluate the integral over the mirror depth

http://dx.doi.org/10.1007/978-3-319-63133-2_9
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∫ ∞

vt

J ·Edx =
1

2
K(t)E(vt) =

cE2
i

2π

β(1−β)

1+β
cos2[(1−β)ωt] . (S-9.87)

We have inserted the factor 1/2 to account for the discontinuity of E at x = vt (see

also Prob. 2.12). Equation (S-9.87) gives the mechanical power per unit surface

exerted on the mirror. To find the mechanical work, (S-9.87) must be integrated over

the time interval for which K(t) � 0, i.e., for the time needed by the wave packet to

undergo a complete reflection. If the front of the wave packet reaches the mirror at

t = 0, the end of the packet will leave the mirror at t = τ/(1−β), which is different

from the pulse duration τ because the mirror moves while the wave train is reflected.

We thus need the integral

∫ τ/(1−β)

0

cos2[(1−β)ωt]dt =
1

ω(1−β)

∫ ωτ

0

cos2 xdx =
πN

(1−β)ω
,

(S-9.88)

since ωτ = 2πN, and the integral of cos2 x over one period equals π. We thus obtain

W =

∫

1

2
K(t)E(vt)dt =

cE2
i

2π

β(1−β)

1+β

πN

(1−β)ω
=

cE2
i

4π

β

1+β
τ (S-9.89)

= 2Iiτ
β

1+β
=

2β

1+β
Ui , (S-9.90)

in agreement with (S-9.80).

The work W. divided by the reflection time gives, the mechanical power per unit

surface

P =W
1−β

τ
=

2β(1−β)

1+β
Ii =

2(1−β)

1+β
Ii

v

c
, (S-9.91)

which must be equal to the the pressure exerted on the moving mirror times its

velocity v. We thus obtain that the radiation pressure on a moving mirror is

Prad =
P

v
=

2Ii

c

1−β

1+β
, (S-9.92)

a result which can also be obtained in different ways (see Problems

13.7 & 13.8).

S-9.9 Boundary Conditions on a Moving Mirror

a) We can assume the wave to be linearly polarized along y, without loss of gener-

ality. We choose the origin of the frame S ′, where the mirror is at rest, so that the

mirror surface is on the x′ = 0 plane. In S ′ the total fields at the mirror surface are

http://dx.doi.org/10.1007/978-3-319-63133-2_2
http://dx.doi.org/10.1007/978-3-319-63133-2_13
http://dx.doi.org/10.1007/978-3-319-63133-2_13
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E′s(t
′) = ŷ′E′s(t

′) ≡ 0 ,

B′s(t
′) = ẑ′B′s(t

′)e−iω′
i
t′ = −ẑ′ 2E′i e−iω′

i
t′ , (S-9.93)

respectively, where

E′i = γ(1−β) Ei , ω
′
i = γ(1−β)ωi , (S-9.94)

are the amplitude and frequency of the incident wave in S ′, as seen in Problem 9.6.

Notice that E′ is continuous at x′ = 0, while B′ is not. By transforming the field

amplitudes at the mirror surface back to S we obtain

Es = γ(E
′
s+βB

′
s) = γβB

′
s = −2γ2β(1−β)Ei ,

Bs = γ(B
′
s−βE

′
s) = γB′s = −2γ2(1−β)Ei , (S-9.95)

where β = v/c and γ = 1/
√

1−β2. Thus, in general, in S we have both Es � 0 and

Bs � 0, while the fields are zero inside the mirror.

b) The EM fields are related to the vector potential by

E = −
1

c
∂tA , B = ∇×A. (S-9.96)

Thus, the only nonzero component of the vector potential is Ay, and we have

Es = −
1

c
∂tAy , Bs = ∂xAy . (S-9.97)

The total derivative of A appearing in (9.9) can be rewritten

dA

dt

∣

∣

∣

∣

∣

x=x(t)
=
[

∂tAy+ v∂xAy

]

x=x(t)
= cEs− vBs = c (Es−βBs) = 0 , (S-9.98)

according to (S-9.95). Thus the equations (S-9.93) and (S-9.95) imply dA/dt

= 0 on the mirror surface in S .

c) The total vector potential in S is the sum of the vector potentials of the incident

and the reflected waves,

A(x, t) = ŷ
[

Ai eiki x−iωit +Are
−ikr x−iωrt

]

= ŷ
[

Ai eiki(x−ct) +Ar e−ikr(x+ct)
]

,

(S-9.99)

http://dx.doi.org/10.1007/978-3-319-63133-2_9
http://dx.doi.org/10.1007/978-3-319-63133-2_9
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where Ai = icEi/ωi, ki = ωi/c, and kr = ωr/c. The boundary condition gives

0 = Ay(vt, t) = Ai e−iki(c−v)t +Ar e−ikr(c+v)t . (S-9.100)

This equation is satisfied if

Ar = −Ai ,
kr

ki

=
ωr

ωi

=
c− v

c+ v
=

1−β

1+β
. (S-9.101)

For the total electric field we find

Ey = −
1

c
∂tAy = i

ωi

c
Ai eiki x−iωit − i

ωr

c
Ar e−ikr x−iωrt

= Ei eiki x−iωit −
1−β

1+β
Ei e−ikr x−iωrt . (S-9.102)



Chapter S-10

Solutions for Chapter 10

S-10.1 Cyclotron Radiation

a) The electric dipole moment p = −er rotates in the xy plane with frequency ωL,

which is also the frequency of the emitted radiation. The dipole approximation is

valid if the dimensions of the radiating source are much smaller than the emitted

wavelength λ. Here this corresponds to the condition 2rL = 2v/ωL ≪ λ = 2πc/ωL,

always true for non-relativistic velocities.

The rotating dipole can be written as p = p0 (x̂cosωLt+ ŷsinωLt). For the electric

field of the dipole radiation observed in a direction of unit vector n̂, we have E ∝

−(p× n̂)× n̂. If n̂= ẑ, then E∝ x̂cosωLt+ ŷsinωLt (circular polarization); if n̂= x̂ or

n̂ = ŷ, we vave E ∝ −ŷsinωLt and E ∝ −x̂cosωLt, respectively (linear polarization).

Since r̈ = v×ωL (where ωL = ẑωL), the radiated power can be written as

Prad =
2

3

|er̈|2

c3
=

2

3

e2v2ω2
L

c3
. (S-10.1)

b) We assume that the energy loss due to radiation is small enough to cause a vari-

ation of the orbit radius ∆rc ≪ rc during a single period, so that, during a single

period, the motion is still approximately circular. Thus the magnitude of the elec-

tron velocity v = v(t) can be written as v ≃ ωLr, where r = r(t) is the radius of the

orbit at time t. The electron energy is

U =
mev2

2
=

meω
2
Lr2

2
, (S-10.2)

and the equation for the energy loss, dU/dt = −Prad, becomes

d

dt

(

meω
2
Lr2

2

)

= −
2

3c3

(

e2ω4
Lr2
)

= −
2remeω

4
L

3c
r2 , (S-10.3)
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where re = e2/(me c2) is the classical electron radius. Substituting the relation

d(r2)/dt = 2r dr/dt into (S-10.3) we obtain

dr

dt
= −

2reω
2
L

3c
r ≡ −

r

τ
, with τ =

3c

2reω
2
L

=
3mec3

2e2ω2
L

, (S-10.4)

whose solution is

r(t) = r(0)e−t/τ , (S-10.5)

and the trajectory of the electron is a spiral with a decay time τ. Inserting the expres-

sions for re and ωL we have

τ =
3

2

m3
ec5

e4B2
0

=
5.2×105

B2
0

s (S-10.6)

where the magnetic field B0 is in G. The condition τ≫ ω−1
L implies

3

2

m3
ec5

e4B2
0

≫
mec

eB0
, or B0≪

3

2

m2
ec4

e3
= 9.2×1013 G , (S-10.7)

a condition well verified in all experimental conditions: such high fields can be

found only on neutron stars! (see Problem 10.5)

c) We insert a frictional force ffr = −meηv into the equation of motion, obtaining

me
dv

dt
= −

e

c
v×B0−meηv . (S-10.8)

This corresponds to the following two coupled equations for the the x and y compo-

nents the electron velocity

v̇x = −ωLvy−ηvx , v̇y = ωLvx −ηvy . (S-10.9)

An elegant method to solve these equations is to combine the x and y coordinates of

the electron into a single complex variable R = x+ iy, and the velocity components

into the complex variable V = vx+ ivy. The two equations (S-10.9) are thus combined

into the single complex equation

V̇ = (iωL−η)V , with solution V = V(0)eiωLt−ηt = v0 eiωLt−ηt . (S-10.10)

For the electron position we have

R =

∫

V dt+C =
v0

iωL−η
eiωLt−ηt +C = −

(η+ iωL)v0

ω2
L
+η2

eiωLt−ηt +C , (S-10.11)

http://dx.doi.org/10.1007/978-3-319-63133-2_10
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where C is a complex constant depending on our choice of the origin of the coordi-

nates. We choose C = 0, and rewrite (S-10.11) as

R = −
v0

√

ω2
L
+η2

(cosφ+ i sinφ)eiωLt−ηt = −
v0

√

ω2
L
+η2

ei(ωLt+φ)−ηt , (S-10.12)

where

cosφ =
η

√

ω2
L
+η2

, sinφ =
ωL

√

ω2
L
+η2

, φ = arctan

(

ωL

η

)

. (S-10.13)

Going back to the real quantities we have

vx = Re(V) = v0 e−ηt cosωLt , (S-10.14)

vy = Im(V) = v0 e−ηt sinωLt , (S-10.15)

x = Re(R) = −
v0

√

ω2
L
+η2

e−ηt cos(ωLt+φ) , (S-10.16)

y = Im(R) = −
v0

√

ω2
L
+η2

e−ηt sin(ωLt+φ) . (S-10.17)

Thus, the velocity rotates with frequency ωL, while its magnitude decays exponen-

tially, |v(t)| = v0 e−ηt. For the radius of the trajectory we have

r(t) = |R(t)| =
v0

√

ω2
L
+η2

e−ηt . (S-10.18)

Thus, choosing η = 1/τ, the motion with frictional force is identical to the motion

with radiative power loss, and

ffr · v = −meηv
2 = −

mev2

τ
= −mev2 2e2ω2

L

3mec3
= −

2e2v2ω2
L

3c3
= −Prad . (S-10.19)

A drawback of this approach is that the frictional coefficient inserted here is

not universal but is dependent on the force on the electron (in this case, via the

dependence on ωL). See Problem 10.12 for a more general approach to radiation

friction.

http://dx.doi.org/10.1007/978-3-319-63133-2_10
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S-10.2 Atomic Collapse

a) An electron describing a circular orbit of radius a0 (Bohr radius) around a proton

corresponds to a counterrotating electric dipole p(t) of magnitude p0 = ea0. The

angular velocity of the orbit ω can be evaluated by considering that the centripetal

acceleration is due to the Coulomb force,

ω2a0 =
1

me

e2

a2
0

, (S-10.20)

from which we obtain

ω =

√

e2

mea3
0

= 4.1×1016 rad/s . (S-10.21)

Actually, the strongest emission from the hydrogen atom occurs at a frequency

smaller by about one order of magnitude.

Since p is perpendicular to ω, we have p̈ = (p×ω)×ω and |p̈|2 =
(

ω2 p0

)2
(the

same result can be obtained by considering the rotating dipole as the superposition

of two perpendicularly oscillating dipoles). Thus the radiated power is

Prad =
2

3c3
|p̈|2 =

2

3

ω4e2a2
0

c3
=

2

3

e2r2
e c

a4
0

, (S-10.22)

where re is the classical electron radius.

b) We assume that, due to the emission of radiation, the electron loses its energy

according to dU/dt = −Prad, where U = K +V is the total electron energy, K and V

being the kinetic and potential energy, respectively. If the energy lost per period is

small with respect to the total energy, we may assume that the electron the orbit is

almost circular during a period, with the radius slowly decreasing with time, r = r(t)

with ṙ/r≪ ω.

Since the velocity is v = rω, the total energy can be written as a function of a:

U = K +V =
mev2

2
−

e2

r
= −

e2

2r
. (S-10.23)

Therefore

dU

dt
≃ −

e2

2

d

d

(

1

r

)

=
e2

2r2

dr

dt
. (S-10.24)



S-10.2 Atomic Collapse 343

Since

Prad =
2

3

e2r2
e c

r4
(S-10.25)

the equation dU/dt = −Prad can be written as

e2

2r2

dr

dt
= −

2

3

e2r2
e c

r4
⇒ r2 dr

dt
= −

4

3
r2

e c ⇒
1

3

dr3

dt
=

4

3
r2

e c (S-10.26)

The solution, assuming r(0) = a0, is

r3 = a3
0−4r2

e c t , (S-10.27)

giving for the time need by the electron to fall on the nucleus

τ =
a3

0

4r2
e c
≃ 1.6×10−11 s . (S-10.28)

This is a well-known result, showing that a classical “Keplerian” atom is not stable.

It is however interesting to notice that the value of τ is of the same order of mag-

nitude of the lifetime of the first excited state, i.e., of the time by which the excited

state decays to the ground state emitting radiation.

S-10.3 Radiative Damping of the Elastically Bound Electron

a) The solution of (10.5) with the given initial conditions and η = 0 is

r = s0 cosω0t . (S-10.29)

The corresponding average radiated power in the dipole approximation is

Prad =
2

3c3

〈

−e|r̈|2
〉

=
2e2

3c3
ω4

0s2
0

〈

cos2ω0t
〉

=
e2

3c3
ω4

0s2
0 . (S-10.30)

The radiated power is emitted at the expense of the energy of the oscillating elec-

tron. Thus, the total mechanical energy of electron must decrease in time, and the

harmonic-oscillator solution of (S-10.29) cannot be exact. Assuming that the energy

of the oscillator decays very slowly, i.e., with a decay constant τ ≫ ω−1
0

, we can

approximate (S-10.29) as

r ≃ s(t)cosω0t . (S-10.31)

http://dx.doi.org/10.1007/978-3-319-63133-2_10
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where s(t) is a decreasing function of time to be determined. Consequently, we must

replace s0 by s(t) also in equation (S-10.30) for the actual average radiated power.

b) At time t, the total energy of the oscillating electron is U(t) = meω
2
0
s2(t). The

time decay constant τ is defined as

τ =
U(t)

Prad(t)
=

3mec3

2e2ω2
0

=
3c

2reω
2
0

, (S-10.32)

and is thus independent of t. Since the classical electron radius is re ≃ 2.82×10−15 m,

the condition τ > 2π/ω0 leads to

ω0 <
3

4π

c

re
≃ 3×1022 rad/s . (S-10.33)

For a comparison, estimating ω0 as the frequency of the 1S←2P Lyman-alpha emis-

sion line of the hydrogen atom, we have ω0 ≃ 3×1016 rad/s.

c) We look for a solution of the form r = Re(s0 e−iωt), with complex ω. Substituting

this into (10.5), the characteristic equation becomes

ω2+ iηω+ω2
0 = 0 , (S-10.34)

whose solution is

ω = −i
η

2
±

√

ω2
0
−
η2

4
≃ −i
η

2
±ω0 , (S-10.35)

where we have neglected the terms of the order (η/ω0)2 and higher. Thus, the

approximated solution for the electron position is

r ≃ s0 e−ηt/2 cosω0t . (S-10.36)

Actually, this approximation gives an initial velocity ṙ(0) = −ηs0/2 instead of zero.

However, this discrepancy can be neglected if η≪ω0. The maximum speed reached

by the electron is vmax ≃ ω0s0, and ηs0/2≪ ω0s0.

The time-dependent total energy of the electron and average radiated power are

U(t) ≃
me

2
ω2

0s2
0 e−ηt , and Prad(t) ≃

e2

3c3
ω4

0s2
0 e−ηt . (S-10.37)

The condition dU/dt = −Prad leads to

η =
2reω

2
0

3c
=

1

τ
. (S-10.38)

http://dx.doi.org/10.1007/978-3-319-63133-2_10
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S-10.4 Radiation Emitted by Orbiting Charges

a) Let us denote by r1 and r2 the location vectors of the two charges with respect to

the center of their common circular orbit. In polar coordinates we have

r1 ≡
[

R,φ1(t)
]

, and r2 ≡
[

R,φ2(t)
]

. (S-10.39)

Defining ∆φ = φ2 −φ1 and choosing an appropriate origin of time, the equations of

motion in polar coordinates are

r1 ≡

(

R,ωt−
∆φ

2

)

, and r2 ≡

(

R,ωt+
∆φ

2

)

. (S-10.40)

In Cartesian coordinates we have

r1 ≡
[

x1(t),y1(t)
]

, and r2 ≡
[

x2(t),y2(t)
]

, (S-10.41)

with, respectively,

x1(t) = Rcos

(

ωt−
∆φ

2

)

, y1(t) = Rsin

(

ωt−
∆φ

2

)

, (S-10.42)

x2(t) = Rcos

(

ωt+
∆φ

2

)

, y2(t) = Rsin

(

ωt+
∆φ

2

)

. (S-10.43)

The dipole moment of the system is p = q(r1+ r2), with Cartesian components

px = qR

[

cos

(

ωt−
∆φ

2

)

+ cos

(

ωt+
∆φ

2

)]

= 2qRcos

(

∆φ

2

)

cosωt , (S-10.44)

py = qR

[

sin

(

ωt−
∆φ

2

)

+ sin

(

ωt+
∆φ

2

)]

= 2qRcos

(

∆φ

2

)

sinωt , (S-10.45)

i.e., p has constant magnitude p = 2qRcos(∆φ/2), and rotates in the z = 0 plane with

angular frequency ω.

b) In the dipole approximation, the electric field of the radiation emitted along a

direction of unit vector the n̂ is parallel to the vector

(p× n̂)× n̂ = p⊥ . (S-10.46)

Since for a dipole rotating in the z = 0 plane

(p× x̂)× x̂ is parallel to ŷ , and (p× ŷ)× ŷ is parallel to x̂ , (S-10.47)

the polarization of the radiation observed in the x̂ (ŷ) direction is linear and along ŷ

(x̂). For radiation observed the ẑ direction
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(p× ẑ)× ẑ is parallel to p , (S-10.48)

and the observed polarization is circular.

The total radiated power is

Prad =
2

3c3
|p̈|2 =

4q2R2ω4

3c3
cos2

(

∆φ

2

)

, (S-10.49)

which obviously vanishes when p = 0, i.e., for ∆φ = π (charges on opposite ends of

a rotating diameter), and has a maximum for ∆φ = 0 (superposed charges).

c) In this case charges are superposed to each other every half turn. We choose the

coordinates and the time origin so that the charges are superposed at t = 0 we have

r1 = r2 = (R,0). Thus the trajectories can be written as

r1 = r2 = R , φ1(t) = ωt , φ2(t) = −ωt , (S-10.50)

in polar coordinates, and as

x1(t) = Rcosωt , y1(t) = Rsinωt ,

x2(t) = Rcosωt , y2(t) = −Rsinωt , (S-10.51)

in Cartesian coordinates. The total dipole moment is thus p = (2qRcosωt) x̂. No

radiation is emitted along x, while the radiation emitted along all other directions is

linearly polarized. The total average radiated power is

Prad =
2

3c3
|p̈|2 =

4q2R2ω4

3c3
. (S-10.52)

d) With an appropriate choice of the time origin the equations of motion of the three

charges can be written, in polar coordinates, as

r1 = r2 = r3 = R , φ1(t) = ωt ,

φ2(t) = ωt+∆φ2 , φ3(t) = ωt+∆φ3 , (S-10.53)

and, in Cartesian coordinates,

xi = Rcosφi(t) , yi = Rsinφi(t) , (i = 1,2,3) . (S-10.54)

The electric dipole moment vanishes if the three charges are on the vertices of a

rotating equilateral triangle (∆φ2 = −∆φ3 = 2π/3), and has its maximum value when

the three charges are overlapped (∆φ2 = ∆φ3 = 0).

e) The magnetic dipole moment for a point charge q, traveling at angular velocity ω

on a circular orbit of radius R, is defined by
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m =
1

2c

∫

r×Jd3x =
qR2ω

2c
, (S-10.55)

and is constant (notice that m is proportional to the angular momentum of the orbit-

ing charge). Thus the magnetic dipole does not contribute to radiation, because the

radiation fields are proportional to m̈.

This problem explains why a circular coil carrying a constant current does not

radiate, although we may consider the current as produced by charges moving on

circular orbits, and thus subject to acceleration.

S-10.5 Spin-Down Rate and Magnetic Field of a Pulsar

a) Due to the nonzero angle α between the magnetic moment and the rotation axis

of the pulsar, the component of m perpendicular toω rotates with frequency ω. Thus

the Pulsar emits magnetic dipole radiation of frequency ω. The total power is

P =
2

3c3
|m̈⊥|

2 =
2

3

m2
⊥ω

4

c3
, (S-10.56)

where m⊥ = msinα.

b) The mechanical energy is U = Iω2/2, where I = 2MR2/5 ≃ 1.1× 1043 g cm2 is

the moment of inertia of the pulsar, assuming a uniform mass distribution over the

volume of a sphere of radius R. Assuming that the energy loss is due to radiation

emission only, we can write

dU

dt
=

d

dt

(

Iω2

2

)

= Iωω̇ = −P , (S-10.57)

and, substituting (S-10.56), we have

Iωω̇ = −
2

3

m2
⊥ω

4

c3
⇒

ω̇

ω3
= −

2m2
⊥

3Ic3
. (S-10.58)

By integrating over time from 0 to t we obtain

1

2ω2(t)
−

1

2ω2(0)
=

2m2
⊥

3Ic3
t , (S-10.59)

and thus

ω(t) =
ω(0)
√

1+
t

τ

, where τ =
3Ic3

4m2
⊥ω

2(0)
. (S-10.60)
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c) We can rewrite ω̇/ω3 as ω̇/ω3 = −TṪ/4π2, where T = 2π/ω is the rotation period

of the pulsar, and Ṫ = −2πω̇/ω2. Thus we can obtain the magnetic dipole moment

m =m⊥ of the pulsar as a function of the experimentally measured parameters from

(S-10.58):

m =

√

3Ic3

8π2
TṪ ≃ 3.3×1036

√

TṪ erg/G , (S-10.61)

where T is in seconds. The magnetic field immediately outside of the pulsar surface

is the field of a magnetic dipole located at the pulsar center:

B =
3(r̂ ·m) r̂−m

r3
, (S-10.62)

and thus Bmax = 2m/R3. Thus we obtain the practical formula

Bmax ≃ 6.6×1021
√

TṪ G , (S-10.63)

Inserting the experimental values for T and Ṫ we obtain

Bmax ≈ (9.6±0.25)×1016 G . (S-10.64)

S-10.6 A Bent Dipole Antenna

a) If we divide the antenna into a series of infinitesimal resistors, each of length dz

and resistance dR = (R/a)dz, we can write the dissipated power as

Pdiss =

∫

〈I2〉dR =

∫

+a

−a

I2
0

2

(

1−
|z|

a

)2
R

a
dz =

I2
0
R

3
. (S-10.65)

b) The linear charge density on the antenna qℓ can be obtained from the continuity

equation ∂tqℓ = −∂zI, obtaining

qℓ = ±
iI0

aω
e−iωt, (S-10.66)

where the signs + and − apply to z > 0 and z < 0, respectively. The linear charge

density is uniform (independent of z) on each half of the antenna. For symmetry

reasons, the only non-vanishing component of the electric dipole p is along z and it

is given by

pz =

∫ +a

−a

zqℓ dz = 2

∫ +a

0

iI0

aω
e−iωtzdz =

iI0 a

ω
e−iωt . (S-10.67)
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c) The average radiated power, in the dipole approximation, is

Prad =
1

3c3

〈

|p̈z|
2
〉

=
I2
0
a2ω2

6c3
=

2π2a2I2
0

3cλ2
, (S-10.68)

where λ = 2πc/ω is the radiation wavelength. Thus

Prad

Pdiss

=
2π2a2

cλ2R
, (S-10.69)

where we recall that R has the dimensions of the inverse of a velocity in Gaussian

units.

d) The angular distribution of the radiated power is proportional to sin2 θ, where

θ is the angle between the observation direction and p. Thus the emitted radiation

intensity is zero along the z axis and maximum for observation in the xy plane.

e) The bent antenna has a linear charge density ±(iI0/aω)e−iωt on its horizontal and

vertical arms, respectively. Thus the electric dipole moment has two components

px =

∫ a

0

iI0

aω
e−iωt xdx =

iI0a

2ω
e−iωt , (S-10.70)

pz = −

∫ 0

−a

iI0

aω
e−iωtzdz =

iI0a

2ω
e−iωt . (S-10.71)

Since the components are perpendicular to each other, the cycle-averaged radiated

power can be calculated as the sum of the powers from each dipole:

Prad =
1

3c3

〈

|p̈x|
2+ |p̈z|

2
〉

=
1

12c3
(I0ωa)2 , (S-10.72)

which is one half of the value for the linear antenna, while the dissipated power Pdiss

does not change.

The electric dipole of the bent antenna lies along the diagonal direction, which

thus corresponds to the direction of zero emitted intensity. The intensity is maximum

in the plane perpendicular to the dipole.

S-10.7 A Receiving Circular Antenna

a) We choose a Cartesian reference frame such that the wave is propagating in

the z direction, its electric field E is along the x axis, and its magnetic field B

is along the y axis. The current I flowing in the antenna is I = Ecirc/R, where

Ecirc = −(1/c)dΦ(B)/dt is the electromotive force, andΦ(B) is the flux of B through

the circle delimited by the antenna. Since we have assumed λ≫ a, B is practically

uniform over the whole surface of the circle, and Φ(B) ≃ πa2B · n̂, where n̂ is unit
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vector perpendicular to the circle surface. Thus the circular antenna must lie on the

xz plane in order to maximize Φ(B). With a proper choice of the time origin the

magnetic field on the circle surface can be written as B ≃ ŷ B0 cosωt, and

Ecirc = πa
2ω

c
E0 sin(ωt) , (S-10.73)

since B0 = E0 in Gaussian units.

b) The electromotive force on a linear antenna parallel to the x axis is practically

Elin = ℓE0 cos(ωt+φ), where ℓ is rhe length of the antenna and φ is a phase angle.

