

PROGRAMA DE CURSO "DEEP LEARNING" PARA PROCESAMIENTO DE SEÑALES

A. Antecedentes Generales del curso:

1.Departamento	Eléctrica						
2. Nombre del curso	"Deep learning" para procesamiento de señales.						
3. Nombre del curso en inglés	Deep learning for signal processing.						
3. Código del Curso	EL700	60			réditos curso		6 créditos
5.Horas semanales	Docencia	3	Auxiliares	1,5	Trabajo persona		5,5
6. Carácter del curso	Obligatorio		Electivo	Х	X Electivo de línea de especialización Electivo de postgrado		
7. Requisitos	EL3203 Análi	sis de se	ñales.				

B. Propósito del curso:

Este curso se inicia con un enfoque práctico para entender los elementos básicos de procesamiento de señales. Después entrega los fundamentos de las tecnologías de redes neuronales y "deep learning" para después abordar problemas de reconocimiento de patrones, regresión no-lineal y reducción o eliminación de distorsiones en varios ámbitos de aplicación tales como procesamiento de voz, sismología, salud, volcanología, comunicaciones, etc.

Para realizar las tereas propuestas en el curso, se espera que los/las estudiantes realicen un análisis del estado del arte con respecto al problema de procesamiento de señales que se desea bordar usando "deep learning". En este sentido los/las estudiantes deberán argumentar en favor de la solución adoptada y compararla con otras técnicas dentro o fuera del ámbito de "deep leaning".

El curso tributa a las siguientes competencias específicas (CE) y genéricas (CG) del pregrado del programa de Ingeniería Civil Eléctrica:

Competencias específicas:

- CE1 Formular, analizar, simular y usar modelos fisicomatemáticos que caractericen sistemas dinámicos y fuentes de incertidumbre.
- CE2 Concebir y aplicar conocimientos de ciencias físicas y matemáticas para el desarrollo de soluciones tecnológicas a problemáticas de la Ingeniería Eléctrica y áreas afines.
- CE3 Analizar, usar experimentos e interpretar sus resultados para la verificación y validación de desarrollos tecnológicos.
- CE4: Concebir, diseñar y evaluar, dispositivos, sistemas y desarrollos científico-tecnológicos para la solución de problemas en el ámbito de la Ingeniería Eléctrica, considerando especificaciones técnicas, así como requerimientos económicos, ambientales, sociales y éticos.

CE5: Resolver problemas y optimizar soluciones en el ámbito de la Ingeniería Eléctrica utilizando conceptos, enfoques y metodologías apropiadas.

Competencias genéricas:

CG1 Comunicar en español de forma estratégica, clara y eficaz, tanto en modalidad oral como escrita, puntos de vista, propuestas de proyectos y resultados de investigación fundamentados, en situaciones de comunicación compleja, en ambientes sociales, académicos y profesionales diversos.

CG6 Gestionar su autoaprendizaje en el desarrollo del conocimiento de su profesión, adaptándose a los cambios del entorno.

Además, tributa a las siguientes competencias de los programas de postgrado (Magíster y Doctorado):

- Crear una sólida formación teórica y técnica en tópicos avanzados de Ingeniería Eléctrica.
- Trabajar en la frontera del conocimiento.
- Desarrollar habilidades para la investigación.

C. Resultados de Aprendizaje

Competencias Específicas	Resultados de Aprendizaje	
CE2	RA1. Utiliza técnicas básicas de procesamiento de señales.	
CE2-CE5	RA2 Propone soluciones basadas en "deep learning", logrando modelar problemas en el ámbito de procesamiento de señales.	
CE3-CE4	RA3. Diseña, implementa y compara soluciones basadas en "deep learning" para problemas en el ámbito de procesamiento de señales.	
Competencias Genéricas	Resultados de Aprendizaje	
CG1	RA4. Redacta informes y realiza presentaciones del problema de interacciones electromecánicas, expresando de manera efectiva, clara y precisa los resultados obtenidos en cada fase de la investigación realizada a fin de comunicar dichos resultados.	
CG6	RA5. Programa soluciones de "deep learning" en las plataformas adecuadas gestionando el autoaprendizaje para alcanzar los objetitos deseados.	

C. Unidades Temáticas:

N	úmero	RA al que tributa	Nombre de la Unidad	Duración en Semanas
	1	RA1	Fundamentos de procesamiento de señales	2
		Contenidos	Indicador d	le logro
1. 2. 3. 4. 5.	 Transformada de Fourier. Teorema del muestreo. Transformada Discreta de Fourier (DFT, "Discrete Fourier Transform") y Transformada Rápida de Fourier (FFT, "Fast Fourier Transform"). Filtros FIR e IIR. Análisis de predicción lineal (LPC, "Linear Prediction Coding"). 		 El estudiante: Aplica e interpreta análisis de Forma. Usa el teorema del muestreo diversos procesos. Analiza el resultado de la provenientes de diversos procesos. Diseña y utiliza filtros digitales Forma. Comprende el problema de prede modelo auto-regresivo. Aplica cuantización vectorial. 	o en señales provenientes de FFT aplicada a señales de sos. FIR o IIR.
Bib	Bibliografía de la Unidad		[1]	

