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Climate Data Records of soil moisture are fundamental for improving our understanding of long-term dynamics
in the coupled water, energy, and carbon cycles over land. To respond to this need, in 2012 the European Space
Agency (ESA) released the first multi-decadal, global satellite-observed soil moisture (SM) dataset as part of its
Climate Change Initiative (CCI) program. This product, named ESA CCI SM, combines various single-sensor active
and passivemicrowave soilmoisture products into three harmonised products: amerged ACTIVE, amerged PAS-
SIVE, and a COMBINED active+passivemicrowave product. Compared to thefirst product release, the latest ver-
sion of ESA CCI SM includes a large number of enhancements, incorporates various new satellite sensors, and
extends its temporal coverage to the period 1978–2015. In this study, we first provide a comprehensive overview
of the characteristics, evolution, and performance of the ESA CCI SM products. Based on original research and a
reviewof existing literaturewe show that the product quality has steadily increasedwith each successive release
and that themerged products generally outperform the single-sensor input products. Although ESA CCI SM gen-
erally agrees well with the spatial and temporal patterns estimated by land surface models and observed in-situ,
we identify surface conditions (e.g., dense vegetation, organic soils) for which it still has large uncertainties. Sec-
ond, capitalising on the results of N100 research studies that made use of the ESA CCI SM data we provide a syn-
opsis of how it has contributed to improved process understanding in the following Earth system domains:
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climate variability and change, land-atmosphere interactions, global biogeochemical cycles and ecology, hydro-
logical and land surface modelling, drought applications, and meteorology. While in some disciplines the use of
ESA CCI SM is alreadywidespread (e.g. in the evaluation ofmodel soilmoisture states) in others (e.g. in numerical
weather prediction or flood forecasting) it is still in its infancy. The latter is partly related to current shortcomings
of the product, e.g., the lack of near-real-time availability and data gaps in time and space. This study discloses the
discrepancies between current ESA CCI SM product characteristics and the preferred characteristics of long-term
satellite soil moisture products as outlined by the Global Climate Observing System (GCOS), and provides impor-
tant directions for future ESA CCI SM product improvements to bridge these gaps.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

1.1. The role of soil moisture in the Earth system

Soil moisture is at the heart of the Earth system. Through its impact
on the partitioning of the incoming water and energy over land, soil
moisture affects the variability of the coupled water (evapotranspira-
tion and runoff) and energy fluxes (latent and sensible heat fluxes)
(Seneviratne et al., 2010). As such, a surplus or lack of soil moisture
can favour the occurrence of floods (Brocca et al., 2012; Koster et al.,
2010) or droughts (Wang et al., 2011), respectively. The feedback of
soil moisture on evapotranspiration is important for temperature vari-
ability and the occurrence and persistence of heatwaves (Fischer et al.,
2007; Hirschi et al., 2011; Miralles et al., 2014a; Mueller and
Seneviratne, 2012), as well as for the generation and location of precip-
itation (Findell et al., 2011; Guillod et al., 2015; Taylor et al., 2012). In
addition, regional gradients in soil moisture can induce mesoscale at-
mospheric circulation patterns (Taylor et al., 2012). Moreover, the role
of soil moisture in driving photosynthesis, ecosystem dynamics, and
soil respiration, and hence the terrestrial carbon balance, is undisputa-
ble (Ciais et al., 2005; van derMolen et al., 2012). However, the impacts
of soil moisture on ecosystems may be indirect and non-linear, e.g. by
controlling the likelihood of fires and pest outbreaks (Forkel et al.,
2012; Papagiannopoulou et al., 2016; Reichstein et al., 2013).