The ratio of the average electromotive force of the circular antenna to the average

electromotive force of the linear antenna is thus

〈Ecirc〉

〈Elin〉
≃
〈Ecirc〉

E0ℓ
=
πa2ω

ℓc
= 2π2 a2

ℓλ
. (S-10.74)

In the range 102 cm<λ< 103 cm, and with our assumptions ℓ≃ 50cm and a≃ 25cm,

this ratio varies between 2.5 and 0.25. The circular antenna is more convenient for

shorter wavelengths.

c) The radiation emission from the circular antenna is dominated by the magnetic

dipole term. The dipole moment of the antenna is

m =
1

c
Iπa2 n̂ , (S-10.75)

where I is the current circulating in the antenna due to the electromotive force

induced by the incident wave. The corresponding time-averaged radiated power is

Prad =
2

3c3

〈

|m̈|2
〉

=
2

3c5
(πa2)2ω4

〈

I2
〉

=
(πa2)4ω6

3c7R2
E2

0 . (S-10.76)

In Gaussian units, the intensity of the incoming wave is I = cE2
0
/4π, and (S-10.76)

can be rewritten

Prad =
4π(πa2)4ω6

3c8R2
I =

2(2π)7(πa2)4

3c2R2λ6
I . (S-10.77)

The factor multiplying I,

σscatt =
2(2π)7(πa2)4

3c2R2λ6
, (S-10.78)

has the dimensions of a surface (R has the dimensions of an inverse velocity in

Gaussian units), and is the radiative scattering cross section for our circular antenna,

in the magnetic dipole approximation.
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The time-averaged power dissipated by Joule heating is Pdiss = R〈I2〉, so that

Prad

Pdiss

=
2

3c5R
(πa2)2ω4 =

2(2π)4(πa2)2

3Rcλ4
. (S-10.79)

S-10.8 Polarization of Scattered Radiation

a) We choose a Cartesian reference frame with the origin located on the scattering

particle, and the z axis parallel to the wave vector of k the incident wave. In order to

have complete rotational symmetry around the z axis it is convenient to assume that

the incident wave is circularly polarized. The electric field of the incoming wave

can thus be written

Ei = E0(x̂± iŷ)eikz−iωt . (S-10.80)

Thus, the dipole moment of the scatterer is p = αEi = αE0(x̂± iŷ)eikz−iωt.

z

θ

y

y

k
kd

z

Fig. S-10.1

Because of the rotational symme-

try of the problem around the z axis,

it is sufficient to consider the scat-

tered radiation with the wave vector

kd lying in the yz plane and forming

an angle θ with the z axis, as shown

in Fig. S-10.1. Disregarding a propor-

tionality factor depending on α and θ,

the electric field Ed of the scattered

radiation can be written

Ed ∝ −(p× n̂)× n̂

∝ −[(x̂± iŷ)× n̂]× n̂ , (S-10.81)

where n̂ = (0,sinθ,cosθ) is the unit vector parallel to kd. Now, recalling that

(x̂± iŷ)× n̂ = (±i cosθ,−cosθ,sinθ) , (S-10.82)
[

(x̂± iŷ)× n̂
]

× n̂ = (−1,∓i cos2 θ,±i sinθcosθ) , (S-10.83)

we fint that

Ed ∝
(

1, ±i cos2 θ, ∓i sinθcosθ
)

. (S-10.84)

Since an observer would measure the polarization of the scattered radiation with

respect to the direction n̂, we calculate the components of the field in the rotated
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coordinate system (x′,y′,z′), rotated by an angle θ around the x axis, so that x′ = x

and z′ is along n̂:

E′d x = Ed x ∝ 1 , (S-10.85)

E′dy = Edy cosθ−Edz sinθ ∝ ±Ii cos3 θ± i sin2 θcosθ

= ±i cosθ
(

cos2 θ+ sin2 θ
)

= ±i cosθ , (S-10.86)

E′dz = Edy sinθ+Edz cosθ ∝ ±i sinθcos2 θ∓ i sinθcos2 θ = 0 . (S-10.87)

The last equality is a check that the radiation field is transverse. We thus obtain

Ed ∝ x̂′± i cosθ ŷ′ , (S-10.88)

which gives the dependence of the polarization on the scattering angle θ. In addition,

the angular distribution or the radiated power is given by

dPscatt

dΩ
∝ |Ed|

2 ∝ 1+ cos2 θ . (S-10.89)

b) The radiation from most sources (sunlight is a typical example) is usually inco-

herent. This means that its phase and electric field direction change randomly at

time intervals not much longer than the oscillation period. Thus, the radiation is

effectively unpolarized at direct observation, in the sense that it is not possible to

measure a definite polarization because of its fast variations. However, (S-10.88)

shows that, independently of the source polarization, the radiation scattered at 90◦

(cosθ = 0) is always linearly polarized (in the direction perpendicular to both the

wave vector of the incoming light and the observation direction). Hence, incoher-

ent radiation that has undergone scattering (as the blue light from the sky) tends to

be polarized, even if the radiation from the primary source (in this case the sun)

is unpolarized. A measurement of the polarization might help, then, to localize the

position of the Sun on a cloudy day.

S-10.9 Polarization Effects on Thomson Scattering

a) Equation (10.7) leads to the following two equations for the velocity components

of the electron, vx and vy,

mev̇x = −eE0 cosθcos(kz−ωt) , mev̇x = −eE0 sinθ sin(kz−ωt) , (S-10.90)

http://dx.doi.org/10.1007/978-3-319-63133-2_10
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where me is the electron mass. We search for a steady-state solution of the form

vx = V0x sin(kz−ωt) , vy = V0y cos(kz−ωt) , (S-10.91)

with V0x and V0y two real constants to be determined. Substituting into (S-10.90)

we obtain

V0x =
eE0 cosθ

meω
, V0y = −

eE0 sinθ

meω
. (S-10.92)

The second derivative of the electric dipole moment of the electron with respect to

time is

p̈ = −ev̇ = −
e2E0

me

[

(x̂cosθcos(kz−ωt)+ ŷsinθ sin(kz−ωt)
]

, (S-10.93)

and the electron radiates at frequency ω. The polarization for scattered radiation

propagating in a generic direction of unit vector n̂ direction is parallel to the projec-

tion of the dipole moment onto the plane perpendicular to n̂, i.e., to p⊥ = (p̈× n̂)× n̂.

Thus, we observe linear polarization parallel to ŷ for the radiation emitted along x̂,

and linear polarization parallel to x̂ for the radiation emitted along ŷ, and elliptical

polarization for the radiation emitted along ẑ.

If 0 < θ < π/4, so that sinθ < cosθ, we choose the observation-direction unit

vector n̂ = (sinψ,0,cosψ), lying in the xz plane, and forming an angle ψ with the z

axis, as shown in Fig. S-10.2, where ki is the wave vector of the incident wave. Now

we choose a Cartesian reference frame x′,y′,z′, with y′ ≡ y and z′ along n̂, so that

the scattered radiation of interest is propagating along z′.

ki

n̂

x
cos θ

sin
θ

y y

x

zz

Fig. S-10.2

If we perform an orthogonal projection onto the

x′y′ plane of an ellipse lying on the xy plane, of

half axes cosθ parallel to x, and sinθ parallel to

y, we obtain an ellipse of half-axes cosθcosψ

along x′, and sinθ along y′. Thus we observe

a circular polarization if cosθcosψ = sinθ, i.e.,

if cosψ = tanθ. Analogously, if π/4 < θ < π/2,

so that sinθ > cosθ, we choose the observation-

direction unit vector n̂ = (0,sinψ,cosψ), lying in

the yz plane, and we observe circular polarization

if sinθcosψ = cosθ, i.e., if cosψ = cotθ . b) The

average total scattered power is

P =
2

3c3

〈

|p̈|2
〉

=
2e4

3m2
ec3

〈

|E|2
〉

, (S-10.94)
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where

〈

|E|2
〉

=
〈

E2
x +E2

y

〉

=
1

2
E2

0

(

cos2 θ+ sin2 θ
)

=
1

2
E2

0 . (S-10.95)

Thus, the total scattered power is independent of θ and can be written as

P =
e4E2

0

3m2
ec3
=

cE2
0

3
r2

e =
4π

3
r2

e I , (S-10.96)

where

re =
e2

mec2
, and I =

cE2
0

4π
,

are the classical electron radius and the intensity of the incident wave, respectively.

c) The magnetic field of the wave is

B = E0
[

−x̂sinθ sin(kz−ωt)+ ŷcosθcos(kz−ωt)
]

. (S-10.97)

The only non-vanishing component of v×B is in the ẑ direction, and the magnetic

force on the electron can be written as

Fz = −
e

c
(v×B)z = −

e

c
(vxBy− vyBx)

= −
e2E2

0

2cmeω
(cos2 θ− sin2 θ) sin(2kz−2ωt) , (S-10.98)

this quantity vanishes for θ = π/4, when cosθ = sinθ, i.e., for circular polarization.

d) The magnetic force Fz drives dipole oscillations along the z axis at frequency

2ω. Thus, in addition to the scattered radiation of frequency ω discussed at points a)

and b), we observe also scattered radiation of frequency 2ω, angularly distributed

as sin2ψ around the z axis. Since the dipole oscillating at 2ω is perpendicular to the

dipole oscillating at ω, we can simply add the corresponding scattered powers. Now

we want to evaluate the power emitted at frequency 2ω.

The equation of motion for the electron along the z axis is (we put cos2 θ−sin2 θ =

cos2θ)

mev̇z = Fz = −
e2E2

0

2cmeω
cos2θ sin(2kz−2ωt) . (S-10.99)

Once more, we search for a steady-state solution of the form

vz = V0z cos(2kz−2ωt) , (S-10.100)

with V0z a constant. Substituting into (S-10.99) we obtain
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V0z = −
e2E2

0

4cm2
eω

2
cos(2θ) (S-10.101)

and

v̇z = −
e2E2

0

2cm2
eω

cos(2θ) sin(2kz−2ωt) . (S-10.102)

The total average power emitted by the dipole oscillating at 2ω is

P2ω =
2

3c3

〈

∣

∣

∣p̈2ω

∣

∣

∣

2
〉

=
2

3c3

〈

|ev̇z|
2
〉

=
e6E4

0

12c5m4
eω

2
cos2(2θ)

=
4π

3

e2E2
0

4c2m2
eω

2
cos2(2θ)r2

e I

=
4π

3

V0z

c
cos2(2θ)r2

e I . (S-10.103)

S-10.10 Scattering and Interference

a) With a proper choice of the time origin, the electric field of the incident plane

wave at x = ±d/2 can be written as

Ei

(

±
d

2
, t

)

= E0 e±ikd/2−iωt ẑ , (S-10.104)

and the phase difference between the two scatterers is

φ+−φ− = kd . (S-10.105)

We denote by r± the optical paths between the observation point P and the scatterers

located at (±d/2,0,0), as shown in Fig. 10.5. The difference between the two optical

paths is

∆r = (r+− r−) ≃ −d sinθ , (S-10.106)

where θ is the angle between the y axis and the line joining the origin to P, as shown

in Fig. 10.5. The approximation is valid for L≫ d. The phase difference between

the two scattered waves in P is obtained by combining (S-10.105) and (S-10.106),

∆φ = kd(1− sinθ) . (S-10.107)

b) If we neglect the difference between the magnitudes of the scattered fields E+ and

E− in P, E± being the field of the wave scattered at (±d/2,0,0), the total scattered

intensity Is in P is proportional to

http://dx.doi.org/10.1007/978-3-319-63133-2_10
http://dx.doi.org/10.1007/978-3-319-63133-2_10
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Is ∝ |E++E−|
2 ∝ |E+|

2
∣

∣

∣eikd(1−sinθ)/2+ e−ikd(1−sinθ)/2
∣

∣

∣

2

∝
1

r2
cos2

[

kd

2
(1− sinθ)

]

. (S-10.108)

Since r cosθ = L, we can also write

Is ∝
cos2 θ

L2
cos2

[

kd

2
(1− sinθ)

]

. (S-10.109)

We denote by u = (kd/2)(1− sinθ) the argument of the second cos2 appearing in

(S-10.109). For −π/2� θ� π/2 the variable u varies continuously and monotonically

from kd to 0. If kd ≪ 1 (i.e., if d ≪ λ/2π), then cos2 u ≃ 1 e Is(θ) ∼ cos2 θ, as if a

single scatterer was present. If kd < π/2 the function cos2 u has no zeros, meaning

that interference fringes are not observed if the distance between the scatterers is

less than λ/4. If
π

2
<

kd

2
< (n+1)

π

2
,

with n an integer number and n� 1, the function cos2 u has n zeros, and one observes

n scattered-intensity minima and n+1 maxima as θ varies from −π/2 to +π/2. The

intensity of the maxima is modulated by the function cos2 θ.

S-10.11 Optical Beats Generating a “Lighthouse Effect”

a) On the z = 0 plane the electric fields E± emitted by the two dipoles are parallel

to ẑ (perpendicular to the plane), and their amplitudes are independent of φ. Since

for each dipole E± ∝ −ω
2
±p0, the field amplitudes are E+ ≃ E−, equal to each other

up to the first order in δω/ω0. The difference between the optical paths from the two

dipoles to P is δr ≃ d sinφ = (πc/ω0) sinφ, which yields a phase difference of πsinφ.

The total field may be thus written as

E = E0 cos[(ω0+δω/2)t+πsinφ/2]+E0 cos[(ω0−δω/2)t−πsinφ/2]

= 2E0 cos(ω0t)cos(δωt+πsinφ) . (S-10.110)

b) The EM energy flux in the radiation zone is given by Poynting’s vector S, which

is proportional to the square modulus of the electric field. Thus

S ∝ 4cos2(ω0t)cos2(δωt+πsinφ). (S-10.111)

Using the “fast”, or “instantaneous”, detector, only the factor cos2(ω0t) is averaged,

and the measured signal is proportional to

〈S 〉 ∝ 2cos2(δωt+πsinφ) , since
〈

cos2(ω0t)
〉

=
1

2
. (S-10.112)
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At time t, the direction of maximum flux intensity is determined by the condition

δωt+πsinφ =

{

0

π
, (S-10.113)

which means that the direction of maximum flux φmax rotates in the z = 0 plane,

similarly to a lighthouse beam, according to

φmax(t) = arcsin

(

−
δω

π
t

)

. (S-10.114)

p− p+

P

O

z

y
x

r

θ

Fig. S-10.3

If the EM flux is measured with the “slow” detector,

i.e., averaging over times longer than 2π/δω, both

cos2 terms of (S-10.111) are averaged to 1/2, and

the total flux is the sum of the two independent fluxes

from the two dipoles.

c) Now the observation point P is on the x = 0 plane,

at a distance r from the origin, as in Fig. S-10.3.

The angle between the z axis and r is θ. Within our

approximations, the intensities of the two electric

fields E+ and E− in P are equal and proportional to

sinθ. Thus the two separate intensities are dependent

on θ, while they are independent of φ on the z = 0 plane. The amplitude of the

Poynting vector is proportional to

S ∝ 2sin2 θcos2(ω0t)cos2(δωt+πsinθ) . (S-10.115)

Thus the “fast” detector still measures a rotation of the direction of maximum emis-

sion, but the intensity is modulated by a sin2 θ factor.

S-10.12 Radiation Friction Force

a) We insert (10.11) for Frad into (10.9), obtaining

∫ t+T

t

Frad(t) · v(t)dt = meτ

∫ t+T

t

d2
v(t)

dt2
· v(t)dt

= meτ

[

dv(t)

dt
· v(t)

]t+T

t

−meτ

∫ t+T

t

∣

∣

∣

∣

∣

dv(t)

dt

∣

∣

∣

∣

∣

2

dt , (S-10.116)

http://dx.doi.org/10.1007/978-3-319-63133-2_10
http://dx.doi.org/10.1007/978-3-319-63133-2_10
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where we have used integration by parts in the second line. The first term vanishes

since the motion is periodic1:

[

dv(t)

dt
· v(t)

]t+T

t

=
1

2

[

d

dt
v

2(t+T )−
d

dt
v

2(t)

]

= 0 . (S-10.117)

We thus obtain

∫ t+T

t

Frad(t) · v(t)dt = −meτ

∫ t+T

t

∣

∣

∣

∣

∣

dv

dt

∣

∣

∣

∣

∣

2

dt . (S-10.118)

Substituting Larmor’s formula (10.10) into the right-hand side of (10.9) we obtain

−

∫ t

0

Prad(t′)dt′ = −

∫ t

0

2e2

3c2

∣

∣

∣

∣

∣

dv

dt′

∣

∣

∣

∣

∣

2

dt′ , (S-10.119)

and (10.9) is verified if we choose

τ =
2e2

3mec2
. (S-10.120)

Apart from the 2/3 factor, τ is the time needed by light to travel a distance equal to

the classical electron radius re = 2.82×10−13 cm, and we have τ ∼ 10−23 s.

b) After substituting (10.12) into (10.8), we search for a steady-state solution of the

form v(t) = v0 e−iωt, and find

v0 = −
ieE0

meω(1+ iωτ)
. (S-10.121)

Analogously, the steady-state solution of (10.13) is

v0 = −
ieE0

meω

(

1+ i
η

ω

) . (S-10.122)

The two solutions are identical if we choose η = ω2τ. The same result can be

obtained by a direct comparison of Frad to the frictional force −meηv.

Equation (10.8) represents the first attempt to derive an expression for the “radia-

tion friction” or “radiation reaction” force which is deeply related to the back-action

of the electron on itself, since the electron interacts with the electric field it gener-

ates (self-force9. However. (10.8) is considered unsatisfactory for for two reasons:

(i) it increases the order of the equation of motion, and, consequently, one needs

a further initial condition for the acceleration; and ii) it has unphysical “runaway”

1Actually it is not strictly necessary for the motion to be periodic, it is sufficient that dv
2(t)dt

vanishes at the initial and final instants of the time interval considered.

http://dx.doi.org/10.1007/978-3-319-63133-2_10
http://dx.doi.org/10.1007/978-3-319-63133-2_10
http://dx.doi.org/10.1007/978-3-319-63133-2_10
http://dx.doi.org/10.1007/978-3-319-63133-2_10
http://dx.doi.org/10.1007/978-3-319-63133-2_10
http://dx.doi.org/10.1007/978-3-319-63133-2_10
http://dx.doi.org/10.1007/978-3-319-63133-2_10
http://dx.doi.org/10.1007/978-3-319-63133-2_10
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solutions in the absence of an external field, such as a(t) = a0 et/τ with a = dv/dt.

This problem has a long and still open history. Additional discussion may be found

in textbooks and in the literature, also in very recent works related to highly rela-

tivistic electrons in ultraintense laser fields (for which the radiation friction effect

becomes important).



Chapter S-11

Solutions for Chapter 11

S-11.1 Wave Propagation in a Conductor at High and Low

Frequencies

a) We determine the conductivity of the metal by searching for a steady-state solu-

tion in complex form, v = ṽe−iωt, of (11.5) in the presence of an oscillating electric

field E(r, t) = Ẽe−iωt. We find

ṽ = − ie

me(ω+ iη)
Ẽ , (S-11.1)

corresponding to a current density

J̃ = −ene ṽ =
ie2ne

meω(ω+ iη)
Ẽ =

iω2
p

4π(ω+ iη)
Ẽ ≡ σ(ω) Ẽ , (S-11.2)

where ωp is the plasma frequency of the metal. At the limits of high frequencies

ω≫ η, and of low frequencies ω≪ η, we have

σ(ω) ≃

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iω2
p

4πω
, for ω≫ η ,

ω2
p

4πη
, for ω≪ η .

(S-11.3)

The DC conductivity is thus σDC = σ(0) = ω2
p/4πη. In a metal, typically we have

ωp ∼ 1016 s−1, since ne ∼ 1023 cm−3 and η ∼ 1013 s−1. It is thus a very good

approximation to assume σ to be purely imaginary for optical frequencies, i.e., for

ω ∼ 1015 s−1, and to be purely real and equal to σDC (i.e. independent of frequency)

for microwaves and longer wavelengths.
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b) Assuming plane geometry and monochromatic waves, in the absence of sources

at x = +∞, the electric field of the wave for x > 0 can be written as (in complex

notation)

E(x, t) = Et eikx−iωt , (S-11.4)

where the wave vector k is determined by the general dispersion relation (11.4)

in a medium where the refractive index n = n(ω) or, equivalently, the permittivity

ε = ε(ω) = n
2 are known. For an incident wave of amplitude Ei, the electric field at

the surface is given by the Fresnel formula

Et =
2

1+n

Ei . (S-11.5)

The permittivity ε(ω) is related to the complex conductivity of the medium by

(11.3). Inserting (S-11.3) for σ(ω), if ω ≫ η we have ε ≃ 1 − ω2
p/ω

2, and k2

is real, so that the wave is propagating. For k2 < 0, i.e., for ωp > ω, we have

ikx = −|k|x = −x/ℓp, with ℓp = c/

√

ω2
p−ω2, and the wave is evanescent:

E(x, t) = Et e−x/ℓp−iωt (S-11.6)

(the solution ∝ ex/ℓp has been disregarded as unphysical because it is divergent for

x→∞). For a metal, the condition ω < ωp implies that the metal is reflecting for

frequencies in the optical range, while it becomes transparent for ultraviolet fre-

quencies.

If ω ≪ η, we have that also σDC ≪ η, so that ε ≃ 4πiσDC/ω is an imaginary

number. In this case, since k = ±(1+ i)/ℓc with ℓc =
√
ωσDC/2c, the evanescent

solution is

E(x, t) = Et e−x/ℓc−ix/ℓc−iωt . (S-11.7)

c) The net flux of energy through the surface is given by the time average of the x-

component of the Poynting vector S = (c/4π)E×B at x = 0. We obtain the magnetic

field of the wave from the relation ∂tB=−c∇×E. Thus the complex field amplitudes

for x � 0 can be written as

Ẽy = Et eik0nx , B̃z = nEte
ik0nx , (S-11.8)

where k0 = ω/c. Thus we need to evaluate

〈S x(0)〉 =
1

2

c

4π
Re

[

Ẽy(0)B̃∗z (0)
]

=
c

8π
|Et|2 Re(n) . (S-11.9)

http://dx.doi.org/10.1007/978-3-319-63133-2_11
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At the limit ω≫ η, n is purely imaginary, as found above, and 〈S x(0)〉 = 0, and there

is no energy dissipated into the metal (it can be easily shown that the reflection coef-

ficient obtained from the Fresnel formulas has unity modulus, i.e., all the incident

energy is reflected). At the limit ω≫ η we obtain

〈S x(0)〉 =
c

8π
|Et|2

√

2πσDC

ω
≃ c

16π
|Ei|2

√

ω

2πσDC
, (S-11.10)

where in the latter expression |1+n|2 ≃ |n|2 = 2(2πσDC/ω) has been assumed.

The energy dissipated per unit volume is

〈J ·E〉 = 1

2
Re

(

σẼyẼy
∗)
=
|Et|2

2
Re

(

σeik0nxe−ik0n
∗x

)

=
|Et|2

2
Re(σ)exp[−2k0Im(n)x] . (S-11.11)

If σ is imaginary then there is no dissipation, consistently with what found above.

In the ω ≪ η regime, the total energy dissipated per unit surface is given by the

integral

∫ ∞

0

〈J ·E〉dx =
|Et|2

2

σDC

2k0Im(n)
=
|Et|2

2

σDC

2ωc

√
2πσDC/ω

=
c

8π
|Et|2

√

2πσDC

ω
, (S-11.12)

which is equal to the EM energy flux of (S-11.10).

S-11.2 Energy Densities in a Free Electron Gas

a) We use the complex representation for all fields, A(x, t) = Re(Ãeikx−iωt), where

A is the considered field. For the electric field of the wave we have Ẽ = E0, where

E0 can be considered as a real quantity. The equation of motion for an electron,

neglecting the nonlinear magnetic term, is

me
d2r

dt2
= me

dv

dt
= −eE , (S-11.13)

which has the steady-state solution for the electron velocity and position

ṽ = − ie

meω
E0 , r̃ =

e

meω2
E0 . (S-11.14)
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The polarization density is

P̃ = −ener̃ = − nee2

meω2
E0 = −

1

4π

ω2
p

ω2
E0 ≡ χ(ω)E0 , (S-11.15)

corresponding to a dielectric permittivity of the medium

ε(ω) = 1+4πχ(ω) = 1−
ω2

p

ω2
. (S-11.16)

Using (11.4), the dispersion relation is obtained as

ω2 =
k2c2

ε(ω)
= ω2

p+ k2c2 . (S-11.17)

The phase and group velocities are

vϕ =
ω

k
=

c
√

1−
ω2

p

ω2

, vg =
∂ω

∂k
= c

√

1−
ω2

p

ω2
, (S-11.18)

so that both vϕ and vg are real if ω > ωp, and vϕvg = c2. Finally, using the equation

c∇×E = −∂tB. i.e., ikcẼ = iωB̃, we obtain E0 = (vϕ/c)B0.

b) From the definition of the EM energy density

uEM =

〈

1

8π
(E2+B2)

〉

=
1

16π
(E2

0 +B2
0) =

1

16π
E2

0

⎛

⎜

⎜

⎜

⎜

⎝

1+
c2

v2
ϕ

⎞

⎟

⎟

⎟

⎟

⎠

=
1

16π
E2

0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2−
ω2

p

ω2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (S-11.19)

c) From the definition of the kinetic energy density

uK =

〈

ne
me

2
v

2
〉

= ne
me

2

1

2

∣

∣

∣

∣

∣

eE0

meω

∣

∣

∣

∣

∣

2

=
1

4

nee2

meω2
E2

0

=
1

16π
E2

0

ω2
p

ω2
. (S-11.20)

Thus

u = uEM+uK =
1

8π
E2

0 , (S-11.21)

independently of ne.

http://dx.doi.org/10.1007/978-3-319-63133-2_11
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d) In our case (11.6) can be rewritten

vgE2
t = c(E0

2−E2
r ) . (S-11.22)

Using Fresnel formulas as functions of the phase velocity vϕ = c/n, with n =
√
εr,

we obtain

Er =
vϕ− c

vϕ+ c
E0 , Et =

2vϕ

vϕ+ c
E0 , (S-11.23)

leading to

4vgv2
ϕ = 4c2vϕ , (S-11.24)

which is equivalent to vgvϕ = c2.

S-11.3 Longitudinal Waves

a) We obtain from Maxwell’s equations, assuming B = 0,

0 = ∇×B =
1

c
(4πJ+∂tE) =

1

c
(4π∂tP+∂tE) =

1

c
∂t(4πP+E) . (S-11.25)

where P is the polarization density of the medium and J = ∂tP the associated polar-

ization current. Assuming all fields to have an harmonic dependence ∼ e−iωt, we

have P = χ(ω)E with χ = [εr(ω)−1]/(4π). Now, using (11.7), we can write

0 = −iω(4πP+E) = −iω {[εr(ω)−1]E+E} = −iωεr(ω)E , (S-11.26)

implying εr(ω) = 0.

b) The total charge and current densities in the medium can be obtained from E

using the equations

̺ =
1

4π
∇ ·E , J = − 1

4π
∂tE , (S-11.27)

which also imply the continuity equation 4π∂t̺ = −∇ ·J. For E given by (11.7) we

obtain

̺ =
ik

4π
E0 eikx−iωt , J = x̂

iω

4π
E0 eikx−iωt . (S-11.28)

http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
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c) Assuming electrons moving with negligible friction, the equation of motion for

the single electron is

me
d2r

dt2
= −meω

2
0 r− eE , (S-11.29)

where me is the electron mass, and r is the distance of the electron from its equilib-

rium position. For a monochromatic field E = E0 e−iωt the stationary solution is

r =
eE

me(ω2−ω2
0
)
. (S-11.30)

The polarization density of the medium is

P = −ene r = − nee2

me(ω2−ω2
0
)

E ≡ χ(ω)E , (S-11.31)

where ne is the number of electrons per unit volume, and

χ(ω) = − ne e2

me(ω2−ω2
0
)
= −

ω2
p

ω2−ω2
0

, (S-11.32)

is the dielectric susceptibility of the medium, and ωp =
√

4πnee2/me is its plasma

frequency. The dielectric permittivity is thus

εr(ω) = 1+4πχ(ω) = 1−
ω2

p

ω2−ω2
0

, (S-11.33)

and the longitudinal-wave condition εr(ω) = 0 leads to

ω =

√

ω2
p+ω

2
0
. (S-11.34)

It is important to notice that the wavevector k is not determined by this equation; it

may have any value, and the phase velocity may thus be arbitrary (lower or greater

than c). Longitudinal waves in condensed matter physics are also called polaritons.