N	lúmero	RA al que tributa	Nombre de la Unidad	Duración en Semanas
	2	RA2	Redes neuronales y "deep learning"	3
		Contenidos	Indicador o	de logro
3.	teorema universal Redes "Convolu redes ne tiempo (T Networks Redes (RNN, Networks Redes ate	er Perceptron") y el de la aproximación	Universal paras redes neurona 2. Analiza y compara las difer neuronales y las combinacio contexto de aplicación.	Teorema de la Aproximación iles. rentes arquitecturas de redes ones de estas en función del p learning" a series discretas de
Bik	oliografía c	de la Unidad	[1][2][3][4]	

N	úmero	RA al que tributa	Nombre de la Unidad	Duración en Semanas
	3	RA2, RA3, RA4 y RA5.	Problemas de reconocimiento de patrones con "deep learning"	4
		Contenidos	Indicador d	de logro
 1. 2. 3. 4. 5. 	Teorema Aplicació problem patrones Parámet crudos. Entrenar técnicas reducció Ejemplos aplicació problem patrones - Proc - Sism	miento multicondición vs. de compensación o de n de distorsiones. s de casos de estudio de la n de "deep learning" a as de reconocimiento de	diferentes contextos. 2. Justifica la adopción de config learning" aplicado al reconocir 3. Toma decisión sobre el uso o data". 4. Justifica la adopción de "multio de compensación o reducción	de "designed fearures" o "raw condition training" o de técnicas
Bibliografía de la Unidad		le la Unidad	[1][2][6]	

Número	RA al que tributa	Nombre de la Unidad	Duración en Semanas
Numero	KA ai que tributa	Nombre de la Officaci	Duracion en Semanas

	4	RA2, RA3, RA4 y RA5.	Regresión no-lineal con "deep learning".	2	
		Contenidos	Indicador de logro		
1. 2. 3.	 El problema de regresión no-lineal. Aplicación de "deep learning" al problema de regresión no-lineal. 		variables pertinentes según m 2. Analiza y evalúa las arquitec adecuadas para un dado probl	turas de "deep learning" más	
Bib	Bibliografía de la Unidad		[1][2][6]		

N	lúmero	RA al que tributa	Nombre de la Unidad	Duración en Semanas
	5	RA2, RA3, RA4 y RA5.	Reducción o eliminación de distorsiones no deseadas en señales usando "deep learning" en procesamiento de voz.	4
		Contenidos	Indicador d	le logro
 1. 2. 4. 5. 	 Cancelación de ruido aditivo con "deep learning". El problema de "mismatch" de transductores y ruido aditivo abordado con "multicondition training". El problema de reverberación y "deep learning". El problema de canal acústico variable en el tiempo e interacción humano-robot. 		las señales. Se da énfasis a se estudio. 2. Compara arquitecturas de "c eliminar distorsiones no desea	lución para reducir o eliminar al
Bib	Bibliografía de la Unidad		[1][5][6]	

D. Estrategias de enseñanzas:

La metodología de trabajo para conseguir los resultados planteados para el proceso de enseñanza—aprendizaje está basada en la participación activa de los alumnos. Las principales actividades a realizar son:

- Clases expositivas.
- Análisis de artículos.
- Trabajos experimentales.

E. Estrategias de evaluación:

La evaluación estará orientada a verificar avances de parte de los estudiantes y demostración de resultados de aprendizaje mediante:

- Tareas analíticas o de simulación.
- Trabajos experimentales en equipo.
- Presentaciones orales.
- Elaboración de informes.

Las tareas y trabajos experimentales darán cuenta del resultado de aprendizaje del curso.

F. Recursos bibliográficos:

Bibliografía obligatoria:

- [1] Apuntes de clase actualizado
- [2] Ian Goodfellow, Yoshua Bengio, Aaron Courville. "Deep Learning". The MIT press, 2016.
- [3] Nithin Buduma, Nikhil Buduma, Joe Papa. "Fundamentals of Deep Learning". Second Edition. Oreilly. 2022.

Bibliografía complementaria:

- [4] Simon Haykin. "Neural Networks and Learning Machines". Third Edition, Pearson, 2011
- [5] Jacob Benesty, Israel Cohen, Jingdong Chen. "Fundamentals of Signal Enhancement and Array Signal Processing". Wiley Online Library. 2017.
- [6] Bases de datos IEEEXplore, ACM, Elsevier, Springer.

G. Datos Generales sobre elaboración y vigencia del programa de curso:

Vigencia desde:	Primavera, 2024	
Elaborado por:	Néstor Becerra Yoma	
Validado por:	Área de Gestión Curricular	
Revisado por:	Académicos del área TIC	