1.2. Global monitoring of soil moisture

Tracking soilmoisture variability and changeover time is fundamen-
tal for estimating bounds on water availability and for quantifying its
sensitivity to global warming and human pressures. This requires
high-quality soil moisture datasets that are long enough, contiguous,
and consistent in time and space (Findell et al., 2015; Loew, 2013).
While detailed soil moisture information is provided by in-situ soil
moisture databases such as the International Soil Moisture Network
(ISMN; W. A. Dorigo et al., 2011; Dorigo et al., 2013; Ochsner et al.,
2013), ground-based observations lack sufficient global coverage and
consistency for comprehensive Earth system assessments. Seamless
spatial and temporal coverage is offered by reanalysis land surface
model products, which are driven by various types of - mostly atmo-
spheric – observations (e.g., Balsamo et al., 2015; Reichle et al., 2011;
Rodell et al., 2004). Though seemingly gap free, the skill of reanalysis
products during a specific period hinges on the number, quality, and
spatial availability of the forcing datasets used as input during that peri-
od, and the model physics used to infer soil moisture fields from them
Microwave remote sensing of soil moisture has long been characterised
as a valuablemeans to overcome the spatial limitations of in-situ obser-
vations and to provide a global independent reference for land surface
model and reanalysis evaluations (Albergel et al., 2013a; Schmugge,
1983; Szczypta et al., 2014). It may help detecting relevant trends
(Dorigo et al., 2012) but it is mainly restricted to the surface soil layer.
Although gravitymissions such as the Gravity Recovery and Climate Ex-
periment (GRACE; Rodell et al., 2009) are sensitive to moisture in the
total soil column (Abelen and Seitz, 2013), their use is not straightfor-
ward, since besides soil moisture they are also sensitive to changes in
snow, surface water, and groundwater, and require estimates of atmo-
spheric total column water vapour, while operating at very coarse spa-
tial and temporal resolutions. Moreover, the limited length of any
observational or modelled soil moisture datasetmay hamper the detec-
tion of long-term trends, particularly in areas with reduced data quality
or experiencing large inter-annual variability (Findell et al., 2015; Loew,
2013; Miralles et al., 2014b). For the future, model projections suggest
that in specific regions soil moisture may decrease, even though there
exists considerable spread in these projections (Greve and
Seneviratne, 2015). These trends, their inherent uncertainties and the
large amount of human activities connected to soil water highlight the
crucial importance of on-going monitoring of soil moisture at the
ground and from space.

1.3. Climate research requirements on satellite soil moisture

Surface soil moisture information has been inferred from a wide
range of space-borne instruments using various retrieval approaches
(e.g., De Jeu and Dorigo, 2016; Jackson, 1993; Kerr et al., 2012; Naeimi
et al., 2009; Njoku et al., 2003; O'Neill et al., 2016; Owe et al., 2008;
Wagner et al., 2013b). In 2010, the Global Climate Observing System
(GCOS) panel considered soil moisture remote sensing mature enough
for systematic, global observation of the climate and endorsed it as
one of the 50 Essential Climate Variables (ECVs) supporting the work
of the United Nations Framework Convention on Climate Change
(UNFCCC) and the International Panel on Climate Change (IPCC;
GCOS-138, 2010). Scientific consensus on the minimum requirements
of satellite soil moisture datasets for climate monitoring, so-called Cli-
mate Data Records (CDRs), has been outlined in the latest GCOS Imple-
mentation Plan (GCOS-200, 2016).Within the Climate Change Initiative
(CCI) of the European Space Agency (ESA), these requirements have
been further refined, supported in particular by the CCI Climate Model-
ling User Group (CMUG), which represents leading climate modelling
organisations in Europe. Within the CCI, these requirements are up-
dated yearly based on continuous feedback from GCOS, CMUG, and
the CCI soil moisture user community at large.

Table 1 lists the combined GCOS, CMUG, and wider ESA CCI Soil
Moisture user community's requirements on satellite soil moisture. Al-
though surface soil moisture (SSM) is the target variable specified by
GCOS, there is also a large interest in satellite-based root-zone soil mois-
ture (RZSM). The latter seemingly contradicts the user requirement of
model-independency of the satellite products, as land surface models
(LSMs) are typically required to propagate surface soil moisture obser-
vations to the root-zone (Albergel et al., 2012). No agreement exists
yet on the soil column that a potential RZSM product should represent,
as the vegetation rooting depth is species-specific. Similarly, neither the
depth of the surface layer is precisely defined, since differences in mi-
crowave frequencies and soil moisture conditions lead to different soil
penetration depths, and thus reflect different depths. The preferred
unit for soil moisture products is m3m−3, although different communi-
ties may adopt different physical units, e.g. kg m−2 or percentage/de-
gree of saturation. However, with appropriate metadata on soil
porosity at the scale of the satellite footprint the observations can be
transferred from one physical unit to the other (W. A. Dorigo et al.,