In a free electron medium where ω0 = 0 (a simple metal, a ionized gas or a plasma),

we have ω = ωp; in this case the waves are called plasma waves or plasmons.
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S-11.4 Transmission and Reflection by a Thin Conducting Foil

0
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A

Fig. S-11.1

a) Since the problem of determining the transmission

and reflection coefficient is linear, and the medium is

isotropic, the choice of polarization is arbitrary. For

definiteness, we assume linear polarization, with the

electric field E of the incoming wave parallel to the

y axis, and the magnetic B parallel to the z axis.

We apply Stokes’s theorem to a closed rectangu-

lar path C, delimiting a surface area A, twice: once

for E and once for B. In both cases the base of the

path extends from x = −h/2 to x = +h/2, while the

height, of length ℓ, is parallel to the y axis for the

electric field E, as shown in Fig. S-11.1, and to the

z axis for the magnetic field B. For the electric field

we have

∮

C

E ·dl =

[

E

(

+
h

2

)

−E

(

−h

2

)]

ℓ

= +i
ω

c

∫

A

B ·dA = i
ω

c
B̄ℓh , (S-11.35)

where B̄ is the amplitude of B at some point of the surface A, according to the mean

value theorem. Since B is limited, at the limit h→ 0 we have B̄h→ 0, and the first

of (11.8) is proved. For the magnetic field we have

∮

C

B ·dl =

[

B

(

+
h

2

)

−B

(

−h

2

)]

ℓ =

∫

A

(

4π

c
J− i
ω

c
E

)

·dA

=

∫

A

4π

c
K δ(x)dxdz− i

∫

A

ω

c
E ·dA

=
4π

c
ℓK̄ +−i

ω

c
Ē ℓh , (S-11.36)

where, in the second line, we have replaced J by Kδ(x), and, in the third line, K̄

is a value assumed by K somewhere on the segment of length ℓ. Since, again, Ē is

limited, the product Ē ℓh→ 0 as h→ 0, and the second of (11.8) is proved.

b) The most general expression for the field is the sum of the incident and the

reflected wave for x < 0, and the transmitted wave only for x > 0:

E(x, t) =

{

Ei eikx−iωt +Er e−ikx−iωt , x < 0 ,

Et eikx−iωt , x > 0 .
(S-11.37)

http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
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The amplitudes Er and Et must be determined as functions of Ei and other parame-

ters, by imposing (11.8) as boundary conditions. Noticing that K = σdE(0) = σdEt

and that c∂xE(x, t) = −∂tB(x, t), we have

Et−Ei−Er = 0, Et−Ei+Er = −4π
σd

c
Et , (S-11.38)

so that, writing 2πσd/c = η as a shorthand, we have

Er = −
η

1+η
Ei , Et =

1

1+η
Ei . (S-11.39)

c) At the limit η≫ω the conductivity is given by σ = nee2/meη and is a real number

(Ohmic conductor). The mechanical power P is the cycle average of J ·E integrated

over the volume of the foil, thus we obtain (per unit surface)

P =
1

2

∣

∣

∣E(0)2
∣

∣

∣ d =
1

2

σd

(1+η)2
E2

i =
c

4π

η

(1+η)2
E2

i , (S-11.40)

(notice that Ei can be taken as a real quantity).

At the limit η ≪ ω the conductivity is σ = inee2/meω = iω2
p/4πω and is thus

imaginary, corresponding to a real permittivity ε = 1−ω2
p/ω

2. Accordingly, J and E

have opposite phase, and 〈J ·E〉 = 0, as can be directly verified.

d) The energy flux through the foil is given by the difference between the values of

the Poynting flux at the two surfaces (here we switch back to real fields for simplic-

ity),

S (0+)−S (0−) =
c

4π

[

E(0+)B(0+)−E(0−)B(0−)
]

. (S-11.41)

Inserting the boundary conditions we may write

E(0+)B(0+)−E(0−)B(0−) = E(0)
[

B(0+)−B(0−)
]

= −E(0)
4π

c
Jd , (S-11.42)

so that

S (0+)−S (0−) = −JE(0)d = −KE(0) , (S-11.43)

i.e., the energy flux through the foil equals the mechanical power dissipated in the

foil (all quantities have been defined per unit surface).

http://dx.doi.org/10.1007/978-3-319-63133-2_11
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Alternatively, we may compute the energy flux directly and compare it to the

mechanical power. For the cycle-averaged Poynting vector at the two surfaces we

have

〈

S (0+)
〉

=
c

4π

〈

E2(0+)
〉

=
2π

c
|Et|2 =

2π

c

1

|1+η|2
E2

i , (S-11.44)

〈

S (0−)
〉

= ε0c2〈E(0−)B(0−)
〉

=
2π

c
Re

[

(Ei+Er)(E
∗
i −E∗r )

]

=
2π

c

1

|1+η|2
Re

(

2η∗+1
)

E2
i . (S-11.45)

If η≪ ω, then η is purely imaginary and S (0−) = S (0+): there is no net energy flux

inside the foil, consistently with the vanishing of the mechanical power.

If η≫ ω, then η is real and the net flux of energy is

〈

S (0+)
〉

−
〈

S (0−)
〉

=
2π

c

1− (2η+1)

(1+η)2
E2

i = −
c

4π

η

(1+η)2
E2

i , (S-11.46)

which is equal to minus the absorbed power (S-11.40).

S-11.5 Anti-Reflection Coating

a) In the absence of sources at x = +∞, the general solution can be written as (omit-

ting the common time dependence e−iωt)

E =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ei eikx +Er e−ikx (x < 0),

E+ ein1kx +E− e−in1kx (0 < x < d) ,

Et ein2kx (x > d) ,

(S-11.47)

where k = ω/c, Ei is the amplitude of the incident wave, Er the amplitude of the

wave reflected at x = 0, E+ and E− the amplitudes of the waves propagating along

+x̂ and −x̂, respectively, in the 0 < x < d layer, and Et the amplitude of the wave

propagating along +x̂ in the x > d half-space. The subscripts of the electric fields E

in (S-11.47) are in agreement with the subscripts of the wave vectors k in Fig. 11.2.

b) The matching conditions require the electric field and its derivative with respect

to x (which is proportional to the magnetic field) to be continuous at the planes x = 0

and x = d. We thus obtain

Ei+Er = E++E− , (S-11.48)

Ei−Er = n1(E+−E−) , (S-11.49)

E+ e+in1kd +E− e−in1kd = Et ein2kd , (S-11.50)

n1

(

E+ e+in1kd −E− e−in1kd
)

= n2Et ein2kd . (S-11.51)

http://dx.doi.org/10.1007/978-3-319-63133-2_11
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c) Since we require that there is no reflected wave in vacuum, Er must be zero.

Posing Er = 0 in (S-11.48)-(S-11.51), the latter can be regarded as an homogeneous

linear system in Ei, E+, E− and Et- Such system has non-trivial solutions only if its

determinant is zero, i.e. if

e2in1kd =
n1+n2

n1−n2

n1−1

n1+1
. (S-11.52)

In the case of a layer of thickness d with vacuum at both sides, n2 = 1 and the right-

hand side of (S-11.52) equals unity, thus e2in1kd = 1. This implies 2n1kd = 2mπ,

with m any integer. Thus, there is no reflected wave when the layer thickness is

d =mλ/2n1 (since k = 2π/λ), i.e. when the “optical depth” nd equals an half-integer

number of wavelengths.

d) In the general case, the left-hand side of (S-11.52) is a complex number of mod-

ulus 1, while the right-hand side is always real number if n1 and n2 are real as

we assumed. Thus, we have solutions only if e2in1kd = ±1. The case e2in1kd = +1

is the case of n2 = 1, considered above at the end of point c). In the second case

e2in1kd = −1 we have the condition

2n1kd = (2m+1)π ,
n1+n2

n1−n2

n1−1

n1+1
= −1 , (S-11.53)

the second equation implying n2 =
√

n1. The thickness of the layer must be

d = (2m+1)
λ

4n1
, (S-11.54)

with m, again, any integer. The smallest possible thickness is d = λ/(4n1), corre-

sponding to m = 0. This shows that, with a suitable choice of materials and of layer

thickness, we can produce an “anti-reflection” coating on an optical element (such

as a window or lens) from which we do not want any reflection to occur.

S-11.6 Birefringence and Waveplates

a) The incident wave can be considered as the superposition of two waves having,

respectively, P and S polarization, i.e., one having the electric field lying in the xy

plane, and the other parallel to z. The difference between the refractive indices for

P and S polarization, np and ns, gives origin to two different refraction angles, θt,p
and θt,s, according to Snell’s law. With our assumptions, the refraction angles are

sinθt,p =
sinθi

np
= sin(θt−α) , sinθt,s =

sinθi

ns
= sin(θt+α) , (S-11.55)

at the limit α≪ 1 we can approximate sinα ≃ α and cosα ≃ 1, obtaining
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sin(θt±α) = sinθt cosα± cosθt sinα ≃ sinθt±αcosθt . (S-11.56)

The refractive indices are np = n̄+ δn, and ns = n̄− δn, respectively, with δn≪ n̄.

For P polarization we have, up to the first order in δn/n̄,

sinθt−αcosθt =
sinθi

n̄+δn
≃ sinθi

n̄

(

1− δn
n̄

)

, (S-11.57)

and, analogously, for S polarization we have

sinθt,s ≃
sinθi

n̄

(

1+
δn

n̄

)

. (S-11.58)

The above results lead to

n̄ =
sinθi

sinθt
, and α = 2

sinθi

cosθt

δn

n̄
2
= 2δn

sin2 θt

cosθt sinθi
. (S-11.59)

b) In order to have exiting circularly polarized light, the exiting P- and S -polarized

components must be phase-shifted by δφ = π/2. This can obtained making use of

the difference between the two optical path lengths, np d and ns d. The condition for

circularly polarized light is thus

δφ = k 2δnd =
4πδnd

λ
�
π

2
, (S-11.60)

i.e. d = λ/(8δn). This is called a quarter-wave plate. If δφ = π instead, i.e., if d =

λ/(4δn), there is a relative change of sign between the two components, which leads

to a polarization rotation of π/2; this is an half-wave plate.

S-11.7 Magnetic Birefringence and Faraday Effect

a) Neglecting the effect of the magnetic field of the wave, much smaller than the

external field B0, the equation of motion for the electrons is

me
d2r

dt2
= −eE− e

v

c
×B0−meω

2
0 . (S-11.61)

The electric field of the circularly polarized EM wave can be written, in complex

notation, as

E± = E(x̂± iŷ)eikz−iωt , (S-11.62)
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where the plus and minus signs correspond to left-handed (clockwise) and right-

handed (counter-clockwise) circular polarizations, respectively. We look for solu-

tions of (S-11.61) of the form

r± = r±(x̂± iŷ)eikz−iωt , v± = v±(x̂± iŷ)eikz−iωt , (S-11.63)

with v± = −iωr±. The vector product v±×B0 is

v±×B0 = v±B0 (x̂± iŷ)× ẑ = v±B0(−ŷ± ix̂) = ±iv±B0 (x̂± iŷ) , (S-11.64)

thus (S-11.61) leads to the equation for r±

(ω2
0−ω

2)r± = −
e

me
E∓ ie

v±
mec

B0 = −
e

me
E∓ωωcr± , (S-11.65)

where ωc = eB0/mec is the cyclotron frequency. The solution for r± is

r± =
eE

me

(

ω2−ω2
0
∓ωωc

) . (S-11.66)

Thus, we have a different polarization of the medium P±, and a corresponding differ-

ent dielectric susceptibility χ±, for each each circular-polarization state of the EM

wave,

P± = −ener± ≡ χ±E± . (S-11.67)

In turn, this gives two different dielectric constants ε± = 1+4πχ±

ε± = 1−
ω2

p

ω2−ω2
0
∓ωωc

, (S-11.68)

where ωp =
√

4πe2ne/me is the plasma frequency of the medium. The propagation

of the wave requires ε± > 0, i.e., ω > ωco±, where the two cutoff frequencies ωco±
depend on the polarization of the wave

ωco± =

√

ω2
0
+ω2

p+
ω2

c

4
± ωc

2
. (S-11.69)

The magnetized medium is thus birefringent. For waves of frequency in the range

ωco− < ω < ωco+, only one state of circular polarization can propagate in the

medium, while we have an evanescent wave for the opposite polarization. The two

resonant frequencies ωres±, defined by χ(ωres±)→∞, also depend on polarization:
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ωres± =

√

ω2
0
+
ω2

c

4
± ωc

2
. (S-11.70)

Notice that in the case ω0 = 0, i.e., for a magnetized free-electron medium, there is

a single resonance at ω = ωc, for only one circular polarization (see Problem 7.9).

The knowledge of the permittivity (or, equivalently, of the refraction index) for

the two independent states of circular polarization is sufficient to study the propa-

gation of a transverse wave of arbitrary polarization, since the latter can be always

expressed as a linear superposition of circularly polarized states. Notice that if we

had searched for linearly polarized solutions, we would have found a mixing of

polarization vectors directed along ˆ̂x and ˆ̂y, i.e. the permittivity would have been a

matrix instead of a number. It can be shown that such matrix can be diagonalized,

with circularly polarized states as eigenvectors and (S-11.68) as eigenvalues.

b) The linearly polarized wave can be considered as a superposition of the two states

of circular polarization, so that at z = 0 the electric field of the wave can be written

E(z = 0, t) = x̂ E e−iωt =
E

2

[

(x̂+ iŷ)+ (x̂− iŷ)
]

e−iωt . (S-11.71)

The two circularly polarized components travel at different phase velocities v± =
c/n±, where n± =

√
ε± is the refractive index associated to each polarization state.

At z = ℓ, the electric field of the wave is

E(z = ℓ, t) =
E

2

[

(x̂+ iŷ)eik+ℓ + (x̂− iŷ)e−ik−ℓ
]

e−iωt , (S-11.72)

where k± =ω/v± = (ω/c)n±. To first order inωc/ω, we can write n± ≃ n0±δn, where

n0 = n(ωc = 0) and

δn =
ωωcω

2
p

2n0(ω2−ω2
0
)2
. (S-11.73)

Thus, the wave vectors for the two polarizations can be written k± ≃ k0 ± δk, where

k0 = (ω/c)n0 and δk = (ω/c)δn. The electric field at z = ℓ can be rewritten as

E(z = ℓ, t) =
E

2

[

(x̂+ iŷ)eiδk ℓ + (x̂− iŷ)e−iδk ℓ
]

eik0ℓ−iωt

∝ x̂cos(δk ℓ)− ŷsin(δk ℓ) . (S-11.74)

The polarization has thus rotated by an angle φ = δk ℓ, proportional to the intensity

of the magnetic field.

http://dx.doi.org/10.1007/978-3-319-63133-2_11
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S-11.8 Whistler Waves

The dielectric permittivity of a magnetized free electron gas for circularly polarized

transverse waves, propagating along the magnetic field, is (see Problem 11.7)

ε = ε±(ω) = 1−
ω2

p

ω(ω∓ωc)
, (S-11.75)

where ωp =
√

4πe2ne/me is the plasma frequency of the medium, ωc = eB0/mec is

the cyclotron (Larmor) frequency, and the plus and minus signs refer to left-handed

(counterclockwise) and right-handed (clockwise) circular polarizations, respectively.

Since, in general, the dispersion relation is ω2 = k2c2/ε(ω), (11.11) implies that

ε = c2/αω. For ω≪ ωc and ω≪ ω2
p/ωc, (S-11.75) reduces to

ε± ≃ ±
ω2

p

ωωc
. (S-11.76)

Wave propagation requires ε > 0. Thus, only left-handed polarized waves can prop-

agate in the presence of a dispersion relation given by (11.11), with α = c2ωc/ω
2
p.

Assuming the values of ne and B0 given in the text, we estimateωp ≃ 5.6×106 s−1

andωc ≃ 8.8×106 s−1. A typical frequency for which (S-11.76) holds isω∼ 105 s−1.

b) First, we notice that, in general, (11.11) implies vg = ∂kω = 2αk = 2ω/k = 2vϕ.

Thus, the phase velocity depends on frequency as

vϕ =
ω

k
=
√
αω =

√

ωcω

ω2
p

c≪ c . (S-11.77)

For ω = 105, and the above values of ωp and ωc, we obtain vϕ ≃ 0.03c.

c) With a spectral range from ω1 to 2ω1, the frequency components travel with

velocities differing by a factor up to 2, so that the wave packet generated by the light-

ning will spread out and increase its length during its propagation. The higher fre-

quencies travel faster, and are thus received earlier by the observer, than the slower

frequencies. This is the origin of name “whistlers”.

In order to estimate the spread of the packet after a distance L = 109 cm, we

assume that the center of the wave packet travels with a group velocity vg ≃ 0.06c,

reaching a distance L after a time τ = L/vg = 0.56 s. The “extreme” frequencies ω1

and ω2 will have group velocities v1 ≃ 0.04c and v2 ≃ 0.08c, respectively, and the

pulse duration may be roughly estimated as the difference ∆τ = τ1 − τ2 = L/v1 −
L/v2 ≃ (0.83− 0.42) s = 0.41 s, provided that the duration at the emission is much

shorter than ∆τ. This rough estimate neglects the deformation of the wave packet

due to the strong dispersion.

http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
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S-11.9 Wave Propagation in a “Pair” Plasma

Actually, it is convenient to calculate the dispersion relation in the presence of an

external magnetic field B0 first, then, the answer to point a) is simply obtained as a

special case with B0 = 0. We assume B0 = B0 ẑ and a wave linearly polarized along

x̂ in a Cartesian reference frame xyz. The differential equations for the velocities of

positrons, v+, and electrons, v−, are respectively

dvx±
dt
= ± e

mec
(Ex + vy±B0) ,

dvy±

dt
= ∓ e

mec
(vx±B0) , (S-11.78)

where we have assumed vz± = 0. Differentiating the first of (S-11.78) once more

with respect to t, and substituting the second of (S-11.78) for dvy±/dt, we obtain

d2vx±
dt2

= ∓iω
e

me
Ex ±

eB0

mec

dvy±

dt
= ∓iω

e

me
Ex +ω

2
cvx± , (S-11.79)

where ωc =
√

eB0/mec is the cyclotron frequency. Substituting Ex = E0 e−iωt we

obtain

vx± = ∓iω
e

me(ω2
c −ω2)

E0 . (S-11.80)

Analogously, for vy± we have

vy± = ±
eB0

me
vx∓ = −iω

e

me
E0 , (S-11.81)

which has the same value for both electrons and positrons. The components of the

current density are thus

Jx = n0 e (vx+− vx−) = − 2iωn0e2

me(ω2
c −ω2)

E0 ,

Jy = n0 e (vy+− vy−) = 0 . (S-11.82)

The dielectric permittivity of the pair plasma, ε(ω), is obtained from the usual defi-

nitions J = σE = −iωχE and is

ε(ω) = 1−
2ω2

p

ω2−ω2
c

. (S-11.83)

The same result can be obtained for circular polarization, both for left-handed and

right-handed waves, confirming that there is no magnetically induced birefringence
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in a pair plasma. This is different from the case of a medium containing free elec-

trons only, considered in Problem 11.7.

For case a), where B0 = 0, we set ωc = 0, and obtain a cut-off frequency at ω =

2ωp.

For case b), there is a resonance at ω = ωc, while wave propagation is forbidden

for frequencies in the range ωc < ω <

√

ω2
c +2ω2

p.

S-11.10 Surface Waves

a) In a dielectric medium described by ε = ε(ω), a monochromatic EM field of

frequency ω satisfies the Helmoltz equation. Thus we have for the magnetic field

(

∇2+ε
ω2

c2

)

Bz = 0 . (S-11.84)

Substituting (11.12) for Bz into the Helmholtz equation, we obtain

q2− k2+
ω2

c2
ε = 0 . (S-11.85)

b) From the equation c∇×B= 4πJ+∂tE and the definition of εwe obtain (for mono-

chromatic waves in complex notation) c∇×B = −iωεE. By substituting (11.12) for

B we obtain

− iωεE = (x̂∂y− ŷ∂x)Bzc = (ikx̂−qŷ)Bzc , (S-11.86)

which gives for the electric field

E = −(kx̂+ iqŷ)
c

εω
Bz . (S-11.87)

c) From the definition of S = cE×B/(4π) we find that S has components both along

x and along y, given by

S x =
c

4π
EyBz =

qcB2
0

4πεω
e2qx cos(ky−ωt) sin(ky−ωt) , (S-11.88)

S y = −
c

4π
ExBz =

kcB2
0

4πεω
e2qx cos2(ky−ωt). (S-11.89)

However, averaging over one oscillation period we obtain 〈S x〉 = 0, thus the net

energy flux is in the y-direction only, since 〈S y〉 � 0.

d) The tangential component of the magnetic field at the interface between two

media must be continuous. Thus, from Bz(0
−) = Bz(0

+) we get B1 = B2.

http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
http://dx.doi.org/10.1007/978-3-319-63133-2_11
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e) Also the tangential component of the electric must be continuous at the interface,

thus Ey(0−) = Ey(0+). Using the results of points b) and d) we obtain

q1

ε1
= −q2

ε2
. (S-11.90)

Since both q1 > 0 and q2 > 0, ε1 and ε2 must have opposite signs.

f) Using the relationship (q1/ε1)2 = (q2/ε2)2 and the result of point a) we obtain

ε22

(

k2− ω
2

c2
ε1

)

= ε21

(

k2− ω
2

c2
ε2

)

, (S-11.91)

from which it follows that

ω2 = k2c2
ε2

2
−ε2

1

ε2
2
ε1−ε21ε2

= k2c2 ε2+ε1

ε2ε1
. (S-11.92)

Since wave can propagate only if k2 > 0, and ε1ε2 < 0, we get the additional condi-

tion ε1+ε2 < 0.

g) Since ε2 < −ε1 = −1 must hold, we may choose a metal, or a free electron gas, or

an ideal plasma . . . , for which ε2 = 1−ω2
p/ω

2, and a frequency such thatω<ωp/
√

2.

The above described EM modes are surface waves (also named surface plas-

mons). These waves propagate along the surface of a conductor and are evanescent

along the perpendicular direction, so that the EM energy is confined in a narrow

layer, thinner than the wavelength in vacuum. Surface waves are a building block

of plasmonics, a discipline oriented to develop optical and electronic devices on a

nanometric scale.1

S-11.11 Mie Resonance and a “Plasmonic Metamaterial”

a) The incident field can be written, in complex notation, as

Ei = Ei(x, t) = E0 eikx−iωt . (S-11.93)

Since a≪ λ, the electric field can be considered as uniform over the volume of the

sphere, thus Ei ≃ E0 e−iωt, assuming the center of the sphere to be located at x = 0.

1See e.g. W. L. Barnes et al., “Surface plasmon subwavelength optics”, Nature 424, 824 (2003); E.

Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions”, Science 311,

189 (2006).
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Now we introduce a spherical coordinate system (r, θ,φ) with the origin at the center

of the sphere, and the zenith direction parallel to Ei. At the surface of the sphere,

r = a, we have the usual boundary conditions at the interface between two media

E⊥(a+, θ)−E⊥(a−, θ) = 4πσ(θ) , E‖(a
+, θ)−E‖(a

−, θ) = 0 , (S-11.94)

where σ(θ) is the surface charge density on the sphere, independent of φ within our

approximations. The problem is thus analogous to the case of a dielectric sphere in

a static uniform external field, treated in Problem 3.4. We can extend the results for

the internal field and polarization to the case of an oscillating field as follows

Eint =
3E0

εr(ω)+2
, P = χEint =

3(εr(ω)−1)

4π(εr(ω)+2)
E0 . (S-11.95)

The difference with the electrostatic case is that now εr depends on frequency, and

is not necessarily positive and greater than one, so that the internal field Eint can be

greater than the external applied field E0. A resonance appears when the real part of

the denominator vanishes. Setting η = 0 for simplicity, the resonance condition is

εr(ω)+2 = 3−
ω2

p

ω2−ω2
0

= 0 , (S-11.96)

which yields

ω2 = ω2
0+
ω2

p

3
. (S-11.97)

The physical meaning of the resonance is particularly clear for ω0 = 0, e.g., for a

metallic (nano)sphere in a high-frequency (optical) field. In this case the resonance

frequency is

ω =
ωp√

3
, (S-11.98)

that is the natural frequency of the collective “Mie oscillations” of the electron

sphere treated in Problem 1.5, also known as the lowest-order surface plasmon of the

sphere. The resonance thus corresponds to the excitation of this oscillation mode.

b) The macroscopic polarization is given by the dipole moment of each nanosphere,

psphere = PV , with V = (4π/3)a3 the volume of the sphere, times the number of

nanospheres per unit volume, ns:

Pmacro = nspsphere = −
3nsVω

2
p

3ω2−ω2
p

E0. (S-11.99)

http://dx.doi.org/10.1007/978-3-319-63133-2_3
http://dx.doi.org/10.1007/978-3-319-63133-2_1


S-11.11 Mie Resonance and a “Plasmonic Metamaterial” 379

This is equivalent to a macroscopic dielectric function

εr(ω) = 1−
3nsVω

2
p

3ω2−ω2
p

. (S-11.100)

Wave propagation requires εr to be positive, i.e.,

ω <
ωp√

3
, ω >

ωp√
3

√

1+3nsV . (S-11.101)

This is a simple example of an artificial “metamaterial”, where the plasmonic prop-

erties of the nanostructures composing the material determine the optical response.
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Solutions for Chapter 12

S-12.1 The Coaxial Cable

a) Since the capacitance has been defined assuming static conditions and bound-

ary effects are negligible for an “infinite” wire, we evaluate the capacitance per unit

length of the cable, C, as for a cylindrical capacitor assuming the charge density to

be constant in time and uniformly distributed. For symmetry reasons the electrosta-

tic field between the two conductors is radial and independent of z and φ, and it is

obtained easily from Gauss’s law as

E =
2λ

r
r̂ , a < r < b . (S-12.1)

Thus, the potential drop between the two conductors is

V = −
∫ b

a

Er(r)dr = −2λ ln

(

b

a

)

, (S-12.2)

so that we obtain

C = λ|V | =
1

2ln(b/a)
. (S-12.3)

∆z

b

a

z

Fig. S-12.1

Similarly, a static current I uniformly distrib-

uted on the inner conductor generates a mag-

netic field

B = Bφ(r) φ̂ =
2I

cr
φ̂ . (S-12.4)

The inductance per unit length of the cable

can be obtained by evaluating the flux of B

c© Springer International Publishing AG 2017
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through a rectangle of width Δz, lying on a plane containing the z axis, and extending

from r = a to r = b, as highlighted in Fig. S-12.1. The flux is

Φ(B) =

∫ b

a

Bφ(r)Δzdr =
2I

c
ln

(

b

a

)

Δz , (S-12.5)

corresponding to an inductance per unit length L

L = Φ(B)

IcΔz
=

2

c2
ln

(

b

a

)

. (S-12.6)

The same result can be obtained by calculating the magnetic energy in a cable

section of length Δz, and inductance ΔzL,

1

2
ΔzL I2 ≡ Δz

∫ b

a

B2

8π
2πr dr =

I2

c2
ln

(

b

a

)

Δz . (S-12.7)

b) The coaxial cable is a continuous system with finite capacitance and inductance

per unit length, thus we know from Problem 7.4 that a current signal propagates

along the wire according to the wave equation (S-7.49), with velocity

v =
1
√
LC
= c . (S-12.8)

The general solution for the propagating current signal is thus I(z, t) = I(z− vt), and

propagation occurs with no dispersion. The associated charge signal λ(z, t) is related

to I(z, t) by the continuity equation,

∂tλ(z, t) = −∂zI(z, t) = −I′(z− ct) , (S-12.9)

where I′ denotes the derivative of I with respect to its argument. Since ∂tλ(z− ct) =

−cλ′(z− ct), we obtain

λ(z, t) = λ(z− ct) =
1

c
I(z− ct) . (S-12.10)

c) A transverse electric field E must be radial for symmetry reasons, E = Er(r,z, t) r̂.

Applying Gauss’s law to a cylindrical surface of radius a< r < b, infinitesimal height

Δz, and coaxial to the cable, we find Er = 2λ(z, t)/r. Again for symmetry reasons,

a transverse magnetic field must be azimuthal, B = Bφ(r,z, t) φ̂. Applying Stokes’

law to a circle of radius a < r < b, coaxial to the cable, we obtain Bφ = 2I(z, t)/rc.

The displacement current does not contribute to the flux through the circle, since

E is radial. Thus, the fields of have the same dependence on λ and I as the static

fields, the only difference being that here both λ = λ(z, t) and I = I(z, t) depend on

z and t. Notice that it is such peculiar character of the TEM configuration which

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_20
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allows to use the capacitance and inductance calculated for static fields to obtain the

propagation velocity of electromagnetic signals along the cable, a result also true

for any transmission line in TEM mode.

We can check that the above fields constitute a solution to Maxwell’s equations

by verifying that

∇×E = ∂zEr φ̂ =
2

r
∂zλ(z− ct) φ̂ =

2

r
λ′(z− ct) φ̂

=
2

rc
I′(z− ct) φ̂ = − 2

rc2
∂tI(z− ct) φ̂

= −1

c
∂tB . (S-12.11)

d) The source at z = 0 must do a work W(t) in order to drive the current between the

inner and outer conductors,

W(t) = V(0, t) I(0, t) = −2cλ2(0, t) ln

(

b

a

)

. (S-12.12)

The local flux of energy at any point (r,φ,z), with a < r < b and z > 0, is

S(r,z, t) =
c

4π
E×B = ẑ

c

4π

2λ(z− ct)

r

2I(z− ct)

rc

= ẑ
c

πr2
λ2(z− ct) , (S-12.13)

corresponding to a total flow of energy at z

Φ(z, t) =

∫ b

a

S z 2πr dr = 2cλ2(z− ct) ln

(

b

a

)

= −W(z− ct) . (S-12.14)

This shows that the energy flow is sustained by the source.

e) The expressions for the fields, and for the capacitance and inductance per unit

length, are, in the presence of generic values of ε and μ,

Er = 2
λ

εr
, Bφ =

2μI

rc
, (S-12.15)

C = ε

2ln(b/a)
, L = 2

c2
ln

(

b

a

)

, (S-12.16)

corresponding to a wave velocity v = c/
√
εμ < c. In general, however, both ε and μ

can depend on frequency, and the cable becomes a dispersive transmission line with

phase velocity vφ(ω) = c/
√

ε(ω)μ(ω).
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S-12.2 Electric Power Transmission Line

a) The continuity equation is ∂tλ = −∂zI. Writing λ in the form λ = λ0 eikz−iωt, we

obtain

− iωλ0 = −ikI0 , or λ0 =
k

ω
I0 =

I0

vϕ
, (S-12.17)

where vϕ is the phase velocity of the signal.

b) The electric field E can be calculated by applying Gauss’s law to a cylindrical

surface coaxial to the wire, obtaining

Er(r,z, t) =
2λ(z, t)

r
. (S-12.18)

The magnetic field B can be obtained from the equation c∇×B = 4πJ+∂tE. If we

choose a circle of radius r coaxial to the wire and apply Stokes’ theorem we have

∮

B ·dℓ = 1

c

∫

(4πJ+∂tE) ·dS . (S-12.19)

The ∂tE term is radial and thus does not contribute to the flux at the right-hand side,

so that

2πrBφ = 4π
I

c
, and Bφ(r,z, t) =

2I(z, t)

rc
. (S-12.20)

The equations for Er(r,φ,z) and Bφ(r,φ,z) have the same form as in the static case of

a wire with constant and uniform charge density and current, respectively. We also

have |Er |/|Bφ| = c/vϕ. These are a typical properties of the TEM (transverse electro-

magnetic) mode for the transmission lines. Maxwell’s equation c∇×E = −∂tB gives

c∂zEr = −∂tBϕ leads to

ikλ0 = iω
I0

c2
⇒ k

I0

vϕ
= ω

I0

c2
⇒ ω

v2
ϕ

=
ω

c2
⇒ vϕ = c , (S-12.21)

where we have used (S-12.17) and k = ω/vϕ.

In SI units we have

Er =
λ

2πε0
, Bφ =

μ0I

2πr
,

|Er |
|Bφ|
=

c2

vϕ
. (S-12.22)
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d

+λ

E

−λ

h
2θ

r

Fig. S-12.2

c) Consider a line on the midplane, at a distance h from

the plane containing the two wires, as in Figs. S-12.2

and S-12.3. The distance of the line from each wire is

r =
√

h2+d2/4. The electric and magnetic fields gener-

ated by the two wires sum up to

E = 2x̂
2I0

rc
sinθe−iωt, (S-12.23)

B = 2ŷ
2I0

rc
sinθe−iωt, (S-12.24)

with x̂ and ŷ the unit vectors parallel and perpendicular

to the plane containing the wires, respectively.

Since sinθ = d/(2r), we obtain

|Ex| = |By| =
2I0 d

r2c
. (S-12.25) d

h

B

+ I

2θ

− I

r

Fig. S-12.3

The corresponding expressions in SI units are

|Ex| = |By|c =
I0 d

2πcε0r2
=
μ0I0 dc

2πr2
. (S-12.26)

Thus

|By| =
4π×10−7×103×5

2π× (302+52/22)
T ≃ 10−6 T , (S-12.27)

and

|Ex| ≃ 3×102 V/m . (S-12.28)

For a comparison, the average magnetic field at the Earth surface is ∼ 5× 10−5 T,

while the electric field is ∼ 1.5×102 V/m. Possible screening effects by the Earth’s

surface have been neglected.

S-12.3 TEM and TM Modes in an “Open” Waveguide

a) Inserting (12.23) into the wave equation for B

(

∇2− 1

c2
∂2

t

)

Bz = 0 , (S-12.29)

http://dx.doi.org/10.1007/978-3-319-63133-2_12
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and recalling that ∂zBz = 0, we obtain the following relation between kx, ky and ω

k2
x + k2

y −
ω2

c2
= 0 . (S-12.30)

b) The electric field of the wave can be obtained from

∂tE = c∇×B = c (x̂∂y− ŷ∂x) Bz,

−iωE = cB0

[

−x̂ky sin(kyy)− ŷ ikx cos(kyy)
]

eikx x−iωt , (S-12.31)

which leads to

Ex = −i
kyc

ω
B0 sin(kyy)eikx x−iωt , (S-12.32)

Ey =
kxc

ω
B0 cos(kyy)eikx x−iωt . (S-12.33)

c) The parallel component E‖ of the electric field E must vanish at the boundary with

a perfectly conducting surface, thus we must have Ex(y = ±a/2) = 0. This implies

that sin(kya/2) = 0, and kya = 2mπ, with m ∈ N. By substitution into (S-12.30) we

obtain

ω2 = k2
xc2+

(

πc

a

)2

(2m)2 . (S-12.34)

The m = 0 mode corresponds to Ex = 0 and to Ey and Bz independent of y. The fields

are thus uniform over any cross-section of the waveguide parallel to the yz plane,

and we have ω= kxc. This is the TEM mode typical of transmission lines. The m= 1

mode has frequency

ω =

√

k2
xc2+

(

2πc

a

)2

>
2πc

a
≡ ωco , (S-12.35)

where ωco ≡ 2πc/a is the cut-off frequency.

d) The energy flux is given by Poynting’s vector, parallel to the z = 0 plane,

S =
c

4π
E×B =

c

4π
(EyBz x̂−ExBz ŷ) . (S-12.36)

By averaging over one full cycle we find 〈S y〉 = 0, i.e., there is no net energy flux

along y. Averaging S x over one cycle we obtain

〈S x〉 =
c2

8π

kx

ω
B2

0 cos2(kyy) . (S-12.37)
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The group velocity of the wave is

vg = ∂kω =
kxc2

√

k2
xc2+ω2

co

=
kxc2

ω
, (S-12.38)

thus we can also write

〈S x〉 = vg

B2
0

8π
cos2(kyy) . (S-12.39)

S-12.4 Square and Triangular Waveguides

a) The electric field must satisfy the wave equation in vacuum

(

∇
2− 1

c2
∂2

t

)

E = 0 , (S-12.40)

and, substituting (12.4) for E, we obtain the time-independent Helmoltz’s equation

for the only nonzero component of the electric field, Ẽx,

(

∂2
x +∂

2
y − k2

z +
ω2

c2

)

Ẽx = 0 . (S-12.41)

In vacuum we must also have ∇ ·E = 0, this condition is automatically satisfied if

we assume that Ẽx is independent of x, Ẽx = Ẽx(y), and (S-12.41) reduces to

(

∂2
y − k2

z +
ω2

c2

)

Ẽx(y) = 0 . (S-12.42)

According to the boundary conditions, the parallel component of E must be zero

at the perfectly reflecting walls of the waveguide y = 0 and y = a. This condition is

satisfied if we assume

Ẽx(y) = E0x sin(kyy) , with ky = n
π

a
, n = 1,2,3, . . . , (S-12.43)

where E0x is an arbitrary, constant amplitude. The electric field of our x̂ polarized

wave can thus be written

E = x̂ Ẽx(y)eikzz−iωt = x̂ E0x sin

(

nπ

a
y

)

eikzz−iωt . (S-12.44)

http://dx.doi.org/10.1007/978-3-319-63133-2_12
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Substituting (S-12.43) for Ẽx into (S-12.42) leads to

(

−k2
y − k2

z +
ω2

c2

)

E0x = 0 , (S-12.45)

which, diregarding the trivial case E0x = 0, is true only if

k2
y + k2

z −
ω2

c2
= 0 , or kz =

√

ω2

c2
− k2

y =

√

ω2

c2
−n2
π2

a2
. (S-12.46)

The wave can propagate only if kz is real, thus we must have

ω > n
πc

a
. (S-12.47)

The cutoff frequency ωa is the lowest value of ω at which wave propagation occurs.

Since we must have n � 1, we have ωa = πc/a. If we choose a frequency such that

πc/a < ω < 2πc/a, only the n = 1 mode can propagate in the guide.

The cross-section of the waveguide being square, the conditions for a ŷ polarized

TE wave are obtained by interchanging the roles of x and y in all the above formulae,

and the electric field is

E = ŷ E0y sin(kxx)eikzz−iωt = ŷ E0y sin

(

mπ

a
x

)

eikzz−iωt , (S-12.48)

with, again, E0y an arbitrary amplitude, m = 1,2,3, . . . , and the same dispersion rela-

tion as between ω and kz as above. Modes with m = n are degenerate, sharing the

same wavevector kz.

In general, a monochromatic TE wave propagating in the guide will be a super-

position of the two polarizations. The electric field will be

E =

[

x̂ E0x sin

(

nπ

a
y

)

+ ŷ E0y sin

(

nπ

a
x

)]

eikzz−iωt . (S-12.49)

b) In the case of the triangular waveguide, the parallel component of the electric

field E must be zero on the three x = 0, y = 0, and y = x planes. A field of the form

(S-12.49) already satisfies the boundary conditions at the x = 0 and y = 0 planes.

The additional condition at the y = x plane is E(x, x) · n̂ = 0, where n̂ = (−1,1,0)/
√

2

is the unit vector perpendicular to the y = x plane. Thus

E ·h = E0x sin

(

nπ

a
x

)

−E0y sin

(

nπ

a
x

)

= 0 , (S-12.50)

which is satisfied if E0y = −E0x ≡ E0, so that we eventually obtain

E = E0

[

x̂ sin

(

nπ

a
y

)

− ŷ sin

(

nπ

a
x

)]

eikzz−iωt . (S-12.51)
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xO p

y

p−1
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−4a

−2a

A

Fig. S-12.4

a) The electrostatic potential φ must

be zero on the two conducting planes

at y = ±a, and the electric fields at

y = a− and y = −a+ must be perpen-

dicular to their surfaces (parallel to

ŷ). The real dipole p is located at the

origin of our coordinate system, thus,

we need an image dipole equal to p,

located at (0,2a,0) and represented by

p1 in Fig. S-12.4, in order to fulfill

these conditions at the generic point A

of the y = +a plane. Analogously, the

real dipole p requires a further image

dipole p located at (0,−2a,0), repre-

sented by p−1 in Fig. S-12.4, in order

to fulfill the conditions at the y = −a

conducting plane. But now the three

dipoles p, p1, and p−1 together do not

generate a potential equal to zero on either plane. We can readjust the potential at

y = +a by adding a new image dipole equal to p, symmetrical to p−1, at (0,4a,0),

represented by p2. But this requires adding a further image dipole p−2, and so on.

Thus, the exact solution requires two infinite sets of equal image dipoles, pn and p−n,

with n = 1,2,3, . . . , located respectively at (0,2na,0) and (0,−2na,0). The resulting

electrostatic potential between the plates is finite because, for high n values, the

contribution of ±nth dipole is proportional to (2na)−2.

b) In order to fulfill the boundary conditions, all the image dipoles must oscillate

in phase with the real dipole. Consider the radiation emitted by each dipole in the

n̂ ≡ (sinθ,cosθ,0) direction in the z = 0 plane, with wavevector k = (ω/c) n̂. In the

following we consider wavevectors lying in the z = 0 plane, but our considerations

apply to wavevectors lying in any plane containing the y axis, due to the rotational

symmetry of the problem. The optical path difference between the waves emitted by

two neighboring dipoles (real or images) is Δℓ = 2acosθ, as shown in Fig. S-12.5 for

the case of the real dipole p and the image p1. This corresponds to a phase difference

Δϕ = kΔℓ, and the condition for constructive interference is

kΔℓ =
2ωa

c
cosθ = 2πm, θ = arccos

(

m
πc

ωa

)

, (S-12.52)
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with m = 0,1,2, . . . . Due to the mirror symmetry of

the system for reflections through the y = 0 plane

(actually, antisymmetry, since all dipoles are inverted

by the reflection), if an angle θ satisfies (S-12.52)

for constructive interference, so does π− θ. In other

words, at large distance from the oscillating dipole,

each interference order m > 0 corresponds to the

superposition of two waves with wavevectors k± ≡
(sinθ,±cosθ,0)ω/c, respectively.

The m = 0 condition corresponds to θ = π/2, and

the waves travels along the x axis. For m > 0, we can

write

kx =
ω

c
sinθ =

ω

c

√

1− cos2 θ =
ω

c

√

1−
(

m
πc

ωa

)2

=

√

ω2

c2
−
(

m
π

a

)2

, (S-12.53)

and kx is real only if ω > mπc/a. Thus, given a frequency ω, we observe only the

modes with m < ωa/(πc). If ω < πc/a, corresponding to a wavelength λ > 2a, only

the mode m = 0 can propagate.

c) Both magnetic fields must satisfy the wave equation

(c2∇2−∂2
t )Bi = (c2∂2

x + c2∂2
y −∂2

t )Bi = 0 , i = 0,1 , (S-12.54)

from which we obtain, denoting by k0 and k1 the respective wavevectors,

k2
0x c2 = ω2 , k2

1x c2+ k2
1y c2 = ω2 . (S-12.55)

d) Assuming electric fields of the form E = Ẽe−iωt, where Ẽ depends on the space

coordinates only, Maxwell’s equation in vacuum, ∂tE = c∇×B, gives

− iωE = c(x̂∂yBz− ŷ∂xBz) . (S-12.56)

For the wave of type “0” we obtain

E0 = ŷ
k0xc

ω
B0 eik0x x−iωt = ŷ B0 eik0x x−iωt . (S-12.57)

For the wave of type “1” we obtain

E1 =
ic

ω
B1

[

ŷk1x cos(k1yy)− x̂ ik1y sin(k1yy)
]

eik1x x−iωt . (S-12.58)
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e) The “type-0” wave has the three vectors E0, B and k perpendicular to one another,

analogously to a plane wave in the free space (TEM mode). Further, E0 is perpen-

dicular to the two conducting surfaces, automatically satisfying the boundary con-

ditions. Thus, the frequency ω and the wavevector k = x̂k0x, with k0x = ω/c, are

subject to no constraint.

On the other hand, the electric field of the “type-1” wave has a component Ex

parallel to the two conducting surfaces, in addition to the transverse Ey component

(the mode is TM rather than TEM). The boundary conditions at y = ±a require that

Ex(y=±a)= 0. Thus we must have sin(±kya)= 0, or ky =mπ/a, with m= 1,2,3, . . . ,

leading to

kx =

√

ω2

c2
−
(

m
π

a

)2

. (S-12.59)

The m-th mode can propagate only if the corresponding kx is real, and has a lower

cut-off frequency ωco(m) = 2πmc/a-

A comparison to point (b) shows that the type-0 wave (TEM mode) corresponds

to the m = 0 interference order, while the type-1 waves (TM modes) correspond to

the > 0 interference orders. Actually, more precisely, we need not single dipoles,

but “dipole layers”, spread parallel to the z axis, in order to generate waves with

fields independent of z. If the real dipole of points (a) and (b) is parallel, rather than

perpendicular, to the conducting planes, the different boundary conditions would

lead to TE, rather than TM modes [1].

S-12.6 Propagation in an Optical Fiber

a) The electric field (12.6) corresponds to the sum of two plane waves of the same

frequency and different wavevectors, k1 and k2, propagating in the medium. For

both waves the dispersion relation is ω = kc/n, where n = n(ω) is the refractive

index of the medium. Both waves impinge on the medium-vacuum interface at the

angle θ, and the condition for total reflection is, according to Snell’s law,

sinθ >
1

n

. (S-12.60)

b) The internal reflections at the y = ±a/2 planes turn the wave of type “1” into a

wave of type “2”, and vice versa. Thus the field amplitudes of the two waves at the

interface are related by the amplitude reflection coefficient r

E2(x,y = +a/2, t) = rE1(x,y = +a/2, t) ,

E1(x,y = −a/2, t) = rE2(x,y = −a/2, t) . (S-12.61)

http://dx.doi.org/10.1007/978-3-319-63133-2_12
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For total reflection there is no transmission of energy through the y = ±a/2 planes,

thus the amplitudes of the incident and the reflected fields must be equal but for a

change of phase. For S -polarization (E parallel to the interface, as in our case) r is

written, according to the Fresnel equations,

r =
ncosθ− i

√

n
2 sin2 θ−1

ncosθ+ i
√

n
2 sin2 θ−1

, (S-12.62)

and, if nsinθ > 1, the square roots are real and |r| = 1. Thus we can write

r = eiδ = cosδ+ i sinδ , tan
δ

2
= −
√

n
2 sin2 θ−1

ncosθ
. (S-12.63)

Substituting r= eiδ into (S-12.61) we obtain the following conditions at the y=±a/2

planes

E2 e−ikya/2 = E1 e+ikya/2 eiδ , E1 e−ikya/2 = E2 e+ikya/2 eiδ . (S-12.64)

By calculating the determinant of the homogeneous system for E1 and E2 we obtain

the condition

1 = e2i(kya+δ) , (S-12.65)

true if

2kya+2δ = 2mπ , m = 0,1,2, . . . . (S-12.66)

The implicit relation determining the allowed frequencies is

k2
x =
ω2

c2
n

2− k2
y > 0 . (S-12.67)

If nsinθ≫ 1 then δ ≃ −2θ, and if θ→ π/2 then

ky→ (m+1)
π

a
. (S-12.68)

c) All the above results are valid also for P-polarization, where the electric field of

the wave lies in the xy plane. Only (S-12.62) must be replaced by

r‖ = eiδ‖ =
−n

2 cosθ+ i
√

sin2 θ−n
2

n
2 cosθ+ i

√

sin2 θ−n
2
, (S-12.69)

corresponding to a different dependence of r and δ on θ.
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a) The electric field E of a monochromatic EM wave of frequency ω propagating in

a medium of refractive index n = n(ω) satisfies Helmholtz’s equation

(

∇2+n
2(ω)

ω2

c2

)

E = 0 . (S-12.70)

We are considering a TE mode with E = ẑ Ez(y)eikx−iωt, thus we have

(

∂2
y − k2+n

2(ω)
ω2

c2

)

Ez(y) = 0 , (S-12.71)

whose general solution has the form s Ez(y) = Acos(qy)+ Bsin(qy), with A and B

two arbitrary constants. The electric field being parallel to the conducting walls at

y = ±a/2, the boundary conditions are Ez(y = ±a/2) = 0, from which we obtain

Ez(y) = E0

{

cos(qny) , n = 1,3,5 . . .

sin(qny) , n = 2,4,6 . . .
, qn = n

π

a
, (S-12.72)

and (S-12.71) turns into

q2
n+ k2−n

2(ω)
ω2

c2
= 0 . (S-12.73)

The wave can propagate only if k is real, i.e., if ω > qnc ≡ ωn.

In the case of a plasma

q2
n+ k2−

ω2−ω2
p

c2
= 0 , (S-12.74)

and the cut-off frequencies are

ω′n =
√

q2
nc2+ω2

p . (S-12.75)

b) The incident wave must be in the n = 1 mode, and its electric field is

Ei = ẑ E0 cos(q1y)eik1 x−iωt , (S-12.76)

where k1 =

√

ω2/c2−q2
1
. The total electric field is the sum of the incident field Ei

and the reflected field Er for x < 0, while only the transmitted field Et is present in

the x > 0 region. The boundary conditions at x = 0 is (Eiz +Erz)|x=0 = Etz|x=0, thus

all the waves must have the same dependence on t and y. The total field must thus be
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Ez =

{
(

E0 eik1 x +Er e−ik1 x
)

cos(q1y)e−iωt , x < 0 ,

Et cos(q1y )eikt x−iωt , x > 0 ,
(S-12.77)

where kt =

√

n(ω)ω2/c2−q2
1
. The boundary condition on the electric field yields

E0+Er = Et . (S-12.78)

In addition, the magnetic field must be also continuous at x= 0. From ∂tB=−c∇×E

we obtain

Bx =
iπc

ωa
×
{
(

E0 eik1 x +Er e−ik1 x
)

sin(q1y)e−iωt , x < 0 ,

Et sin(q1y)eikt x−iωt , x > 0 ,
(S-12.79)

By = −
c

ω
×
{

k
(

E0 eik1 x −Er e−ik1 x
)

cos(q1y)e−iωt , x < 0 ,

ktEt cos(q1y)eikt x−iωt , x > 0 ,
(S-12.80)

We notice that the continuity of Bx is ensured by the condition E0 +Er = Et, while

the continuity of By yields

k1(E0−Er) = ktEt . (S-12.81)

Eventually, we obtain

Er =
k1− kt

k1+ kt
E0 , Et =

2k1

k1+ kt
E0 , (S-12.82)

which are identical to Fresnel’s formulas for S -polarization. In fact, the field of the

incoming wave (S-12.76) can be written as

Ei = ẑ E0 cos(q1y)eik1 x−iωt = ẑ
E0

2

(

eiq1y+ e−iq1y
)

eik1 x−iωt

= ẑ
E0

2
eik1 x+iq1y−iωt + ẑ

E0

2
eik1 x−iq1y−iωt , (S-12.83)

which is the superposition of two z-polarized plane waves of equal amplitude, and

wavevectors of equal magnitude, but opposite y component, k = x̂k1 ± ŷq1. Thus

both plane waves impinge on the vacuum-medium interface at the same incidence

angle |θ| = arctan(q1/k1).

S-12.8 Schumann Resonances

a) Substituting the electric field (12.9) into the periodic boundary conditions (12.8)

we obtain

http://dx.doi.org/10.1007/978-3-319-63133-2_12
http://dx.doi.org/10.1007/978-3-319-63133-2_12
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eikxL = 1 , eikyL = 1 , (S-12.84)

solved by

kx = m
2π

L
, ky = n

2π

L
, m,n = 0,1,2, . . . (S-12.85)

where m and n are not allowed to be zero simultaneously, and L = 2πR⊕. Since the

wave equations gives us ω2 = k2c2, we have

ω2 =

(

c

R⊕

)2

(m2+n2) . (S-12.86)

The lowest frequency corresponds to m = 1,n = 0 or m = 0,n = 1, and its value is

νmin =
ωmin

2π
=
ω10

2π
=

c

2πR⊕
≃ 7.5s−1 , (S-12.87)

corresponding to a wavelength λmax = 2πR⊕ ≃ 40000km, the length of a great circle

of the Earth. The experimentally observed value is νmin ≃ 8s−1.

b) An ohmic conductor can be considered as perfectly reflecting at a frequency ω

if its conductivity σ(ω), assumed to be real, fulfills the condition σ(ω)≫ ω/4πke,

where ke = 1 in Gaussian units, and ke = 1/(4πε0) in SI units. Heuristically, the con-

dition corresponds to the conduction current J being much larger than Maxwell’s

displacement current. Since ε0 = 8.854× 10−12 SI units, and σ/ω ≈ 0.6s Ω−1m−1,

sea water can be considered as a perfect conductor in the frequency range of the

Schumann resonances. In Gaussian units, the low-frequency conductivity of sea

water is σ ≃ 4×1010 s−1.

A discussion of Schumann resonances based on a “realistic” spherical geome-

try can be found in Reference [2], Section 8.9 and Problem 8.7. Nevertheless, our

simplified approach reveals the essential point that the characteristic length L of the

system, which determines the maximum wavelength for a standing wave (λ ≈ L),

is the Earth’s circumference, rather than the height of the ionosphere above the the

Earth’s surface.
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Chapter S-13

Solutions for Chapter 13

S-13.1 Electrically and Magnetically Polarized Cylinders

(a) Long cylinders. In the “magnetic case”, the parallel component of the auxiliary

field, H =B/[(μ0)μr] (here, and the following, the parentheses mean that μ0 appears

in SI units only, not in Gaussian units) is continuous at the lateral surface of the

cylinder. Thus the magnetic field inside the cylinder, Bi, is

Bi = μrB0 . (S-13.1)

The interface condition for the electric field is that the parallel component of E must

be continuous at the lateral surface, thus we have for the internal field

Ei = E0 . (S-13.2)

These results are consistent with the analogy between the equations for E in

electrostatics and H in magnetostatics and in the absence of free currents, i.e., ∇×
E = 0 and ∇×H = 0.

(b) Flat cylinders. In the “magnetic case”, the perpendicular component of B is

continuous at the bases, thus we have

Bi = B0 . (S-13.3)

In the “electric case”, the perpendicular component of the auxiliary vector D must

be continuous at the interface, thus internal field is

Ei =
1

εr
E0 . (S-13.4)

These results are consistent with the analogy between the equations for B and for

D in electrostatics and in the absence of free charges, i.e., ∇ ·B = 0 and ∇ ·D = 0.
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(c) Let us assume (S-13.2) as zero-order solution for the case of the “long” dielectric

cylinder. According to (3.1) the cylinder acquires a uniform electric polarization

P =
εr−1

4πke
Ei =

εr −1

4πke
E0 , (S-13.5)

corresponding to two bound surface charge densities σb = P · n̂ = ±P at the cylinder

bases. When evaluating the field at the cylinder center, due to the condition a≪ h

the total bound charges on the two bases can be approximated by two point charges

±Q, with

Q = πa2P =
a2(εr−1)

4ke
E0 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

πa2ε0 (εr−1) E0 , SI,

a2(εr−1)

4
εr E0 , Gaussian,

(S-13.6)

located at distances ±h/2. Thus, at the cylinder center we have an additional field

Eb ≃ −2ke
Q

(h/2)2
= −2(εr−1) E0

(

a

h

)2

, (S-13.7)

corresponding to a second-order correction. The electric field up to the second order

in (a/h) is thus

E
(2)

i
= Ei+Eb = E0

[

1−2(εr −1)

(

a

h

)2
]

. (S-13.8)

In the corresponding “magnetic case”, the formal analogy between H and E leads

to a second-order correction to the auxiliary field Hi at the cylinder center

Hb = −2(μr−1)H0

(

a

h

)2

, (S-13.9)

where H0 = B0/(μ0). Because of the formal analogy between H and E, the correc-

tion to H at the center of the cylinder can be interpreted as due to the presence

of fictitious equivalent magnetic charges Qm = ±πa2M on the two cylinder bases.

The fictitious magnetic charge densities σm = ±M at the two bases are associated

to the magnetization M = χm H0, where χm is given by (5.22) in terms of μr. Each

magnetic charge gives origin to an auxiliary field

H =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

4π

Qm

r2
r̂ , SI,

1

c

Qm

r2
r̂ , Gaussian.

(S-13.10)

Recalling that, in SI units, B = μ0(H+M), we obtain for the magnetic field at the

cylinder center

http://dx.doi.org/10.1007/978-3-319-63133-2_3
http://dx.doi.org/10.1007/978-3-319-63133-2_5
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B = μ0(H0+M)+μ0Hb = μrH0+μ0Hb ≡ Bi+Bb , (S-13.11)

and the second-order correction is

Bb = −2(μr−1)B0

(

a

h

)2

. (S-13.12)

In Gaussian units we have B =H+4πM, the second order correction remaining the

same as in (S-13.12).

Notice that it would have been wrong to write

Bb = (μ0)μrHb (wrong!) , (S-13.13)

as it would have been wrong to write

Eb ≃ −2
ke

εr

Q

(h/2)2
= −2

(εr −1)

εr
E0

(

a

h

)2

(wrong!) , (S-13.14)

instead of (S-13.7), because we are considering the fields generated by polariza-

tion charges, and inserting μr or εr would mean taking the effects of the medium

polarization into account twice.

Fig. S-13.1

Alternatively, we can recall that the zero-order

approximation of the cylinder magnetization is

M = χmHi = χm
Bi

(μ0)μr
= χm

B0

(μ0)
, (S-13.15)

again, μ0 appearing in SI units only. The magnetiza-

tion is associated to a surface magnetization current

density Km =M× n̂/bm on the lateral surface of the

cylinder

Km =
χm

bm

B0

(μ0)
φ̂ , (S-13.16)

where φ̂ is the azimuthal unit vector of the cylindri-

cal coordinates with the cylinder axis as longitudi-

nal axis. Thus, the cylinder is equivalent to a finite

solenoid of height h and radius a, with the product

nI equal to a Km. The magnetic field of a finite solenoid on its axis is

BM = 2πkmnI (cosα1− cosα2) = 2πkmKm (cosα1− cosα2)

= 2πkm
χm

bm

B0

(μ0)
(cosα1− cosα2) = (μr−1)

B0

2
(cosα1− cosα2) , (S-13.17)
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where the angles α1 and α2 are shown in Fig. S-13.1. At the solenoid center we have

cosα1 = −cosα2 =
h/2

√

a2+ (h/2)2
≃ 1− 1

2

(

2a

h

)2

= 1−2

(

a

h

)2

, (S-13.18)

thus

BM ≃ (μr−1) B0

[

1−2

(

a

h

)2
]

. (S-13.19)

The total field at the cylinder center equals the external field B0 plus the field due to

the cylinder magnetization

B(0) = B0+BM = μrB0−2μrB0

(

a

h

)2

+2B0

(

a

h

)2

= μrB0−2(μr−1)B0

(

a

h

)2

, (S-13.20)

in agreement with (S-13.19).

The correction to the field at the center of the magnetic “flat” cylinder can be

evaluated as due to a circular loop of radius a carrying an electric current Is = Kmh:

Bb =
2πkmIs

a
= 2πkmKm

h

a
= 2π

km

bm
M

h

a
. (S-13.21)

At zeroth order we have

Hi ≃
B0

(μ0)μr
, thus M ≃ χm

B0

(μ0)μr
, (S-13.22)

and we get

Bb =
μr−1

2μr

a

h
B0 . (S-13.23)

The auxiliary field H is given by (5.19), thus we have, up to the second order

Hi+Hb =
B0+Bb

(μ0)μr
=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

B0+Bb

μ0
−M = Hi+

Bb

μ0
SI,

B0+Bb−4πM = Hi+Bb Gaussian.

(S-13.24)

Thus we have

Hb =
Bb

(μ0)
=
μr−1

2μr

a

h
H0 . (S-13.25)

Due to the formal analogy between H and E we have for the flat dielectric cylinder

http://dx.doi.org/10.1007/978-3-319-63133-2_5
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Eb =
εr−1

2εr

a

h
E0 . (S-13.26)

S-13.2 Oscillations of a Triatomic Molecule

(a) The equations of motion for the two lateral masses are

mẍ1 = −k(x1− xc+ ℓ) , mẍ2 = −k(x2− xc− ℓ) ; (S-13.27)

from (13.1) we obtain for the position of the central mass

xc = −
m

M
(x1+ x2) , (S-13.28)

which, substituted into (S-13.27) after dividing by m, leads to a system of two equa-

tions of motion involving x1 and x2 only

ẍ1 = −k

(

1

m
+

1

M

)

x1−
k

M
x2−

k

m
ℓ , (S-13.29)

ẍ2 = −k

(

1

m
+

1

M

)

x2−
k

M
x1+

k

m
ℓ . (S-13.30)

Adding and subtracting these equations we obtain

ẍ1+ ẍ2 = −k

(

1

m
+

2

M

)

(x1+ x2) = −k
Mtot

mM
(x1+ x2) (S-13.31)

ẍ1− ẍ2 = −
k

m
(x1− x2+2ℓ) , (S-13.32)

where Mtot = M + 2m is the total mass of the molecule. Thus, introducing the new

variables

x+ = x1+ x2 and x− = x1− x2+2ℓ , (S-13.33)

we obtain the following equations for the normal longitudinal modes of the mole-

cule

ẍ± = −ω2
±x± , where ω+ =

√

kMtot

mM
and ω− =

√

k

m
. (S-13.34)

Frequency ω+ corresponds an antisymmetric (!) motion of the masses: while the

lateral masses move, for instance, to the right by the same amount, the central mass

moves to the left, and vice versa, so that xcm = 0. Frequency ω− corresponds to a

http://dx.doi.org/10.1007/978-3-319-63133-2_13
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symmetric motion: the lateral masses perform opposite oscillations, while the cen-

tral mass does not move.

(b) The electric dipole moment of the molecule is parallel to the molecular axis and

its magnitude is

p = −qx1+2qxc −qx2 = −q

(

1+
2m

M

)

(x1+ x2) = −q
Mtot

M
x+ .

(S-13.35)

Thus, the dipole oscillates in the antisymetric mode at frequency ω+. The dipole

moment is zero when the molecule oscillates in the symmetric mode, and radiation

at frequency ω− is due only to quadrupole emission, which is weaker than dipole

emission.

(c) The initial conditions for x+ are

x+(0) = x1(0)+ x2(0) = d1+d2, ẋ+(0) = 0 , (S-13.36)

thus for t > 0

x+(t) = (d1+d2)cosω+t . (S-13.37)

The symmetric mode is also excited, but does not contribute to the dipole radiation.

The instantaneous radiated power is

P =
2

3c3
| p̈|2 = 2q2

3c3

(

Mtot

M

)2

ω2
+ (d1+d2)2 cos2ω+t . (S-13.38)

S-13.3 Impedance of an Infinite Ladder Network

Z2

Z1

Z0 = Z0

Fig. S-13.2

(a) Our infinite network is a sequence of

identical sections. As we did for Problem

4.10, we note that adding a further L-section

to the left of of Fig. 13.3 does not change the

impedance of the ladder network. Thus we

must have (see Fig. S-13.2).

Z0 = Z1+
Z2Z0

Z2+Z0
, (S-13.39)

http://dx.doi.org/10.1007/978-3-319-63133-2_4
http://dx.doi.org/10.1007/978-3-319-63133-2_13
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from which Z2
0
−Z1Z0−Z1Z2 = 0 follows. The solution is

Z0 =
Z1

2
+

√

Z2
1

4
+Z1Z2 , (S-13.40)

VN
I0 I1

V1 V2
IN−1

V0

Z1 Z1 Z1

Z2 Z2 Z2 Z0

Fig. S-13.3

The other solution of the quadratic

equation has been discarded

because in the case of real, posi-

tive impedances (the purely resis-

tive case of Problem 4.10) it would

give an unphysical negative value.

Thus, a finite ladder of N sections,

terminated by an impedance Z0 as

shown in Fig. S-13.3, is equivalent

to the infinite ladder.

(b) In Fig. 13.3, current In flows through the Z1 impedance of the (n+1)-th section,

thus, the voltage drop across the impedance, Vn −Vn+1, must equal InZ1. On the

other hand, In is input into the semi-infinite ladder network starting at node n, thus

we must have In = Vn/Z0. The two conditions give

Vn−Vn+1 =
Vn

Z0
Z1 , (S-13.41)

so that we obtain for the ratio of the voltages at adjacent nodes

α ≡ Vn+1

Vn

= 1− Z1

Z0
. (S-13.42)

If V0(t) = V0 e−iωt is the input voltage, we have Vn = α
nV0 e−iωt at the n-th node. For

a purely resistive network we have

Z0 ≡ R0 =
R1

2
+

√

R2
1

4
+R1R2 , (S-13.43)

which is a real number, and α = 1−R1/R0 < 1. At each successive node the signal

is damped by a factor α.

http://dx.doi.org/10.1007/978-3-319-63133-2_4
http://dx.doi.org/10.1007/978-3-319-63133-2_13
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(c) For the LC network we have

Z0 = −
iωL

2
+

√

−ω
2L2

4
+

iωL

iωC
= − iωL

2
+

√

L

C
− ω

2L2

4

=

√

4L2

4LC
− ω

2L2

4
− iωL

2
=

L

2

√

4

LC
−ω2− iωL

2

=
L

2

(
√

ω2
co−ω2− iω

)

, (S-13.44)

where ωco ≡ 2/
√

LC. Thus

α = 1− Z1

Z0
= 1+

2iωL

L

(

√

ω2
co−ω2− iω

) =

√

ω2
co−ω2+ iω

√

ω2
co−ω2− iω

. (S-13.45)

If ω < ωco, the square roots are real and α is the ratio of a complex number to its

own complex conjugate, therefore |α| = 1, and we can write α = eiφ with

tan

(

φ

2

)

=
ω

√

ω2
co−ω2

. (S-13.46)

Thus the voltage at node n is Vn = V0 einφ−iωt, and the signal propagates along the

network without damping. The above equation also gives the dispersion relation

ω = ωco

∣

∣

∣

∣

∣

sin

(

φ

2

)

∣

∣

∣

∣

∣

. (S-13.47)

This is analogous to the dispersion relation (S-7.42) found in Problem 7.4, when we

substitute φ for ka.

If ω > ωco, Z0 is a purely imaginary number,

Z0 = ±i
√

ω2−ωco , (S-13.48)

Fig. S-13.4

and α is real

α =
±

√

ω2−ω2
co+ω

±
√

ω2−ω2
co−ω

. (S-13.49)

Inserting the negative root into (S-13.49)

leads to |α| < 1, and the signal is damped. The

http://dx.doi.org/10.1007/978-3-319-63133-2_20
http://dx.doi.org/10.1007/978-3-319-63133-2_7
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positive root would lead to an unphysical |α| > 1, implying an amplification of the

signal along the network, without an external energy source.

Thus the LC network behaves as a low-pass filter, since signals at frequencies

ω>ωco are attenuated by a factor |α|N after N nodes. The dependence of the network

transmission on frequency approaches an ideal low-pass filter, for which transmis-

sion is zero for ω > ωco, at high numbers of circuit sections N. Figure S-13.4 shows

|α| (solid line) and |α|2 (dashed line) as a functions of the signal frequency ω.

(d) For the CL network (Problem 7.5) we proceed analogously to point (c) for the

LC network, and obtain

Z0 =
i

2ωC
+

√

− 1

4ω2C2
+
ωL

ωC
=

1

2C

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

1

ω2
co

− 1

ω2
+

i

ω

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (S-13.50)

and

α =

√

ω−2
co −ω−2− i/ω

√

ω−2
co −ω−2+ i/ω

. (S-13.51)

We have undamped propagation for |α| = 1, i.e., when ω > ωco. For ω < ωco the

signals are damped, and the network acts as a high-pass filter.

S-13.4 Discharge of a Cylindrical Capacitor

(a) We use cylindrical coordinates (r,φ,z). For symmetry reasons, assuming h≫ b,

the electric field between the capacitor plates is radial, and easily evaluated from

Gauss’s law as

Er = Er(r) =
2Q0

hr
, (Gaussian units). (S-13.52)

The potential difference V across the plates is

V =

∣

∣

∣

∣

∣

∣

∫ b

a

E ·ds

∣

∣

∣

∣

∣

∣

=
2Q0

h

∫ b

a

dr

r
=

2Q0

h
ln(b/a) , (S-13.53)

and the capacity of our cylindrical capacitor is

C =
Q0

V
=

h

2ln(b/a)
(S-13.54)

http://dx.doi.org/10.1007/978-3-319-63133-2_7
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The initial electrostatic energy is Ues(0) = Q2
0
/2C.

After the plates are connected through the resistor at t = 0, the system is an RC

circuit, and the capacitor charge at time t is

Q(t) = Q0 e−t/τ , where τ = RC =
Rh

2ln(b/a)
(S-13.55)

Assuming that the charge densities remain uniform over the plates during the dis-

charge, the absolute value of the charge of each plate between its bottom, z = 0, and

any height z < h (see Fig. S-13.5 for the case of the inner plate of Fig. 13.4) is

∆Q(z, t) = Q(t)
z

h
. (S-13.56)

The decay of the charge implies a current flowing over each plate, along the ẑ direc-

tion. Let Ia(z, t) and Ib(z, t) be the currents in the inner and outer plate, respectively,

which can obtained from the continuity equation: for the inner plate

Ia(z, t) = −d[∆Q(z, t)]

dt
=

Q(t)

τ

z

h
=

Q0

τ

z

h
e−t/τ . (S-13.57)

a

r

R

O

z φ

h

z

∆
Q

(z
,t

)

I a
(

)

I a
(z

,t
)

Fig. S-13.5

Since, in the assumption of uniform charge

densities, the charge on the outer plate is

−∆Q(z, t), then Ib(z, t) = −Ia(z, t).

We can evaluate B in the a < r < b region

from Maxwell’s equation

∇×B =
4π

c
J+

1

c
∂tE . (S-13.58)

The only nonzero component of J is along z

and the only nonzero component of E is along

r, given by

E = r̂
2Q(t)

hr
, (S-13.59)

while B must be independent of φ because of

the symmetry of our problem. Thus, according

to the curl components in cylindrical coordi-

nates of Table A.1 of the Appendix we have

http://dx.doi.org/10.1007/978-3-319-63133-2_13
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(∇×B)r = −∂zBφ =
1

c
∂tEr ,

(∇×B)z =
1

r
∂r(rBφ) =

4π

c
Jz , (S-13.60)

and we see that the only nonzero component of B is Bφ, which can be evaluated

from either of (S-13.60). We choose the second of (S-13.60), and apply Stokes’

theorem to a circle C of radius a < r < b, coaxial to the capacitor and located at

height 0 < z < h,

∮

C

B(r,z, t) ·dℓ = 2πrBφ(r,z, t) =
4π

c
Ia(z, t) , (S-13.61)

Bφ(r,z, t) =
2

c

Ia(z, t)

r
=

2

chτ

z

r
Q0 e−t/τ . (S-13.62)

(b) The Poynting vector is

S =
c

4π
E×B = ẑ

Q2
0

πh2τ

z

r2
e−2t/τ , a < r < b , (S-13.63)

and S = 0 if r < a or r > b. The flux of S through a plane perpendicular to z at height

0 < z < h is thus

ΦS(z, t) =
Q2

0
z

πh2τ
e−2t/τ

∫ b

a

1

r2
2πr dr =

2Q2
0
z ln(b/a)

h2τ
e−2t/τ . (S-13.64)

The electrostatic energy associated to the volume between the bottom of the capac-

itor (z = 0) and height z at time t is

∆Ues(z, t) =
z

h

Q2(t)

2C
=

z

h

Q2
0

e−2t/τ

2C
=

z

h

Q2
0

ln(b/a)

h
e−2t/τ , (S-13.65)

because the electric field does not depend on z. Thus we have

d[∆Ues(z, t)]

dt
= −2∆Ues(z, t)

τ
= −ΦS(z, t) . (S-13.66)

(c) The assumptions of slowly varying currents and of uniform charge density are

closely related. In fact, the capacitor can be viewed as a portion of a coaxial cable

along which charge and current signals are propagating in TEM mode, at velocity c.

In these conditions, the charge density can be assumed as uniform if the propagation

of the signals is “instantaneous” with respect to the duration of the discharge, i.e., if

the propagation time h/c≪ τ. This is equivalent to assuming that the wavelengths

corresponding to the frequency spectrum of the signal are much larger than h, so

that the field can be considered as uniform along z.
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We can reach the same conclusion by checking that the electric field E1, gener-

ated by the magnetic induction, is much smaller than the electrostatic field E0. From

Maxwell’s equation

∇×E1 ≃ −
1

c
∂tB , (S-13.67)

where the only nonzero component of B is Bφ, we obtain

∂zE1r =
1

c

2

chτ2
z

r
Q0 e−t/τ

E1r =
Q0

c2hτ2
z2

r
e−t/τ =

1

2

(

z

cτ

)2

E0r . (S-13.68)

where E0r is from the second of (S-13.59). Thus E1r ≪ E0r if h≪ cτ.

S-13.5 Fields Generated by Spatially Periodic Surface Sources

(a) In this case fields and potential are electrostatic. The potential ϕ = ϕ(x,y) is a

solution of the 2D Laplace’s equation

(∂2
x +∂

2
y)ϕ = 0 for y � 0, (S-13.69)

and, due to the symmetry of the source, must be an even function of y. We attempt to

find a solution by the method of separation of variables, i.e., we look for a solution

of the form ϕ = X(x)Y(y), where X depends only on x and Y only on y. Equation

(S-13.69) becomes

X′′(x)Y(y)+X(x)Y′′(y) = 0 , (S-13.70)

where the double primes denote the second derivatives. Dividing by X(x)Y(y) we

obtain
Y′′(y)

Y(y)
= −X′′(x)

X(x)
, (S-13.71)

which must hold for every x,y, implying that both sides of the equation must equal

some constant value, which, for convenience, we denote by α2,

Y′′(y)

Y(y)
= α2 ,

X′′(x)

X(x)
= −α2 , (S-13.72)

whose solutions are

Y(y) = Ay e+αy+By e−αy , and X(x) = Ax e+iαx +Bx e−iαx , (S-13.73)
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where Ax, Ay, Bx, and By are constants to be determined. Discarding the solutions

that diverge for |y| →∞, and fitting the x dependence to the dependence of σ, which

implies α = k, we obtain

ϕ = ϕ0 e−k|y| cos(kx) , (S-13.74)

where ϕ0 is a constant to be determined. The nonzero components of the electric

field are

Ex = −∂xϕ = kϕ0 e−k|y| sin(kx) ,

Ey = −∂yϕ = sgn(y)kϕ0 e−k|y| cos(kx) . (S-13.75)

The component Ex is continuous at the y = 0 plane, as expected, since ∇×E = 0. We

can obtain the relation between Ey at y = 0 and the surface charge density by using

Gauss’s law,

Ey(x,y = 0+)−Ey(x,y = 0−) = 4πσ(x) , (S-13.76)

from which we obtain the value of ϕ0, namely ϕ0 = 2πσ0/k, and, finally

ϕ =
2πσ0

k
e−k|y| cos(kx) . (S-13.77)

(b) Here we have magnetostatic fields. Due to the analogy between the Poisson

equations for the vector potential ∇2A = −4πJ/c, and for the scalar potential ∇2ϕ =

−4πρ, we can use (S-13.77) for obtaining the vector potential A as

A = ẑ A0 e−k|y| cos(kx) , where A0 =
2πK0

kc
. (S-13.78)

The nonzero components of the magnetic field are

Bx = ∂yAz = −sgn(y)kA0 e−k|y| cos(kx) = −sgn(y)
2πK0

c
e−k|y| cos(kx) ,

By = −∂xAz = kA0 e−k|y| sin(kx) =
2πK0

c
e−k|y| sin(kx) . (S-13.79)

Thus, By is continuous at y = 0, as expected from ∇ ·B = 0. Further we have

Bx(x,y = 0+)−Bx(x,y = 0−) = −4π

c
K0 cos(kx) , (S-13.80)

in agreement with Ampère’s law.

(c) Since σ = 0, also the scalar potential is zero, ϕ = 0. The inhomogeneous wave

equation for the vector potential A is, in the Lorentz gauge condition,
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∇2A− 1

c2

∂2A

∂t2
= −4π

c
J = −ẑ

4π

c
δ(y) K0 e−iωt cos(kx) . (S-13.81)

As an educated guess, we search for a solution of the form

A = ẑ A0 e−q|y|−iωt cos(kx) , (S-13.82)

which, for y � 0, leads to

(

−k2+q2+
ω2

c2

)

A = 0 , or q2 = k2−
(

ω

c

)2

. (S-13.83)

Thus, if ω < kc, q is real and A decays exponentially with |y|. If ω > kc, q is imag-

inary and the waves propagates, A being proportional to ei|q||y|−iωt. If we integrate

(S-13.81) in dy from −h to +h we obtain

lim
h→0

∫ +h

−h

(

∂2A

∂x2
+
∂2A

∂y2
− 1

c2

∂2A

∂t2

)

dy = −ẑ
4π

c
K0 e−iωt cos(kx) . (S-13.84)

Now, both ∂2A/∂x2 and ∂2A/∂t2 are continuous at y = 0 and don’t contribute to the
integral at the limit h→ 0. Thus, the left-hand side of (S-13.84) is

lim
h→0

∫ +h

−h

∂2A

∂y2
dy = lim

h→0

[

∂yA
]+h

−h
= −ẑ A0 qcos(kx) lim

h→0

[

sgn(y)e−q|y|−iωt
]+h

−h

= −ẑ2A0e−iωt qcos(kx) , (S-13.85)

which must equal the right-hand side of (S-13.84), leading to

A0 =
2π

qc
K0 (S-13.86)

which, at the static limit ω→ 0, q→ k, equals (S-13.78).

The nonzero components of the magnetic field are

Bx = ∂yAz = −sgn(y)
2π

c
K0 e−q|y|−iωt cos(kx) ,

By = −∂xAz =
2πk

qc
K0 e−q|y|−iωt sinωt , (S-13.87)

which, at the static limitω→ 0, q→ k, equal (S-13.79). The electric field is obtained

from E = −∂tA/c = iωA/c, and its only nonzero component is

Ez = −
2πiωK0

qc2
e−q|y|−iωt cos(kx) . (S-13.88)
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(d) In this context, given a function f = f (x, t), we denote its time average by angle

brackets, and its space average by a bar, as follows

〈 f 〉 = ω
2π

∫ +π/ω

−π/ω
f dt , f =

k

2π

∫ +π/k

−π/k
f dx . (S-13.89)

Thus we write the average power dissipated per unit time and unite surface on the

y = 0 plane as

〈

KzEz

〉

=
1

2
Re

[

K0

(

2πiω

qc
K0

)∗]

cos2(kx) =
πω

4c
|K0|2 Re

(

−i

q

)

.

(S-13.90)

If q is real we have
〈

KzEz

〉

= 0, consistently with the fields being evanescent for

|y| → ∞. There is no energy flow out of the y = 0 plane, and the work done by the

currents is zero on average. On the other hand, if q is imaginary, we have

〈

KzEz

〉

= −πω |K0|2

2|q|c , (S-13.91)

which equals minus the flux of electromagnetic energy out of the y = 0 plane. In

fact, the averaged Poynting vector is

〈

S y

〉

=
c

4π

〈

EzBx

〉

=
1

2

c

4π
Re

[

2πiωK0

2qc

(

sgn(y)q∗
2πK∗

0

q∗c

)]

cos2(kx)

= sgn(y)
πω |K0|2

4|q|c , (S-13.92)

where we have used Re(i/q) = 1/|q| (for imaginary q). The flux of energy out of the

y = 0 plane is thus 2
∣

∣

∣

∣

〈

S y

〉

∣

∣

∣

∣

= −
〈

KzEz

〉

.

S-13.6 Energy and Momentum Flow Close to a Perfect Mirror

(a) The total electric field in front of the mirror is the sum of the fields of the incident

(Ei) and of the reflected (Er) waves, which have equal amplitude and frequency, but

opposite polarizations and wavevectors,
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E = Ei+Er = ŷ Eǫ [cos(kx−ωt)− cos(−kx−ωt)]

− ẑǫEǫ [sin(kx−ωt)− sin(−kx−ωt)]

= ŷ Eǫ[cos(kx)cos(ωt)+ sin(kx) sin(ωt)− cos(kx)cos(ωt)+ sin(kxsin(ωt)]

− ẑǫEǫ[sin(kx)cos(ωt)− cos(kx) sin(ωt)+ sin(kx)cos(ωt)+ cos(kx) sin(ωt)]

= ŷ2Eǫ sin(kx) sin(ωt)− ẑ2ǫEǫ sin(kx)cos(ωt) , (S-13.93)

where Eǫ ≡ E0/
√

1+ ǫ2. We can obtain the magnetic field from Maxwell’s equation

∂tB = −c∇×E = ŷc∂xEz− ẑc∂xEy

= −ŷ2ǫEǫ ck cos(kx)cos(ωt)− ẑ2Eǫ ck cos(kx) sin(ωt) , (S-13.94)

which yields, after integration in dt,

B = −ŷ2ǫEǫ
ck

ω
cos(kx) sin(ωt)+ ẑ2Eǫ

ck

ω
cos(kx)cos(ωt)

= −ŷ2ǫEǫ cos(kx) sin(ωt)+ ẑ2Eǫ cos(kx)cos(ωt) , (S-13.95)

where we have used k = ω/c. The Poynting vector is

S =
c

4π
E×B = x̂

c

4π

(

EyBz−EzBy

)

= x̂
cE2
ǫ

π

[

sin(kx)cos(kx) sin(ωt)cos(ωt)− ǫ2 sin(kx)cos(kx)cos(ωt) sin(ωt)
]

= x̂
cE2
ǫ

π
sin(kx)cos(kx) sin(ωt)cos(ωt)

(

1− ǫ2
)

= x̂
c

4π
E2
ǫ

(

1− ǫ2
)

sin(2kx) sin(2ωt) . (S-13.96)

Thus S = 0 if ǫ = 1, corresponding to circular polarization. In such a case, E is

parallel to B. In general, also when S � 0, we have 〈S〉 = 0, and there is no net

energy flow.

(b) From the definition of Ti j we find

Fx = Txx =
1

8π
B2(0−) =

1

4π
E2
ǫ (cos2ωt+ ǫ2 sin2ωt)

=
2I

c

[

1+
1− ǫ2

1+ ǫ2
cos2ωt

]

. (S-13.97)

The oscillating (at 2ω) component vanishes for circular polarization. The average

of Fx is the radiation pressure on the mirror (Problem 9.8), which does not depend

on polarization.

http://dx.doi.org/10.1007/978-3-319-63133-2_9
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S-13.7 Laser Cooling of a Mirror

(a) A plane wave of intensity I exerts a radiation pressure 2I/c on a perfectly reflect-

ing surface. Thus the total force on the mirror, directed along the x axis of Fig. 13.5,

is

F =
2A

c
(I1− I2) . (S-13.98)

If I1 > I2 we have F > 0.

(b) The amplitudes of the electric fields of the two waves, in the mirror rest frame

S ′, are

E′1 = γ(E1−βB1) = γ(1−β) E1 =

√

1−β
1+β

E1 , (S-13.99)

E′2 = γ(E2+βB2) = γ(1+β) E2 =

√

1+β

1−β E2 , (S-13.100)

where β= v/c, γ = 1/
√

1−β2, and E1 = B1, E2 = B2 in Gaussian units. The intensity

of a plane wave is I = (c/4π) |E×B| = cE2/4π, thus we have

I′1 =
1−β
1+β

I1 , I′2 =
1+β

1−β I2 . (S-13.101)

Since we have assumed I1 = I2, the total force is

F′ =
2A

c
(I′1− I′2) =

2A

c

(1−β)2− (1+β)2

1−β2
= −8Aβγ2 I

c
. (S-13.102)

(c) From the answer to point (b) we have F′ < 0, the direction of the force is opposite

to the direction of v. At the limit v≪ c, the force in the laboratory frame is equal to

the force in the mirror frame, and we have

F ≃ F′ ≃ −8A
I

c2
v , (S-13.103)

which is a viscous force. Under the action of this force, the mirror velocity will

decrease exponentially in time

v(t) = v(0)e−t/τ , where τ =
Mc2

8AI
. (S-13.104)

This effect has some analogies with the “laser-cooling” techniques, used in order

to cool atoms down to temperatures of the order of 10−6 K. These include, for

http://dx.doi.org/10.1007/978-3-319-63133-2_13
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instance, Doppler cooling and Sisyphus cooling. The cooling of a macroscopic

mirror by radiation pressure has also been studied [1] for possible applications in

experiments of optical interferometry of ultra-high precision, e.g., for the detection

of gravitational waves.

S-13.8 Radiation Pressure on a Thin Foil

(a) It is instructive to solve this problem by three different methods. For definiteness

we assume a linearly polarized incident wave, with electric field Ei = ŷ Ei eiki x−iωt,

where ki = ω/c; generalization to arbitrary polarization is straightforward.

First method (heuristic): we assume the incident plane wave to be a square pulse

of arbitrary but finite duration τ, and thus length cτ. The momentum of the wave

packet impinging on the surface A of the foil is, neglecting boundary effects,

pi =
〈Si〉
c2

cτA = x̂

〈

|Ei|2
〉

4πc
τA = x̂

E2
i

8πc
τA = x̂

I

c
τA , (S-13.105)

where I = 〈|Si|〉 = c
〈

|Ei|2
〉

/(4π) = cE2
i
/(8π) is the intensity of the incident wave. The

reflected and transmitted wave packets have momenta

pr =
〈Sr〉
c2

cτA = −x̂R
E2

i

8πc
τA = −x̂R

I

c
τA , (S-13.106)

pt =
〈St〉
c2

cτA = +x̂T
E2

i

8πc
τA = +x̂T

I

c
τA , (S-13.107)

respectively, where R = |r|2, T = |t|2, and R+T = 1 because of energy conservation.

The amount of momentum transfered from the incident wave packet to the foil is

∆p = pi− (pr+pt) , (S-13.108)

resulting in a pressure pushing the foil toward positive x values (because ∆p > 0)

Prad =
|∆p|
τA
=

[

1− (−R+T )
] I

c
= 2R

I

c
. (S-13.109)

Second method: we calculate the average force on the foil, parallel to x̂, directly

as

〈F〉 =
∫ d

0

〈J×B〉Adx , (S-13.110)
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where we have assumed the left surface of the foil located at x = 0, and the right

surface located at x = d. For a very small thickness d we can write

A

∫ d

0

〈J×B〉dx =
1

2
Ad

〈

J(t)
[

B(0+)+B(0−)
]〉

= −Ac

8π

〈[

B2(0+)−B2(0−)
]〉

, (S-13.111)

where we have substituted J(t)=− [

B(0+)−B(0−)
]

c/(4πd). Since we have |B(0+)|=
|Et| = |t Ei|, and |B(0−)| =

∣

∣

∣Ei−Er

∣

∣

∣ =
∣

∣

∣(1− r) Ei

∣

∣

∣, we can write the radiation pressure

on the foil as

Prad =
〈|F|〉

A
= −

E2
i

16πc

(

|t|2− |1− r|2
)

= − I

2c

(

|t|2− |1− r|2
)

. (S-13.112)

Introducing the shorthand α = (ω2
pd)/(2ωc) in (13.5), so that η = iα, we have

t =
1

1+ iα
, T = |t|2 = 1

1+α2
, (S-13.113)

r = − iα

1+ iα
, R = |r|2 = α2

1+α2
, (S-13.114)

|1− r|2 = 1+5α2+4α4

(1+α2)2
, |t|2− |1− r|2 = − 4α2

1+α2
, (S-13.115)

and finally

Prad =
I

2c2

4α2

1+α2
= 2R

I

c
. (S-13.116)

Third method: we calculate the flow of EM momentum directly using Maxwell’s

stress tensor Ti j. The theorem of EM momentum conservation states that

dpi

dt
=

∮

S

Ti j n j dS (S-13.117)

(summation over the repeated index is implied), where n̂ is the unit vector normal

to the surface S which envelops the thin foil, and p is the total momentum (EM and

mechanical) of the foil. Since in a steady state the EM contribution is constant, the

RHS of (S-13.117) equals the variation of mechanical momentum, i.e., the force.

Taking into account that the electric field has only the component Ey and the

magnetic field only the component Bz, and that n̂ = ∓x̂ on the left (x = 0−) and right

(x = 0+) surfaces, respectively, the only relevant component of Ti j is Txx, and

dpx

dt
=

[

Txx(0+)−Txx(0−)
]

A . (S-13.118)

http://dx.doi.org/10.1007/978-3-319-63133-2_13
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For Txx(0+) and Txx(0−) we have

Txx(0+) = − 1

8π

〈

E2(0+)+B2(0+)
〉

= − 1

4π

〈

|Et|2(0+)
〉

= −T
E2

i

8π
,

Txx(0−) = − 1

8π

〈

E2(0−)+B2(0−)
〉

= −

〈

E2
i

〉

8π

[

|(1+ r)|2+ |(1− r)|2
]

= −
E2

i

16π

(

1+ |r|2+ rr
∗+1+ |r|2− rr

∗)

= −(1+R)
E2

i

8π
. (S-13.119)

Thus

dpx

dt
=

E2
i

8π
(−T +1+R) A = 2R

I

c
A , (S-13.120)

which yields (13.6) again.

(b) From the Lorentz transformation of the fields we obtain the intensity of the

incident wave in the S ′ frame, where the foil is at rest,

I′ =
1−β
1+β

I , (S-13.121)

and the force on the foil in S ′ is F′ = 2AI′/c. Since for a force parallel to v we have

F = F′, in the laboratory frame S we can write

F = F′ = 2
1−β
1+β

I

c
A . (S-13.122)

(c) The radiation pressure must be multiplied by a factor R = R(ω′) in the frame S ′,
where the frequency is ω′ =

√

(1−β)/(1+β)ω. Thus

F = 2
1−β
1+β

R
(

ω′
) I

c
A , ω′ =

√

1−β
1+β

ω. (S-13.123)

http://dx.doi.org/10.1007/978-3-319-63133-2_13
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S-13.9 Thomson Scattering in the Presence of a Magnetic Field

(a) We write the fields in the complex notation. Within our assumptions, the equation

of motion for the electron is

me
dv

dt
= −e

(

E+
v

c
×B0

)

, (S-13.124)

where −e and me are the charge and mass of the electron, respectively. The solution

has already been evaluated in Problem 7.10, and is

vx =
ωc

ω2
c −ω2

e

me
Ei e−iωt , vy =

iω

ω2
c −ω2

e

me
Ei e−iωt , (S-13.125)

and vz = 0.

(b) The cycle-averaged radiated power is

〈P〉 = e4

3m2
ec3
|Ei|2

ω2

(

ω2
c −ω2

)2

(

ω2
c +ω

2
)

, (S-13.126)

which is maximum at the cyclotron resonance, ω = ωc. At the low-frequency limit

ω/ωc ≪ 1 we have 〈P〉 ∝ ω2/ω2
c , while at the high-frequency limit ω/ωc ≫ 1 the

power is independent of frequency (“white” spectrum).

The orbit of the electron is elliptical, consequently the angular distribution and

polarization of the scattered radiation are analogous to what found for an elec-

tron in the presence of an elliptically polarized wave, in the absence of external

magnetic fields, as discussed in Problem 10.9. According to (S-13.125) we have

vx/vy = −iωc/ω. At the limit ω ≪ ωc we have
〈

|vx|
〉

≫
〈

|vy|
〉

, the major axis of

the elliptical orbit of the electron is thus parallel to x̂, and the strongest radia-

tion intensity is observed on the yz plane. At the opposite limit, ω≫ ωc, we have
〈

|vx|
〉

≪
〈

|vy|
〉

, the major axis of the orbit is parallel to ŷ, and the strongest radiation

intensity is observed on the xz plane.

S-13.10 Undulator Radiation

(a) According to Maxwell’s equation ∇ ·B = 0, we must have

∂xBx = −∂yBy = −(∂yb)cos(kx) , (S-13.127)

which, after integration in dx, leads to

http://dx.doi.org/10.1007/978-3-319-63133-2_7
http://dx.doi.org/10.1007/978-3-319-63133-2_10
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Bx = −(∂yb)
sin(kx)

k
, (S-13.128)

where we have set to zero the integration constant. In static conditions, and in the

absence of electric currents, we have ∇×B = 0, thus we must also have

0 = ∂xBy−∂yBx = −kb(y) sin(kx)+ (∂2
yb)

sin(kx)

k
, (S-13.129)

which, divided by sin(kx), reduces to

∂2
yb(y) = k2b(y) . (S-13.130)

The even solution (S-13.130) is

b(y) = B0 cosh(ky) , (S-13.131)

where B0 is a constant to be determined. Thus the two nonzero components of B

are

Bx = −B0 sin(kx) sinh(ky) , By = B0 cos(kx)cosh(ky) , (S-13.132)

and on the z axis, where x = 0 and y = 0, we have

B(0,0,z) = ŷB0 . (S-13.133)

(b) The Lorentz transformations from the laboratory frame S to S ′ give for the fields

in S ′

B′x = Bx[x(x′, t′),y′] = −B0 sinh(ky′) sin[kγ(x′+ vt′)] , (S-13.134)

B′y = γBy[x(x′, t′),y′] = γB0 cosh(ky′)cos[kγ(x′+ vt′)] , (S-13.135)

E′z = γvBy[x(x′, t′),y′] = γvB0 cosh(ky′)cos[kγ(x′+ vt′)].

(S-13.136)

where γ = 1/
√

1− v2/c2. Since the boost is parallel to the x axis, we have y′ = y.

Disregarding the magnetic force in S ′, the electron oscillates along ẑ′ under the

action of the electric field E′ = E′z(0,0, t
′) = γvB0 cos(ω′t′), where ω′ = kγv. Thus,

in S ′, we observe a Thomson scattering, and the electron emits electric-dipole radi-

ation of frequency ω′.
(d) Transforming back to S , the frequencies of the radiation emitted in the forward

(+) and backward (−) directions are

ω± = γ(1±β)ω′ = γ(1±β)kγv = kcγ2β(1±β) , (S-13.137)

where β = v/c.
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In S ′, the electron does not emit radiation along its direction of oscillation, i.e.,

along ẑ′. This corresponds to two “forbidden” wavevectors k′ ≡ (0,0,ω′/c) and k′ ≡
(0,0,−ω′/c). By a back transformation to S we obtain

kx = γ

(

k′x ±
ω′

c
β

)

= ±γβ ω
′

c
, ky = 0 , kz = k′z =

ω′

c
, (S-13.138)

thus, in S , we have no radiation emission at the angles ±θ in the xz plane such that

tanθ =
kz

kx

=
1

γβ
. (S-13.139)

The “undulator radiation”, emitted by high-energy electrons injected along a peri-

odically modulated magnetic field, is at the basis of free-electron lasers emitting

coherent radiation in the X-ray frequency range.

S-13.11 Electromagnetic Torque on a Conducting Sphere

(a) We can write the electric field of the wave as

E(z, t) = E0[x̂cos(kz−ωt)− ŷsin(kz−ωt)]

= Re[E0(x̂+ iŷ)ei(kz−ωt)] , (S-13.140)

where k =ω/c= 2π/λ. Since a≪ λ, we can consider the electric and magnetic fields

of the wave as uniform over the volume of the sphere, and neglect the magnetic

induction effects. Thus, the sphere can be considered as located in a uniform rotating

electric field

E0(t) = Re
(

Ẽ0 e−iωt
)

, where Ẽ0 = E0(x̂+ iŷ) . (S-13.141)

In the presence of oscillating fields, the complex electric permittivity of a medium

of real conductivity σ is defined as

ε̃(ω) = 1+
4πiσ

ω
. (S-13.142)

Thus, our problem is analogous to Problem 3.4, where we considered a dielectric

sphere in a uniform external electric field. The internal electric field and the dipole

moment of the sphere are

http://dx.doi.org/10.1007/978-3-319-63133-2_3
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Ẽint =
3

ε̃+2
Ẽ0 =

3Ẽ0

3+4πiσ/ω
= − 3iωtd

1−3iωtd
Ẽ0 , (S-13.143)

p̃ = PV = χẼintV =
3V

4π

ε̃−1

ε̃+2
Ẽ0 =

3V

4π

4πiσ/ω

3+4πiσ/ω
Ẽ0 ,

=
3V

4π

4πiσ

3ω+4πiσ
Ẽ0 =

3V

4π

i/td

3ω+ i/td
Ẽ0 =

3V

4π

i

3ωtd+ i
Ẽ0

=
3V

4π

1+3iωtd

(3ωtd)2+1
Ẽ0 (S-13.144)

where V = 4πa3/3 is the volume of the sphere, and td = 1/(4πσ). By writing the

complex numerator in terms of its modulus and argument we have

1+3iωtd =

√

1+ (3ωtd)2 eiφ , where φ = arctan(3ωtd) , (S-13.145)

and, substituting into (S-13.144) we obtain

p̃ =
3V

4π

Ẽ0
√

1+ (3ωtd)2
eiφ , (S-13.146)

and, for the real quantity,

p = Re

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3V

4π

E0
√

1+ (3ωtd)2
(x̂+ iŷ)e−i(ωt−φ)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
3V

4π

E0
√

1+ (3ωtd)2
[x̂cos(ωt−φ)+ ŷsin(ωt−φ)] . (S-13.147)

Thus the dipole moment of the sphere rotates with a phase delay φ relative to the

electric field of the wave.

(b) The torque acting on an electric dipole p in the presence of an electric field E is

τ = p×E. In our case, the angle between p and E0 is constant in time and equal to

φ, thus the torque is

τ = ẑ |p||E0|sinφ = ẑ
3V

4π

E2
0

√

1+ (3ωtd)2
sinφ. (S-13.148)

The same result can be obtained by evaluating

τ =
1

2
Re

(

p̃× Ẽ
∗)
= Re

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3V

8π

E2
0

eiφ

√

1+ (3ωtd)2
(x̂+ iŷ)× (x̂− iŷ)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= Re

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3V

8π

E2
0

(cosφ+ i sinφ)
√

1+ (3ωtd)2
(−2i ẑ)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= ẑ
3V

4π

E2
0

√

1+ (3ωtd)2
sinφ. (S-13.149)
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S-13.12 Surface Waves in a Thin Foil

(a) As an educated guess, we search for solutions for the unknown quantities Ex,

and Bz of the form

Ex(x,y, t) = Ẽx(x)eiky−iωt , Bz(x,y, t) = B̃z(x)eiky−iωt , (S-13.150)

where Ẽx(x), and B̃z(x) are complex functions to be determined. According to

(13.10), Ey is symmetric (even) for reflection across the x = 0 plane. Since in vac-

uum we have ∇ ·E = ∂xEx +∂yEy = 0, we obtain

∂xẼx = −ikE0 e−q|x| , (S-13.151)

which, after integration in dx, leads to

Ẽx(x) = sgn(x)
ik

q
E0 e−q|x| =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− ik

q
E0 eqx , x < 0,

ik

q
E0 e−qx , x > 0.

(S-13.152)

Thus, the Ex component is antisymmetric (odd) for reflection across the x = 0 plane.

Since our fields are independent of z, Maxwell’s equation ∇×E = −∂tB/c reduces

to

− 1

c
∂tBz = ∂xEy−∂yEx = sgn(x)

(

k2

q
−q

)

E0 e−q|x| ei(ky−ωt) , (S-13.153)

which, after integration in dt and division by −ei(ky−ωt)/c, leads to

B̃z = sgn(x)
ic

qω

(

q2− k2
)

E0 e−q|x| , (S-13.154)

thus B̃z, like Ẽx, is an odd function of x.

Fig. S-13.6

We can obtain the surface charge density σ(y, t)

and the surface current density K(y, t) on the foil

from the boundary conditions at the x = 0 plane.

Figure S-13.6 shows the surface current K and the

magnetic field close to the foil.

σ(y, t) =
1

4π

[

Ex

(

x = 0+,y, t
)−Ex

(

x = 0−,y, t
)]

= i
2k

q
E0 ei(ky−ωt) , (S-13.155)

Ky(y, t) = − c

4π

[

Bz

(

x = 0+,y, t
)−Bz

(

x = 0−,y, t
)]

http://dx.doi.org/10.1007/978-3-319-63133-2_13
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− i
c2

2πqω

(

q2− k2
)

E0 ei(ky−ωt) , (S-13.156)

while the z component of K is zero because its presence would imply a nonzero y

component of B.

(b) The time-averaged Poynting vector can be written as

〈S〉 = c

4π
〈E×B〉 = c

8π

[

x̂ Re(ẼyB̃∗z )− ŷ Re(ẼxB̃∗z )
]

, (S-13.157)

where

ẼyB̃∗z = −sgn(x)
ic

qω

(

q2− k2
)

|E0|2 e−2q|x|, (S-13.158)

ẼxB̃∗z =
kc

q2ω

(

q2− k2
)

|E0|2 e−2q|x| . (S-13.159)

We thus obtain 〈S x〉 = 0 because ẼyB̃∗z , is purely imaginary, and the energy flow is

in the ŷ direction only:

〈S〉 = −ŷ
kc

8πq2ω

(

q2− k2
)

|E0|2 e−2q|x| . (S-13.160)

(c) Form Helmholtz’s equation, we obtain

q2− k2+
ω2

c2
= 0 . (S-13.161)

(d) From (S-13.156) we can write, within our approximations,

J =
K

ℓ
= −ŷ i

c2

2πqℓω

(

q2− k2
)

E0 ei(ky−ωt) (S-13.162)

and, combining with (13.11), we obtain

−i
c2

2πqℓω

(

q2− k2
)

E0 ei(ky−ωt) = 4πi
ω2

p

ω
E0 ei(ky−ωt) ,

q2− k2 = −8π2
ω2

p

c2
qℓ . (S-13.163)

http://dx.doi.org/10.1007/978-3-319-63133-2_13


S-13.12 Surface Waves in a Thin Foil 423

where ωp =
√

4πnee2/Me is the plasma frequency of the foil material. The product

2neℓ, appearing in the expression ω2
pℓ = 4πneℓe

2, is the surface number density of

the electrons in the foil, which is the relevant parameter in this problem.

(e) By comparing (S-13.161) and (S-13.163) we obtain

ω2 = 8π2ω2
p qℓ = Ωqc , where Ω =

8π2ω2
pℓ

c
. (S-13.164)

Solving (S-13.161) for q yields

cq2+Ωq− k2c = 0 ⇒ q =

√

Ω2+ (2kc)2−Ω
2c

, (S-13.165)

where the root sign has been chosen so to have q > 0, as required by the bound-

ary conditions, and in agreement with (13.10). Eventually, we obtain the dispersion

relation:

ω2 = c2k2− c2q2 =
1

2

[

Ω

√

Ω2+ (2kc)2−Ω2− (2kc)2

]

. (S-13.166)

S-13.13 The Fizeau Effect

(a) In the rest frame of the medium, S ′, we have ω′/k′ = c/n. The Lorentz transfor-

mations from the laboratory frame S to S ′ lead to

ω′ = γ(ω−uk) ≃ (ω−uk) , k′ = γ
(

k− uω

c2

)

≃
(

k− uω

c2

)

,

(S-13.167)

since γ ≃ 1 up to the first order in β = u/c. Dividing the two equations side by side

we obtain
c

n
=
ω′

k′
≃ ω−uk

k−uω/c2
=

vϕ−u

1− vϕu/c2
, (S-13.168)

where, in the last step, we have divided numerator and denominator by k, and sub-

stituted the phase velocity in the laboratory frame, vϕ = ω/k. Multiplying the first

and last term by 1− vϕu/c
2 we obtain

c

n
−u

vϕ

cn
= vϕ−u ⇒ vϕ

(

1+
u

cn

)

=
c

n
+u ⇒ vϕ =

c(c+nu)

cn+u

⇒ vϕ = c
1+nβ

n+β
≃ c

(

1

n
+
n2−1

n2
β

)

, (S-13.169)

http://dx.doi.org/10.1007/978-3-319-63133-2_13
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where, in the last step, we have approximated the fraction by its first-degree Taylor

polynomial in β. The phase velocity in the laboratory frame S is thus

vϕ =
c

n
+u

(

1− 1

n2

)

. (S-13.170)

The experiment was performed in 1851, with light propagating in flowing water

parallel to the water velocity. Fizeau expected to measure a phase velocity equal

to the phase velocity of light in water, c/n, plus the flow velocity of water, u, i.e.,

vϕ = (c/n) + u, while the experimental result was in agreement with (S-13.170).

This found a satisfactory explanation only 54 years later, in 1905, when Einstein

published his theory of special relativity.

(b) Equation (S-13.170) takes into account the first-order correction to vϕ in β = u/c

for a non-dispersive medium. If the medium is dispersive according to a known law

n = n(ω), we must also take into account that the frequency ω′ observed in the rest-

frame of the medium is different from the radiation frequency ω in the laboratory

frame. We want to calculate the first-order correction to (S-13.170) in ∆ω = ω′−ω.

We need to correct only the fist term of the right-hand side of (S-13.170), since the

second term is already first-order, and a correction to it would be second-order. The

first-order Doppler effect gives us

∆ω = ω′−ω ≃ −ω n(ω)u

c
, (S-13.171)

since the light velocity in the medium is c/n(ω), an the medium is traveling away

from the light source. Thus we have

c

n(ω′)
≃ c

n(ω)
+∆ω∂ω

(

c

n(ω)

)

=
c

n(ω)
+

(

−ω n(ω)u

c

)[

− c

n2(ω)
∂ωn(ω)

]

=
c

n(ω)
+ω

u

n(ω)
∂ωn(ω) , (S-13.172)

and the first-order expression for the phase velocity in the case of a dispersive

medium is

vϕ(ω) =
c

n(ω)
+u

[

1− 1

n2(ω)
+
ω

n(ω)
∂ωn(ω)

]

+O(u2) . (S-13.173)

(c) The refractive index of the free electron medium is n(ω) = (1−ω2
p/ω

2)1/2, where

ωp is the plasma frequency. Thus we have inside the square brackets of (S-13.173)
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1− 1

n2(ω)
= − 1

1−ω2
p/ω

2
=
ω2

p

ω2−ω2
p

, (S-13.174)

and

ω

n(ω)
∂ωn(ω) = − ω

(1−ω2
p/ω

2)1/2

1

(1−ω2
p/ω

2)3/2

ω2
p

ω3
= −

ω2
p

ω2−ω2
p

, (S-13.175)

so that the two first-order corrections to vϕ(ω) cancel out, and the phase velocity is

independent of the flow velocity of the medium up to the second order in β.

S-13.14 Lorentz Transformations for Longitudinal Waves

(a) The Lorentz transformations for the wave frequency and wavevector are, in the

case of a boost along x̂,

ω′L = γ (ωL −VkL) , k′L = γ
(

kL−
VωL

c2

)

, (S-13.176)

where γ = 1/
√

1−V2/c2. In the special case where the boost velocity equals the

phase velocity, V = vϕ = ωL/kL, we have ω′
L
= 0, and the fields are independent of

time (static) in S ′. Further, recalling that kL = ωL/vϕ, we have

k′L =
1

√

1− v2
ϕ/c

2

(

ωL

vϕ
−

vϕωL

c2

)

=
1

√

1− v2
ϕ/c

2

ωL

vϕ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1−
v2
ϕ

c2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
ωL

vϕ

√

1− v2
ϕ/c

2 =
kL

γ
. (S-13.177)

If S ′ moves with velocity x̂V = x̂vϕ relative to S , the fields in S ′ are obtained from

(9.3) and are

E′ = E′(x′) = x̂ E0 eik′
L

x′ , B′ = 0 , (S-13.178)

i.e., E′ is constant in time. The charge and current densities in S ′ can be obtained

either by Lorentz transformations or directly from the equations

̺′ =
1

4π
∇
′ ·E′ = 1

4π
∂x′E

′
x and 4πJ′+∂′tE

′ = 0 , (S-13.179)

which lead to

̺′ =
ik′L
4π

E0 eik′
L

x′ , J′ = 0 . (S-13.180)

http://dx.doi.org/10.1007/978-3-319-63133-2_9
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(b) The Lorentz transformations for the case V = c2/vϕ = c2kL/ωL, and vϕ > c, lead

to the following values for k′L and ω′L

k′L = γ
(

kL−
VωL

c2

)

= 0 ,

ω′L = γ

(

ωL−
k2

Lc2

ω

)

= γωL

(

1− V2

c2

)

=
ωL

γ
, (S-13.181)

which imply that the fields propagate in space with infinite phase velocity, oscillat-

ing with uniform phase at frequency ω′L. The fields are

E′ = E′(t′) = x̂ E0 e−iω′t′ , B′ = 0 , (S-13.182)

i.e., E′ is uniform in space. We also obtain ̺′ = 0, and J′ = J/γ.

(c) The Lorentz transformations of the wavevector and the frequency for a boost

along the y axis are

k′Lx = kLx = kL ,

k′Ly = γ

(

kLy−
VωL

c2

)

= −γVωL

c2
,

ω′L = γ(ωL−VkLy) = γωL . (S-13.183)

All fields and currents depend on space and time through a factor

e
i(k′

Lx
x′+k′

Ly
y′−ω′

L
t′)

, thus, the propagation direction forms an angle

θ′ = arctan(k′Ly/k
′
Lx) = −arctan(γVvϕ/c

2) (S-13.184)

with the x′ axis. The wave has field amplitudes

E′x = γ
(

Ex +
V

c
Bz

)

= γE0 , (S-13.185)

B′z = γ
(

Bz−
V

c2
Ex

)

= −γ V

c2
E0 , (S-13.186)

all other field components being zero. Thus, in a frame moving transversally to the

propagation direction, the wave is no longer purely longitudinal and electrostatic.

S-13.15 Lorentz Transformations for a Transmission Cable

(a) The continuity equation for a linear charge density is written ∂tλ = −∂zI. Insert-

ing the expressions for λ and I of (13.14) we obtain

http://dx.doi.org/10.1007/978-3-319-63133-2_13
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− iωλ0 = −ikI0 , ⇒ I0 =
ω

k
λ0 = vϕλ0 . (S-13.187)

(b) The dispersion relation is

ω = vϕ k =
c

n
k =

c
√
ε

k , (S-13.188)

with

vϕ =
c
√
ε

and k =
ω

vϕ
=
ω
√
ε

c
. (S-13.189)

The electric field can be evaluated by applying Gauss’s law to a cylindrical surface

coaxial to the wire, of radius r and height h. Since the field is transverse, and we

have cylindrical symmetry around the wire, the only nonzero component of E is Er

E(r,z, t) = r̂
2λ

εr
= r̂ Er(r)eikz−iωt , where Er(r) =

2λ0

εr
. (S-13.190)

The magnetic field can be evaluated by applying Stokes’ theorem to a circle of

radius r, coaxial to the wire. Because of symmetry, the only nonzero component of

B is the azimuthal component Bφ

B(r,z, t) = φ̂
2I

rc
= φ̂Bφ(r)eikz−iωt , where Bφ(r) =

2I0

rc
=

2ωλ0

krc
, (S-13.191)

that can be rewritten as

Bφ(r) =
εω

kc
Er(r) =

εvϕ

c
Er(r) =

c

vϕ
Er(r) . (S-13.192)

(c) The wave frequency ω′ in the frame S ′, moving at the phase velocity ẑvϕ relative

to the laboratory frame S , is

ω′ = γ
(

ω− vϕk
)

= 0 , (S-13.193)

where we have used the second of (S-13.189). Thus the fields are static in S ′. For

our Lorentz boost we have

β = ẑ
vϕ

c
=

ẑ
√
ε
, γ =

1
√

1−1/ε
=

√

ε

ε−1
, (S-13.194)

and the wave vector k′ in S ′ can be written

k′ = γ
(

k−
vϕω

c2

)

=

√

ε

ε−1

(

ω
√
ε

c
− ω

c
√
ε

)

=
ω

c

√
ε−1 . (S-13.195)
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The (z′, t′)-dependence (actually, only z′-dependence) of our physical quantities in

S ′ will thus be through a factor eik′z′ . The amplitude of linear charge density in S ′

is

λ′0 = γ
(

λ0−
vϕ

c2
I0

)

= γ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ0−
v2
ϕ

c2
λ0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= γ

(

1

γ

)2

λ0 =
λ0

γ
. (S-13.196)

The amplitude of the current in S ′ is

I′0 = γ
(

I0− vϕλ0

)

= 0 . (S-13.197)

The field amplitudes transform according to (9.3), thus we have

E′r = γ
(

Er −βBφ
)

= γ

(

Er −
vϕ

c

c

vϕ
Er

)

= 0 , (S-13.198)

B′φ = γ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Bφ−
v2
ϕ

c2
Er

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= γ

(

Bφ−
vϕ

c

vϕ

c
Bφ

)

=
Bφ

γ
. (S-13.199)

It might seem surprising that, in S ′, we have λ′ � 0 and E′r = 0, while I′ = 0 and

B′φ � 0. The reason is that we must take into account also the polarization charge of

the medium in contact with the wire, λp(z, t), the presence of a polarization current,

Jp(r,z, t), and their Lorentz transformations. In the laboratory frame S we must have

λ(z, t)+λp(z, t) = λ(z, t)/ε, thus

λp(z, t) = −ε−1

ε
λ0 eikz−iωt = −λ0

γ2
eikz−iωt = λ

(p)

0
eikz−iωt , (S-13.200)

where λ
(p)

0
= −λ0/γ

2. The electric field (S-13.190) generates a polarization of the

medium

P(z,r, t) = r̂
ε−1

4π
Er(r)eikz−iωt = r̂ Pr(r)eikz−iωt , (S-13.201)

where

Pr(r) =
ε−1

4π

2λ0

εr
=
ε−1

ε

λ0

2πr
=

1

γ2

λ0

2πr
. (S-13.202)

A time-dependent polarization is associated to a polarization current density

Jp = ∂tP = −r̂ iωPr(r)eikz−iωt = r̂ Jr(r)eikz−iωt (S-13.203)

where

Jr(r) = −iωPr(r) = −i
ω

γ2

λ0

2πr
. (S-13.204)

http://dx.doi.org/10.1007/978-3-319-63133-2_9
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Thus, Jp is radial in S . According to the first of (9.1), we have a polarization four-

current

J
(p)
μ (r,z, t) =

[

c̺
(p)

0
(r), r̂ Jr(r)

]

eikz−iωt , (S-13.205)

where, for instance

̺
(p)

0
(r) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

λ
(p)

0

πr2
0

, if r < r0

0 if r > r0

, so that λ
(p)

0
=

∫ ∞

0

̺
(p)

0
(r)2πr dr , (S-13.206)

and we are interested in the limit r0→ 0. We can thus write

J
(p)
μ (r,z, t) =Gμ(r)eikz−iωt , where Gμ =

[

c̺
(p)

0
, r̂ Jr(r)

]

. (S-13.207)

The four-vector Gμ transforms according to (9.2), thus we have in S ′

G′0 = γ (G0−β ·G) = γG0 , (S-13.208)

since the spacelike component of Gμ, being radial, is perpendicular to β. The ampli-

tude of the linear polarization charge density in S ′ is

λ
(p)′
0
= γ

∫ ∞

0

G0

c
2πr dr = γλ

(p)

0
= −γ λ0

γ2
= −λ0

γ
, (S-13.209)

which cancels (S-13.196), therefore we have E′ = 0. The radial component of Jp

does not contribute to the magnetic field, thus we are interested in

G′‖ = γ
(

G‖−βG0
)

= −γβG0 = −γβ̺(p)

0
(r)c , (S-13.210)

which corresponds to a polarization current in S ′ of amplitude

I
(p)′
0
=

∫

∞
G′‖ 2πr

′ dr′ = −γvϕλ(p)

0
= γvϕ

λ0

γ2
=

I0

γ
(S-13.211)

in agreement with (S-13.199).

S-13.16 A Waveguide with a Moving End

(a) The electric field of the TE10 must be parallel to the two conducting planes,

thus it must vanish on them, and be of the form E(x,y, t) = ẑ E0 cos(πy/a) f (x, t). The

dispersion relation is

http://dx.doi.org/10.1007/978-3-319-63133-2_9
http://dx.doi.org/10.1007/978-3-319-63133-2_9
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ω2 = ω2
co+ k2c2 , where ωco =

πc

a
(S-13.212)

is the cutoff frequency of the waveguide. In our terminated waveguide, the global

electric field is the superposition of the fields of the wave incident on the terminating

wall at x = 0, and of the reflected wave. Incident and reflected wave have equal

amplitudes, thus

E(x,y, t) = ẑ E0 cos

(

πy

a

)

sin(kx)e−iωt , (S-13.213)

where the phase has been chosen so that E(0,y, t) = 0. The magnetic field can be

obtained from the relation ∂tB = −c∇×E, and has the components

Bx = −
ic

ω
∂yEz =

iπc

ωa
E0 sin

(

πy

a

)

sin(kx)e−iωt , (S-13.214)

By =
ic

ω
∂xEz = −

kc

ω
E0 cos

(

πy

a

)

cos(kx)e−iωt . (S-13.215)

Notice that Bx(0,y, t) = 0, as required.

(b) In the frame S ′ where the waveguide termination is at rest (v′ = 0), the incident

wave has frequency and wavevector

ω′i = γ(ω−βkc) , k′i = γ(k−βω/c) , (S-13.216)

where β = v/c. Since we assumed β < kc/ω, we have k′
i
> 0 (notice that ω′

i
> 0

anyway because k < ω/c). In S ′ the reflected wave has frequency and wavevector

ω′r = ω
′
i , k′r = −k′i . (S-13.217)

By transforming back into the laboratory frame S we obtain

ωr = γ(ω
′
r +βk

′
r c) = γ2

[

(1+β2)ω−2βkc
]

, (S-13.218)

kr = γ

(

−k+β
ω

c

)

= γ2
[

−(1+β2)k+2β
ω

c

]

, (S-13.219)

As a check, at the limit a→∞we haveωco→ 0 and k→ω/c, and we obtain (S-9.54)

of Problem 9.6 for the frequency reflected by a moving mirror. With some algebraic

manipulations we obtain

http://dx.doi.org/10.1007/978-3-319-63133-2_22
http://dx.doi.org/10.1007/978-3-319-63133-2_9
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ω2
r − c2k2

r = γ
4

{

[

(1+β2)ω−2βkc
]2
− c2

[

−(1+β2)k+2β
ω

c

]2
}

= γ4
[

(1+β2)ω−2βkc+ (1+β2)kc−2βω
]

×

×
[

(1+β2)ω−2βkc− (1+β2)kc+2βω
]

= γ2
[

(1−β)2ω+ (1−β)2kc
] [

(1+β)2ω+ (1+β)2kc
]

= (ω+ kc)(ω− kc) = ω2− k2c2 . (S-13.220)

(c) If v > kc2/ω, in S ′ we have k′
i
< 0, the incident wave propagates parallel to −x̂′,

and cannot reach the waveguide termination. In these conditions there is no reflected

wave. The condition is equivalent to v > vg, the group velocity in the waveguide.

S-13.17 A “Relativistically” Strong Electromagnetic Wave

(a) The equations of motion for px, py, and pz in the presence of the electromagnetic

fields of the wave are

dpx

dt
= −eEx +

e

c
vzBy , (S-13.221)

dpy

dt
= −eEy−

e

c
vzBx , (S-13.222)

dpz

dt
= −e

c
vxBy+

e

c
vyBz . (S-13.223)

In general the magnetic contribution is not negligible, since vz is not necessarily

much smaller than c. However, if we assume vz = 0, the magnetic force vanishes. In

these conditions the solutions of (S-13.221-S-13.222) are

dpx

dt
= −eE0 cosωt ,

dpy

dt
= −eE0 sinωt , (S-13.224)

px = −
eE0

ω
sinωt , py = +

eE0

ω
cosωt . (S-13.225)

Inserting these solutions into (S-13.223) we have

dpz

dt
=

e

meγ
(−pxBy+ pyBx) =

=
e

meγ

eE2
0

ωc
(−sinωt cosωt+ cosωt sinωt) = 0 , (S-13.226)

so that a pz is constant in time. Either assuming vz = 0 as initial condition or by a

proper change of reference frame, vz = 0 is a self-consistent assumption.
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(b) Since p2 = p2
x + p2

y = (eE0/ω)2 does not depend on time, the Lorentz factor

γ =
√

1+ p2/(mec)2 =
√

1+ [eE0/(meωc)]2 is a constant. This implies

dp

dt
= me

d(γv)

dt
= γme

dv

dt
. (S-13.227)

The equations of motion have the same form as in the non-relativistic case if we

make the replacement me → γme. The relativistic behavior can be obtained by

attributing an “effective mass” γme, dependent on the wave intensity, to the elec-

tron.

(c) Accordingly, the refractive index for the relativistic case can be simply obtai-

ned by replacing me → meγ into the non-relativistic expression, so that ωp =
√

(4πnee2/me)→ ωp/
√
γ. We thus obtain

n2(ω) = 1− 4πnee2

meγω2
= 1−

ω2
p

γω2
. (S-13.228)

(d) The dispersion relation corresponding to n2(ω) in (S-13.228) is

ω2 = k2c2+
ω2

p

γ
. (S-13.229)

The cutoff frequency is ωco =ωp/
√
γ and depends on the wave amplitude. Since γ >

1, a plasma can be opaque to a low-intensity wave for which ωp >ω, but transparent

to a high-intensity wave of the same frequency if γ > ωp/ω.

It should be stressed, however, that the concept of a refractive index dependent

on the wave intensity deserves some care. What we have discussed above is just a

special case of “relativistically induced transparency”, applying to a plane, mono-

chromatic, infinite wave. In the case of a real light beam, of finite duration and

extension, different parts of the beam can have different amplitudes, and thus can

have different phase velocities, resulting in a complicated nonlinear dispersion.1

However, (S-13.229) can be of help to a qualitative discussion of some important

nonlinear effects observed for a relativistically strong wave. An important example

is the propagation of a strong beam of finite width, for which the effective refractive

index is higher at the boundaries (where the intensity is lower and γ is smaller) than

on the beam axis. This can compensate diffraction, analogously to what occurs in

an optical fiber (see Problem 12.6), and can cause self-focusing.

1In some cases, nonlinearity effects can compensate dispersion for particular wavepacket shapes,

these special solutions can propagate without changing their envelope shape, and are known as

solitons.

http://dx.doi.org/10.1007/978-3-319-63133-2_12
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S-13.18 Electric Current in a Solenoid

(a) This problem originated from the question: “can the electric field in a solenoid

have circular field lines, as seems to be required for driving the current in each turn

of the coil?” The answer is obviously no in static conditions, since ∇×E must be

zero. But a uniform field is sufficient to drive the current, since the coil of a real

solenoid does not consist of single circular circular loops perpendicular to the axis

(each loop would require its own current source, in this case!) The winding of a real

solenoid is actually a helix, of small, but nonzero pitch. The current is driven by the

component of E parallel to the wire, equal to (assuming E = Eẑ)

E‖ = E sinθ ≃ E
a

πb
. (S-13.230)

The perpendicular component E⊥ is compensated by the electrostatic fields gener-

ated by the surface charge distribution of the wire, analogously to Problem 3.11.

Thus, the current density and intensity in the wire are

J = σE‖ ≃ σE
a

πb
, I = Jπa2 ≃ σa3

b
E . (S-13.231)

Neglecting boundary effects, the current generates a uniform field B(int) = ẑ Bz, with

Bz =
4πnI

c
=

4πI

2ac
≃ 2π a2σ

bc
E , (S-13.232)

inside the solenoid, since n = 1/(2a) is the number of turns per unit length. The

field outside the solenoid, B(ext), is generated by the total current I flowing parallel

to ẑ. Thus in the external central region b < r ≪ h, |z| ≪ h, the field is azimuthal,

B(ext) = φ̂Bφ, with

Bφ ≃
2I

cr
=

2πJa2

cr
≃ 2σa3

bcr
E , b < r≪ h , |z| ≪ h , (S-13.233)

where the z origin is located at the center of the solenoid.

(b) In the external central region b < r≪ h, |z| ≪ h, the fields Ez and Bφ are associ-

ated to a a Poynting vector

S =
c

4π
E×B = −r̂

c

4π
EzBφ = −r̂

σa3

2πbr
E2 , (S-13.234)

with an entering flux through the lateral surface of a coaxial cylinder of length ℓ

Φin = 2πrℓ
σa3

2πbr
E2 =

σa3ℓ

b
E2 . (S-13.235)

http://dx.doi.org/10.1007/978-3-319-63133-2_3
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The power dissipated by Joule heating in a solenoid portion of length ℓ is obtained

by multiplying the power dissipated in single turn

Wturn = I2R =

(

σa3

b
E

)2
2πb

πa2σ
=

2σa4

b
E2 , (S-13.236)

by the number of turns ℓ/(2a)

W(ℓ) =
2σa4

b
E2 ℓ

2a
=
σa3ℓ

b
E2 , (S-13.237)

in agreement with Poynting’s theorem.

S-13.19 An Optomechanical Cavity

(a) In the following we omit the vector notation for the electric fields, since the

results are independent of the polarization. The general expression for the electric

field of a monochromatic plane wave propagating along x is, in complex notation,

E(x, t) = E(x)e−iωt =
(

E1e+ikx +E2e−ikx
)

e−iωt , (S-13.238)

where k = ω/c. The boundary conditions at the two perfectly conducting walls are

E(±d/2) = 0, thus we must have

E1e+ikd/2+E2e−ikd/2 = 0 , E1e−ikd/2+E2e+ikd/2 = 0 . (S-13.239)

This system of two equations has nontrivial solutions for E1 and E2 only if the

determinant is zero,

eikd − e−ikd = 2isin(kd) = 0, (S-13.240)

from which we obtain

kd = nπ (n = 1,2,3, . . .) ω = kc = n
πc

d
, (S-13.241)

E2 = −E1einπ = (−1)n+1E1 . (S-13.242)

Thus, the electric field of the n-th mode is

En(x) =
E0

2

[

einπx/d + (−1)n+1e−inπx/d
]

. (S-13.243)

The magnetic field can be obtained from ∂tB = −∇×E:
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Bn(x) =
E0

2

[

einπx/d − (−1)n+1e−inπx/d
]

. (S-13.244)

(b) The field is thus the superposition of two plane monochromatic waves of equal

frequency ω and amplitude E0/2, propagating in opposite directions. The radiation

pressure on each reflecting wall is thus the pressure exerted by a normally incident

wave of intensity I = c|E0/2|2/8π, evaluated in Problem 8.5,

P =
2I

c
=
|E0|2
16π
. (S-13.245)

(c) The energy per unit surface inside the cavity is independent of time and can be

evaluated as

U =

∫ +d/2

−d/2

1

8π

(

|E|2+ |B|2
)

dx . (S-13.246)

We have

|E|2 = |E0|2
2

[

1+ (−1)n+1 cos

(

2nπx

d

)]

, (S-13.247)

|B|2 = |E0|2
2

[

1− (−1)n+1 cos

(

2nπx

d

)]

. (S-13.248)

Integrating over x, the oscillating terms of both expressions average to zero, and we

finally have

U =
|E0|2d

16π
π = Pd . (S-13.249)

(d) At mechanical equilibrium, the force due to the radiation pressure on the walls

must balance the recoil force of the springs. Assuming that each wall is displaced

by δ from its equilibrium position in the absence of fields, we have

PS = Kδ = MΩ2δ , (S-13.250)

where Ω =
√

K/M is the free oscillation frequency of the walls. Thus

MΩ2δ

S
= P =

|E0|2
16π
, (S-13.251)

from which we obtain δ = α
∣

∣

∣E2
0

∣

∣

∣ where

α =
S

16πMΩ2
=

S

16πK
. (S-13.252)

http://dx.doi.org/10.1007/978-3-319-63133-2_8
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The length of the cavity is now d+2δ, and the resonance condition is

d+2δ = n
λn

2
= n
πc

ωn

, (n = 1,2, . . . ) , (S-13.253)

where the mode frequencies are

ωn =
2πc

λn

=
nπc

d+2α|E0|2
. (S-13.254)

This is a simple classical example of a resonant cavity where the frequency and

amplitude of the wave depend on each other (and on the cavity length), the link

being due to radiation pressure effects; this is called an optomechanical cavity [2].

S-13.20 Radiation Pressure on an Absorbing Medium

We assume the incident wave to be linearly polarized parallel to ŷ for definiteness

(the generalization to a different polarization is straightforward). The electric field

of the wave is thus E(x, t) = ŷ Ey(x, t), with

Ey(x, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Re
(

Ei eikx−iωt +Er e−ikx−iωt
)

, (x < 0) ,

Re
(

Ete
iknx−iωt

)

, (x > 0) ,
(S-13.255)

where Ei =
√

8πIi/c, and

Er =
1−n
1+n

Ei , Et =
2

1+n
Ei (S-13.256)

(Fresnel formulas at normal incidence). The magnetic field of the wave can be

obtained from ∂tB = −∇×E, we have B(x, t) = ẑ Bz(x, t), with

Bz(x, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Re
(

Ei eikx−iωt −Er e−ikx−iωt
)

, (x < 0) ,

Re
(

nEt eiknx−iωt
)

, (x > 0) .
(S-13.257)

The field for x > 0 is exponentially decaying, since

Et eik(n1+in2)x−iωt = Et eikn1−iωt e−kn2 x , (S-13.258)

the decay length being (kn2)−1 = λ/(2πn2)≫ λ/n1, where λ = 2πc/ω is the wave-

length in vacuum.

The cycle-averaged value of the Poynting vector at the x = 0 plane gives the

flux of electromagnetic energy entering the medium. Since the field decays with

increasing x, there is no net flux of energy for x→∞, and all the energy entering
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the medium is eventually absorbed. Using (S-13.255) and (S-13.257) we find

〈S x(0+)〉 =
〈

c

4π
Ey(0+, t)Bz(0

+, t)

〉

=
1

2

c

4π
Re(Etn

∗E∗t ) =
c

8π
|Et|2 Re(n∗)

=
c

8π
n1|Et|2 =

c

8π
n1

4

|1+n|2
|Ei|2 =

4n1

|1+n|2
Ii ≡ AIi . (S-13.259)

The reflection coefficient R = |Er/Ei|2 = |1−n|2/|1+n|2. Thus

1−R = 1−
∣

∣

∣

∣

∣

1−n
1+n

∣

∣

∣

∣

∣

2

=
2(n+n∗)

|1+n|2
=

4Re(n)

|1+n|2
=

4n1

|1+n|2
= A .

(S-13.260)

(b) The pressure on the medium is the flow of electromagnetic momentum

through the x = 0 surface. Such flow is given, in the present conditions, by Prad =

−〈Txx(x = 0)〉 where Ti j is Maxwell stress tensor (see Problem 8.5). Since

Txx(0, t) = T11(0, t) = − 1

8π

(

E2(0, t)+B2(0, t)
)

(S-13.261)

we obtain

〈T11(0, t)〉 = − 1

16π
|Et|2

(

1+ |n|2
)

= − 1

4π
|Ei|2

1+ |n|2

|1+n|2
=

1

4π
|Ei|2
|1+n|2−2Re(n)

|1+n|2

= − 1

8π
|Ei|2

(

2− 4n1

|1+n|2

)

= − Ii

c
(1+R) ≡ −Prad. (S-13.262)

The same result can also be obtained by calculating the total average force per unit

surface exerted on the medium by the electromagnetic field

PEM =

∫ +∞

0

〈(J×B)x〉dx , (S-13.263)

since the electric term gives no contribution. The current density J inside the

medium can be obtained from the equation J = (c∇×B−∂tE)/4π, obtaining

Jy = Re

(

− ikcn

4π

n

c
Et e−iknx−iωt +

iω

4π
Et e−iknx−iωt

)

= Re

(

iω

4π

(

1−n2
)

Et e−iknx−iωt

)

. (S-13.264)

A further way to obtain this result is recalling the relation between conductivity and

dielectric permittivity for complex fields, i.e.,

σ(ω) = − iω

4π
[εr(ω)−1] = − iω

4π

[

n2(ω)−1
]

. (S-13.265)

http://dx.doi.org/10.1007/978-3-319-63133-2_8
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We thus have

〈

JyBz

〉

=
1

2

ω

4π
Re

{[

i
(

1−n2
)

Et e(−ikn1−n2)x
] [

n∗E∗t e(+ikn1−n2)x
]}

=
1

8π
|Et|2 Re

[

i
(

1−n2
)

n∗
]

e−2n2 x . (S-13.266)

Now

Re
[

i
(

1−n2
)

n∗
]

= Re
[(

1−n2
1+n

2
2−2in1n2

)

(in1+n2)
]

= n2

(

1+n2
1+n

2
2

)

= n2

(

1+ |n|2
)

, (S-13.267)

thus, by substituting in (S-13.263) and comparing to (S-13.262) we obtain

PEM =

∫ ∞

0

〈

JyBz

〉

dx =
1

2

1

4π
|Et|2n2

(

1+ |n|2
)

∫ ∞

0

e−2n2 xdx

=
1

2π
|Ei|2

1+ |n|2

1− |n|2
n2

1

2n2
= Prad . (S-13.268)

S-13.21 Scattering from a Perfectly Conducting Sphere

(a) Since the radius of the sphere, a, is much smaller than the radiation wavelength,

λ, we can consider the electric field of the incident wave as uniform over the whole

volume of the sphere. As shown in Problems 1.1 and 2.1, the “electron sea” is dis-

placed by an amount δwith respect to the ion lattice in order to keep the total electric

field equal to zero inside the sphere. According to (S-2.2) we have

δ = −ŷ
3

4π̺0
E0 cos(ωt) , (S-13.269)

where ̺0 is the volume charge density of the ion lattice. This corresponds to a vol-

ume polarization P

P = −ρδ = ŷ
3

4π
E0 cos(ωt) , (S-13.270)

and to a total dipole moment of the conducting sphere

p =
4π

3
a3 P = E0a3 = ŷa3E0 cos(ωt) . (S-13.271)

The scattered, time-averaged power is thus

W
(el)
scatt =

1

3c3
|p̈|2 = ω

4a6

3c3
E2

0 . (S-13.272)

http://dx.doi.org/10.1007/978-3-319-63133-2_1
http://dx.doi.org/10.1007/978-3-319-63133-2_2
http://dx.doi.org/10.1007/978-3-319-63133-2_15
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The intensity of the incident wave is I = (c/8π)E2
0
, so we obtain for the scattering

cross section

σ
(el)
scatt =

W
(el)
scatt

I
=

8π

3

ω4a6

c4
= 128π4(πa2)

(

a

λ

)4

. (S-13.273)

(b) Due to the condition a≪ λ, also the magnetic field of the wave can be considered

as uniform inside the sphere

B(t) = ẑ B0 cos(ωt) = ẑ E0 cos(ωt) . (S-13.274)

Analogously to what seen above for the electric polarization, the sphere must

acquire also a uniform magnetization M in order to cancel the magnetic field of

the wave at its interior. As shown by (S-5.72) of Problem 5.10, we must have

M(t) = −ẑ
3

8π
B0 cos(ωt) = −ẑ

3

8π
E0 cos(ωt) , (S-13.275)

corresponding to a magnetic dipole moment of the sphere

m =
4πa3

3
M = −ẑ

a3

2
E0 cos(ωt) , (S-13.276)

Thus the power scattered by the magnetic dipole is one fourth of the electric dipole

contribution:

W
(magn)
scatt =

1

3c3
|m̈|2 = ω

4a6

12c3
E2

0 . (S-13.277)

The total cross section is thus 5/4 times the value due to the electric dipole only:

σ
(el,magn)
scatt = 160π4(πa2)

(

a

λ

)4

. (S-13.278)

A discussion on how the magnetic dipole term contributes to the angular distribution

of the scattered radiation can be found in Reference [3].

S-13.22 Radiation and Scattering from a Linear Molecule

(a) At the initial time t = 0, we assume the center of mass of the molecule to be at rest

at the origin of our Cartesian coordinate system. The center of mass will remain at

rest, since the net force acting on the molecule is zero. However, the field E0 exerts

a torque τ0 = p0 ×E0, and the molecule rotates around the z axis. The equation of

motion is Iθ̈ = τ0, or

http://dx.doi.org/10.1007/978-3-319-63133-2_18
http://dx.doi.org/10.1007/978-3-319-63133-2_5
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Iθ̈ = −p0E0 sinθ , (S-13.279)

where θ = θ(t) is the angle between p0 and the x axis. The potential energy of the

molecule is

V(θ) = −p0 ·E0+C = −ppE0 cosθ+C , (S-13.280)

where C is an arbitrary constant. The molecule has two equilibrium positions, at

θ = 0 (stable), and θ = π (unstable), respectively. For small oscillations around the

stable equilibrium position we can approximate sinθ ≃ θ, and (S-13.279) turns into

the equation for the harmonic oscillator

θ̈ ≃ − p0E0

I θ ≡ −ω
2
0θ , where ω2

0 =
E0 p0

I . (S-13.281)

Thus, if the molecule starts at rest at a small initial angle θ(0) = θ0, we have θ(t) ≃
θ0 cosω0t. The potential energy of the molecule can be approximated as

V(θ) ≃ −p0E0

(

1− θ
2

2

)

+C =
1

2
p0E0 θ

2 =
1

2
Iω2

0 θ
2 , (S-13.282)

where we have chosen C = p0E0, in order to have V(0) = 0. The kinetic energy of

the molecule is

K(θ̇) =
1

2
Iθ̇2 . (S-13.283)

(b) In our coordinate system the instantaneous dipole moment has components

px = p0 cosθ ≃ p0 , py = p0 sinθ ≃ p0θ0 cos(ω0t) , (S-13.284)

so that, for small oscillations, the radiation emitted by the molecule is equivalent to

the radiation of an electric dipole parallel to ŷ, and of frequency ω0. The radiation

is linearly polarized, and the angular distribution of the emitted power is ∼ cos2α,

where α is the observation angle relative to E0. Thus, the radiated power per unit

solid angle is maximum in the xz plane and vanishes in the ŷ direction. The time-

averaged total emitted power is

Prad =
1

3c3
|p̈|2 = 1

3c3
ω4

0 p2
0θ

2
0 . (S-13.285)

We assume that the decay time is much longer than the oscillation period, so that

we can write

θ(t) ≃ θs(t)cosω0t , (S-13.286)

with θs(0) = θ0, and θs(t) decaying in time so slowly that it is practically constant

over a single oscillation. In these conditions the total energy of the molecule during

a single oscillation period can be written
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U(t) = K(θ̇)+V(θ) ≃ 1

2
Iω2

0 θ
2
s (t) . (S-13.287)

The rate of energy loss due to the emitted radiation is

dU

dt
= ω2

0Iθs
dθs

dt
= −Prad(θs) , (S-13.288)

from which we obtain

dθs

dt
= − 1

3c3

ω2
0
p2

0

I θs . (S-13.289)

Thus the oscillation amplitude decays exponentially in time

θs(t) = θ0 e−t/τ , with τ =
3Ic3

ω2
0
p2

0

. (S-13.290)

(c) Since kd ≪ 1, the electric field of the wave can be considered as uniform over

the molecule, and we can write E1(0, t) ≃ E1e−iωt in complex notation. The torque

exerted by the wave is τ1 = p0×E1. The complete equation of motion for the mole-

cule is thus

Iθ̈ = −p0E0 sinθ− p0E1 cosθe−iωt , (S-13.291)

which, at the limit of small oscillations (sinθ ≃ θ, cosθ ≃ 1) becomes

θ̈ = −ω2
0 θ−ω

2
1 e−iωt , with ω2

1 =
E1 p0

I = ω2
0

E1

E0
. (S-13.292)

The general solution of (S-13.292) is the sum of the homogeneous solution consid-

ered at point (a), which describes free oscillations, and of a particular solution of

the complete equation. A particular solution can be found in the form θ(t) = θfe
−iωt,

which, substituted into (S-13.292), gives

θf =
ω2

1

ω2−ω2
0

. (S-13.293)

For simplicity, we neglected the possible presence of friction in (S-13.281). How-

ever, in principle a friction term such as −θ̇/τ should appear because of the energy

loss by radiation. In the presence of the plane wave the friction term is relevant only

close to the ω = ω0 resonance, because τ−1≪ ω0.

(d) After a transition time of the order of τ possible initial oscillations at ω0 are

damped, and the the molecule reaches a steady state where it oscillates at frequency

ω. Assuming, as in (b), small-amplitude oscillations, we have an oscillating dipole
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component py ≃ p0 θf e−iωt. The scattered power is

Pscatt =
1

3c3
|p̈y|2 =

p2
0

3c3

ω4ω4
1

(ω2−ω2
0
)2
=

p4
0
E2

1

3I2c3

ω4

(ω2−ω2
0
)2
. (S-13.294)

The intensity of the wave is I = (c/4π)E2
1
, thus the scattering cross section is

σscatt =
Pscatt

I
=

4πp4
0

3I2c4

ω4

(ω2−ω2
0
)2
. (S-13.295)

An order-of-magnitude estimate for a simple molecule such as H2 can be performed

by noticing that p0 ∼ ed and I ∼ md, with m ∼ mp the mass of the nuclei, so that

(p4
0
/I2c4) ∼ (e2/mpc2)2.

S-13.23 Radiation Drag Force

(a) The electric field of the wave in complex notation is

E = ŷ Re
(

E0 eikx−iωt
)

. (S-13.296)

Neglecting the magnetic field, the particle oscillates in the ŷ direction without

changing its x and z coordinates. Thus, assuming the particle to be initially located

at the origin of our Cartesian system, and looking for a solution of the form

v = Re(v0 e−iωt), we obtain by substitution into (13.22):

v0 = ŷ
iq

m(ω+ iν)
E0 . (S-13.297)

(b) The power developed by the electromagnetic force is qE · v. Thus

Pabs = 〈qE · v〉 = q

2
Re

(

E0v∗0
)

=
q2

2m

ν

ω2+ ν2
|E0|2. (S-13.298)

(c) The electric dipole moment of the particle is p = qr. Using Larmor’s formula for

the radiated power we obtain

Prad =
2

3c3

〈

p̈2
〉

=
2q2

3c3

〈

r̈2
〉

=
q4

3m2c3

ω2

ω2+ ν2
|E0|2. (S-13.299)

Assuming Prad = Pabs, we obtain

http://dx.doi.org/10.1007/978-3-319-63133-2_13
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ν =
2q2ω2

3mc3
. (S-13.300)

(d) We must evaluate

Fx =

〈

q

c
vyBz

〉

, (S-13.301)

where for vy we use the result of (a), while the amplitude of the magnetic field is

B0 = E0. Thus we have

Fx =
q

2c
Re

(

v0E∗0
)

=
Pabs

c
. (S-13.302)

Thus, the ratio between the energy and the momentum absorbed by the particle from

the electromagnetic field equals c.

(e) The radiation from a cluster smaller than one wavelength is coherent and thus

scales as N2, so does the total force. The cluster mass scales as N, thus the accelera-

tion scales as N2/N = N. In other terms, a cluster of many particles may be acceler-

ated much more efficiently than a single particle: the higher the number of particles

(within the limits of our approximations), the stronger the acceleration. This is the

basis of a concept of “coherent” acceleration using electromagnetic waves, formu-

lated by V. I. Veksler. [4]
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Appendix A

Some Useful Vector Formulas

A.1 Gradient, Curl, Divergence and Laplacian

Vector equations are independent of the coordinate system used. Cartesian coordi-

nates are used very often because they are the most convenient when the problem has

Fig. A.1

no particular symmetry. However, in

the case of particular symmetries, cal-

culations can be greatly facilitated by

a suitable choice of the coordinate sys-

tem. Apart from the elliptical coordi-

nates, used only in Problem 2.14, The

only two special systems used in this

book are the cylindrical and spherical

coordinates.

Fig. A.2

A cylindrical coordinate system

(r,φ,z) specifies a point position by

the distance r from a chosen reference

(longitudinal) axis z, the angle φ that

r forms with a chosen reference plane

φ= 0 containing the z axis, and the dis-

tance, positive or negative, from a cho-

sen reference plane perpendicular to

the axis. The origin is the point where

r and z are zero, for r = 0 the value of

φ is irrelevant. Fig. A.1 shows a cylin-

drical coordinate system, superposed

to a Cartesian system sharing the same

origin, with the z axes of the two sys-

tems are superposed, the xz plane corresponding to the φ = 0 plane of the cylindrical

system. We have the conversion relations
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Table A.1 Gradient, curl, divergence and Laplacian in cylindrical and spherical coordinates

Cylindrical Coordinates Spherical Coordinates

Components of the gradient of a scalar function V

r̂ ∂V
∂r

r̂ ∂V
∂r

φ̂ 1
r
∂V
∂φ

θ̂ ∂V
∂θ

ẑ ∂V
∂z

φ̂ 1
r sinθ

∂V
∂φ

Components of the curl of a vector function A

r̂

(

1
r

∂Az

∂φ
−
∂Aφ
∂z

)

r̂ 1
r sinθ

[

∂
∂θ

(

Aφ sinθ−
∂Aθ
∂φ

)]

φ̂
(

∂Ar

∂z
−
∂Az

∂r

)

θ̂

[

1
r sinθ

∂Ar

∂φ
− 1

r

∂(rAφ)

∂r

]

ẑ 1
r

[

∂(rAφ)

∂r
−
∂Ar

∂φ

]

φ̂ 1
r

[

∂(rAθ)
∂r
−
∂Ar

∂θ

]

Divergence of a vector function A

1
r
∂(rAr)
∂r
+ 1

r

∂Aφ
∂φ
+
∂Az

∂z
1
r2

∂(r2Ar)
∂r
+ 1

r sinθ
∂(Aθ sinθ)
∂θ

+ 1
r sinθ

∂Aφ
∂φ

Laplacian of a scalar function V

1
r
∂
∂r

(

r ∂V
∂r

)

+ 1
r2
∂2V

∂φ2 +
∂2V

∂z2
1
r2
∂
∂r

(

r2 ∂V
∂r

)

+ 1
r2 sinθ

∂
∂θ

(

sinθ ∂V
∂θ

)

+

1

r2 sin2 θ

∂2V

∂φ2

x = r cosφ, y = r sinφ, z = z . (A.1)

The orthogonal line elements are dr, r dφ and dz, and the infinitesimal volume ele-

ment is r dr dφdz.

A spherical coordinate system (r, θ,φ) specifies a point position by the radial dis-

tance r from from a fixed origin, a polar angle θ measured from a fixed zenith direc-

tion, and the azimuth angle φ of the orthogonal projection of r on a reference plane

that passes through the origin and is orthogonal to the zenith, measured from a fixed

reference direction on that plane. Fig. A.2 shows a spherical coordinate system, su-

perposed to a Cartesian system sharing the same, origin, with the z axis superposed

to the zenith axis, and the xz plane corresponding to the φ = 0 plane of the spherical

system. We have the conversion relations

x = r sinθcosφ, y = r sinθ sinφ, z = r cosθ . (A.2)

The orthogonal line elements are dr, r dθ, and r sinθdφ, and the infinitesimal volume

element is r2 sinθdθdφdr (Table A.1).
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A.2 Vector Identities

Quantities A, B, and C are vectors or vector functions of the coordinates, f and g

are scalar functions of the coordinates.

A ·B×C = A×B ·C = B ·C×A = C ·A×B ; (A.3)

A× (B×C) = (C×B)×A = (A ·C)B− (A ·B)C ; (A.4)

∇( f g) = f ∇g+g∇ f ; (A.5)

∇ · ( f A) = f ∇ ·A+A ·∇ f ; (A.6)

∇× ( f A) = f ∇×A+∇ f ×A ; (A.7)

∇ · (A×B) = B ·∇×A−A ·∇×B ; (A.8)

∇× (A×B) = A (∇ ·B)−B (∇ ·A)+ (B ·∇)A− (A ·∇)B ; (A.9)

∇(A ·B) = A× (∇×B)+B× (∇×A)+ (A ·∇)B+ (B ·∇)A ; (A.10)

∇2A = ∇(∇ ·A)−∇× (∇×A) , (A.11)

∇× (∇×A) = ∇(∇ ·A)−∇2A . (A.12)
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A

Absorbing medium, radiation pressure on

an, 113, 436

Alternate LC ladder network, 59, 285

Amplitude reflection coefficient, 99, 391

Angle of incidence, 76

Angle of reflection, 76

Angular momentum of a light beam, 69, 312

Antenna, circular, 82, 349

Anti-reflection coating, 90, 369

Atomic collapse, 80, 342

Avogadro constant, 137

B

Beam, Gaussian, 69, 310

Beats, optical, 84, 356

Bent dipole antenna, 82, 348

Birefringence, 90, 91, 370, 371

Boundary conditions on a moving mirror,

77, 335

C

Cable, twin-lead, 96, 384

Capacitance per unit length, 95, 381

Capacitor, leaky, 200

Capacity of a conducting cylindrical wire,

15, 164

Capacity of a cylindrical wire, 167

Capacity per unit length , 281

Cavity, optomechanical , 113, 434

Charged hemispherical surface, 8, 134

Charge distribution in the presence of elec-

trical current, 30, 205

Charged sphere, electrostatic energy of a

uniformly, 4, 119

Charged spheres, collision, 7, 130

Charged spheres, overlapping, 3, 117

Charged sphere with internal spherical cav-

ity, 4, 118

Charged wire in front of a cylindrical con-

ductor, 14, 155

Charge in front of a dielectric half-space,

19, 169

Charge relaxation, 27, 194

Circular antenna, 82, 349

CL ladder network, 58, 282

CO2, 103

Coating, anti-reflection, 90, 369

Coaxial cable, 95, 381

Coaxial resistor, 27, 196

Coil in an inhomogeneous magnetic field,

44, 231

Collapse, atomic, 80, 342

Collision of two charged spheres, 7, 130

Conducting foil, transmission and reflec-

tion, 89, 367

Conducting half-space, 23, 187

Conducting plane, charge in front of a, 10,

138, 142

Conducting prolate ellipsoid of revolution,

15, 164

Conducting shell, point charge inside a, 13,

154

Conducting slab, 20, 176

Conducting sphere, electric charge in front

of a, 11, 144

Conducting sphere, electric dipole in front

of a, 11, 146

Conducting sphere, electromagnetic torque

on a, 108, 419

Conducting sphere in an external field, 10,

137
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Conducting sphere in a uniform electric

field, 12, 151

Conducting sphere, plasma oscillations in a

charged, 7, 131

Conducting sphere, scattering from a per-

fectly, 114, 438

Conducting surface, hemispherical, 14, 159

Conductors, displacement current in, 256

Conductor, wave propagation in a, 88, 361

Coulomb explosion, infinite charged cylin-

der, 6, 127

Coulomb explosion, infinite charged slab, 6,

127

Coulomb explosion, uniformly charged

sphere, 5, 124

Coulomb’s experiment, 11, 148

Coupled RLC oscillators, 56, 57, 273, 276

Crossed electric and magnetic fields, 39,

220

Currents and charge distribution in conduc-

tors, 29, 201

Cutoff frequency, 388

Cyclotron radiation, 79, 339

Cyclotron resonances, 60, 61, 290, 293

Cylinder, transversally polarized, 23, 188

Cylinder, uniformly magnetized, 38, 219

Cylindrical capacitor, 22, 184

Cylindrical capacitor, discharge of a, 105,

405

Cylindrical conductor, charged wire in front

of a, 14, 155

Cylindrical conductor with an off-center

cavity, 39, 222

Cylindrical wire, capacity of a conducting,

15, 164

D

Damping, radiative, 80, 343

DC generator, magnetized cylinder, 49, 249

Dielectric-barrier discharge, 29, 204

Dielectric boundary conditions, 176

Dielectric half-space, 20, 176

Dielectric, lossy, 29, 202

Dielectric permittivity, measurement of the,

22, 184

Dielectric Slab, 23, 187

Dielectric sphere in an external field, 20,

173

Dipole antenna, bent, 82, 348

Discharge of a cylindrical capacitor, 105,

405

Disk, Faraday, 49, 251

Displacement current in conductors, 256

Distortionless transmission line, 58, 283

Drag force, radiation, 115, 442

Dynamo, self-sustained, 49, 251

E

Earth’s magnetic field, 46

Eddy currents in a solenoid, 46, 236

Eddy inductance, 51, 255

Effect, Fizeau, 109, 423

Elastically bound electron, 80, 343

Electrically connected spheres, 13, 153

Electrically polarized cylinder, 103, 397

Electrically polarized sphere, 19, 172

Electric charge in front of a conducting

plane, 10, 138, 142

Electric charge in front of a conducting

sphere, 11, 144

Electric currents induced in the ocean, 47,

242

Electric dipole, force between a point

charge and an, 7, 132

Electric dipole in a conducting spherical

shell, 12, 151

Electric dipole in a uniform electric field,

12, 151

Electric dipole in front of a conducting

sphere, 11, 146

Electric power transmission line, 96

Electric susceptibility, 22, 184

Electromagnetic torque on a conducting

sphere, 108, 419

Electron, elastically bound, 80, 343

Electron gas, free, 88, 363

Electrostatic energy in the presence of im-

age charges, 10, 138

Electrostatic pressure, 15, 21, 160, 162, 181,

183

Energy and momentum flow close to a per-

fect mirror, 106, 411

Energy densities in a free electron gas, 88,

363

Energy of a uniformly charged sphere, 4,

119

Equipotential surfaces, intersecting, 151

Equivalent magnetic charge, 39, 219

Evanescent wave, 88, 361

Experiment, the Rowland, 37, 211

F

Faraday disk, 49, 251

Faraday effect, 91, 371
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Ferrite, 238

Ferroelectricity, 19, 172

Feynman’s paradox, 47, 239

Feynman’s paradox (cylinder), 70, 314

Fiber, optical, 99, 391

Fields generated by spatially periodic sur-

face sources, 105, 408

Fields of a current-carrying wire, 74, 319

Fields of a plane capacitor, 74, 323

Fields of a solenoid, 75, 324

Filled waveguide, 100, 393

Fizeau effect, 109, 423

Floating conducting sphere, 21, 181

Fluid, resistivity, 28, 198, 199

Force between a point charge and an electric

dipole, 7, 132

Force between the plates of a parallel-plate

capacitor, 15, 160

Force on a magnetic monopole, Lorentz

transformation for the, 75, 327

Four-potential of a plane wave, 75, 325

Free electron gas, 88, 363

Free fall in a magnetic field, 45, 232

Frictional force, radiation, 85, 357

H

Heating, induction, 48, 246

Heaviside step function, 127

Hemispherical conducting surface, 14, 159

Hemispherical surface, charged, 8, 134

Homopolar motor, 53, 266

I

Image charges, method, hemispherical con-

ducting surfaces, 14, 159

Image charges, method of, 10, 138, 142

Image charges, method of, cylindrical con-

ductor, 14, 155

Immersed Cylinder, 22, 185

Impedance of an infinite ladder network,

104, 402

Impedance per unit length, cylindrical wire,

51, 255, 258

Incidence angle, 76

Inductance per unit length, 95, 381

Induction heating, 48, 246

Infinite charged Cylinder, Coulomb explo-

sion, 6, 127

Infinite charged slab, Coulomb explosion, 6,

127

Infinite ladder network, impedance, 104,

402

Infinite resistor ladder, 31, 209

Intensity of a light beam, 69, 312

Interference in Scattering, 84, 355

Internal spherical cavity in a charged sphere

with, 4, 118

Intersecting equipotential surfaces, 151

Isolated system, 161

L

Ladder network, CL, 58, 282

Ladder network, LC, 57, 279

Ladder network, LC, alternate, 59, 285

Laser cooling of a mirror, 106, 413

LC ladder network, 57, 279

Leaky capacitor, 200

Levitation, magnetic, 38, 217

Light beam, angular momentum of a, 69,

312

Light beam, Intensity of a, 69, 312

Lighthouse, 84, 356

Linear molecule, 114, 439

Longitudinal waves, 89, 365

Longitudinal waves, Lorentz transforma-

tions for, 110, 425

Lorentz transformation for the force on a

magnetic monopole, 75, 327

Lorentz transformations for a transmission

cable, 110, 426

Lorentz transformations for longitudinal

waves, 110, 425

Lossy dielectric, 29, 202

M

Magnetic birefringence, 91, 371

Magnetic charge, equivalent, 39, 219

Magnetic dipole in front of a magnetic half-

space, 38, 214

Magnetic dipole, potential energy of a, 217

Magnetic dipole rotating inside a solenoid,

51, 254

Magnetic field, cylinder rotating in, 40, 223

Magnetic field, Earth’s, 45, 234

Magnetic field of a rotating cylindrical ca-

pacitor, 40, 224

Magnetic levitation, 38, 217

Magnetic monopole, 71, 316

Magnetic monopole, Lorentz transforma-

tion for the force on a, 75, 327

Magnetic pressure on a solenoid, 52, 264

Magnetized cylinder, 38, 103, 219, 397

Magnetized cylinder, DC generator, 49, 249

Magnetized sphere, 40, 225



452 Index

Magnetized sphere, unipolar motor, 48, 243

Maxwell’s equations in the presence of

magnetic monopoles, 71, 316

Maxwell stress tensor, 309

Metal sphere in an external field, 10, 137

Method of image charges, 10, 138, 142

Method of image charges, cylindrical con-

ductor, 14, 155

Method of image charges, hemispherical

conducting surfaces, 14, 159

Mie oscillations, 5, 122

Mie resonance and a “plasmonic metamate-

rial”, 94, 377

Mirror, laser cooling of a, 106, 413

Mirror, moving, 76, 77, 328

Mirror, radiation pressure on a perfect, 68,

307

Monopole, magnetic, 71, 316

Motion of a charge in crossed electric and

magnetic fields, 39, 220

Motor, homopolar, 53, 266

Moving end, waveguide with a, 111, 429

Moving mirror, 76, 77, 328

Moving mirror, boundary conditions, 77,

335

Moving mirror, conservation laws in, 77,

328

Moving mirror, oblique incidence on a, 76,

332

Moving mirror, radiation pressure on a, 77,

333

Mutual induction between a solenoid and an

internal loop, 51, 254

Mutual induction between circular loops,

50, 253

Mutual induction, rotating loop, 50, 253

N

Network, CL, 58, 282

Network, LC, 57, 279

Neutron star, 81, 340, 347

Non-dispersive line, 58, 283

Non-uniform resistivity, 29, 201

O

Oblique incidence on a moving mirror, 76,

332

Ocean, induced electric currents, 47, 242

Open waveguide, TEM and TM modes in

an, 97, 385

Optical beats, 84, 356

Optical fiber, 99, 391

Optomechanical cavity, 113, 434

Orbiting charges, radiation emitted by two,

81, 345

Oscillations, Mie, 5, 122

Oscillations of a triatomic molecule, 103,

401

Oscillators, coupled, 56, 57, 273, 276

Overlapping charged spheres, 3, 117

P

Pair plasma, 93, 375

Parallel-plate capacitor, force between the

plates of a, 15, 160

Parallel-wire transmission line, 96, 384

Perfect mirror, energy and momentum flow

close to a, 106, 411

Pinch effect, 37, 52, 212, 261

Plane capacitor, fields of a, 74, 323

Plane wave, four-potential of a, 75, 325

Plasma oscillations, 5, 121

Plasma oscillations in a charged conducting

sphere, 7, 131

Plasma, “pair”, 93, 375

Plasmonic metamaterial, 94, 377

Plasmons, 366

Point charge inside a conducting shell, 13,

154

Polaritons, 366

Polarization of scattered radiation, 83, 351

Polarization, Thomson scattering, 83, 352

Potential energy of a magnetic dipole, 217

Poynting vector for a Gaussian light beam,

69, 310

Poynting vector in a capacitor, 67, 301

Poynting vector in a capacitor with moving

plates, 68, 303

Poynting vector in a solenoid, 67, 302

Poynting vector in a straight wire, 67, 299

Pressure, electrostatic, 15, 160, 162, 183

Propagation of a “relativistically” strong

electromagnetic wave, 111, 431

Pulsar, 81, 347

Q

Quasi-Gaussian wave packet, 61, 295

R

Radiation, cyclotron, 79, 339

Radiation drag force, 115, 442

Radiation emitted by two orbiting charges,

81, 345
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Radiation frictional force, 85, 357

Radiation pressure on a moving mirror, 77,

333

Radiation pressure on an absorbing

medium, 113, 436

Radiation pressure on a perfect mirror, 68,

307

Radiation pressure on a thin foil, 107, 414

Radiation, undulator, 108

Radiative damping, 80, 343

Receiving circular antenna, 82, 349

Reflection angle, 76

Reflection by a thin conducting foil, 89, 367

Reflection coefficient, amplitude, 99, 391

Refraction of the electric field at a dielectric

boundary, 20, 175

Relativistically strong electromagnetic

wave, propagation of a, 111, 431

Resistivity, fluid, 28, 198, 199

Resistivity, non-uniform, 29, 201

Resistor, coaxial, 27, 196

Resistor ladder, infinite, 31, 209

Resonance, Schumann, 100, 394

Resonances in an LC ladder network, 60,

288

Rotating cylinder in magnetic field, 40, 223

Rotating cylindrical capacitor, 40, 224

Rotation induced by electromagnetic induc-

tion, 47, 70, 239, 314

Rowland experiment, 37, 211

S

Satellite, tethered, 45, 234

Scattered radiation, polarization of, 83, 351

Scattering and Interference, 84, 355

Scattering from a perfectly conducting

sphere, 114, 438

Schumann resonances, 100, 394

Self-sustained dynamo, 49, 251

Skin effect, 51, 255

Slowly Varying Current Approximation

(SVCA), 236

Solenoid, eddy currents in a, 46, 236

Solenoid, electric current in a, 112, 433

Solenoid, fields of a, 75, 324

Solenoid, magnetic dipole rotating inside a,

51, 254

Solenoid, magnetic pressure on a, 52, 264

Solenoid, mutual induction between an in-

ternal loop and a, 51, 254

Soliton, 432

Spatially periodic surface sources, 105, 408

Sphere, electrically polarized, 19, 172

Spheres, electrically connected, 13, 153

Sphere, uniformly magnetized, 40, 225

Spiral motion, 79, 339

Square wave generator, 44, 229

Square waveguides, 387

Square wave packet, 68, 77, 307, 333

Stress tensor, Maxwell, 309

Surface charge density, 10, 142

Surface charges, 20, 23, 176, 187

Surface waves, 93, 376

Surface waves in a thin foil, 109, 421

T

TEM and TM modes in an “open”

waveguide, 97, 385

Tethered satellite, 45, 234

Thin foil, radiation pressure on a, 107, 414

Thin foil, surface waves in a, 109, 421

Thin foil, transmission and reflection, 89,

367

Thomson scattering in the presence of a

magnetic field, 107, 417

Thomson scattering, polarization, 83, 352

Tolman-Stewart experiment, 26, 193

Transmission and reflection by a thin con-

ducting foil, 89, 367

Transmission cable, Lorentz transforma-

tions for a, 110, 426

Transmission line, parallel-wire, 96, 384

Transversally polarized cylinder, 23, 188

Triangular waveguides, 387

Triatomic molecule, oscillations, 103, 401

Twin-lead cable, 96, 384

U

Undulator radiation, 108, 417

Uniformly charged sphere, Coulomb explo-

sion, 5, 124

Unipolar machine, 49, 249

Unipolar motor, magnetized sphere, 48, 243

W

Wave, evanescent, 88, 361

Waveguide, filled, 100, 393

Waveguide Modes as an Interference Effect,

98, 389

Waveguides, square and triangular, 387

Waveguide with a moving end, 111, 429

Wave packet, quasi-Gaussian, 61, 295

Wave packet, square, 68, 77, 307, 333
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Waveplate, 90, 370

Wave propagation in a conductor, 88, 361

Wave propagation in a filled waveguide,

100, 393

Waves, surface, 93, 376

Whistler waves, 92, 374
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