Table 1
Current specifications for satellite-based soil moisture CDRs, based on requirements of
GCOS, CEOS, CMUG, and the ESA CCI Soil Moisture user community at large.

Variable Surfacea soil moisture content, root-zone soil moisture
content

Measuring units m3 m−3

Horizontal
resolution

25 km, with increasing need to advance towards 1 km

Accuracy 0.04 m3 m−3 (unbiased root-mean-square-error)
Stability 0.01 m3 m−3y−1 (year-to-year variability of systematic

differences)
Observing cycle Daily, growing preference for sub-daily observations
Timeliness 1 month
Record length N30 years
Additional
requirements

Products should be satellite only, i.e. no land surface model
should be involved
Error estimate should be provided for each observation
Additional information on freeze/thaw status, surface
inundation, and vegetation optical depth is requested for
better quality characterisation

a There is no common definition of the surface layer but it is generally assumed to range
between 0.02 and 0.05 m (Ulaby et al., 1982).
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2011). It has been suggested that for some applications, e.g., model eval-
uation, soil moisture anomalies may be more useful than absolute
values (Nicolai-Shaw et al., 2015). With increasing spatial resolutions
of both regional and global climate models the need for higher resolu-
tion observational soil moisture datasets also increases. While the min-
imum requirement was previously 50 km, now a spatial resolution
ranging between 1 and 25 km is advocated. The preferred observing
cycle is one day, even though a sub-daily temporal resolution is desired
for specific process studies (Guillod et al., 2014). Soil moisture CDRs
should be reliable, without jumps or data gaps, and stable over time.
The provision of error information, preferably per pixel and per observa-
tion, shall be an integrated part of any soil moisture CDR. In addition,
GCOS advises the concurrent provision of related variables such as
freeze/thaw state, surface inundation, and vegetation optical depth
(VOD) to complement and better characterise the quality of the SSM
products.

Data quality requirements depend strongly on the application, in
particular with regard to precision (i.e., the random error) and accuracy
(the combined effect of precision and systematic error). This is reflected
by the large spread of accuracy requirements for different applications
as reported in the Observing Systems Capability Analysis and Review
Tool (OSCAR; https://www.wmo-sat.info/oscar/) database, maintained
by the World Meteorological Organization (WMO). The current GCOS
accuracy requirement of 0.04 m3 m−3 volumetric soil moisture unbi-
ased root-mean-square-error (ubRMSE) is in line with the accuracy
goals set for the exploratory satellite missions Soil Moisture Ocean Sa-
linity (SMOS; Kerr et al., 2016) and Soil Moisture Active Passive
(SMAP; Entekhabi et al., 2010a). The requirement for the stability was
set to 0.01 m3 m−3y−1 random year-to-year variability. For both re-
quirements, there is no fundamental research supporting these thresh-
olds. The assessment of these qualities hinges on the availability of
stable, long-term reference datasets, something which is currently still
lacking (GCOS-200, 2016). In addition, it is important to point out that
the process of comparing satellite-derived products to independent ref-
erence data requires standardisation, which is why GCOS collaborates
closely with the Land Product Validation sub-group (LPV) of the Com-
mittee of Earth Observation Satellites (CEOS) to establish good practice
validation protocols. For soilmoisture such a protocol does not yet exist.
Nonetheless, CEOS LPV judges the maturity of soil moisture validation
activities to be relatively high thanks to the dedicated validation efforts
of the SMAP and SMOS satellite teams (Colliander et al., 2017; Kerr et al.,
2016), the availability of a relatively large number of in-situ soil mois-
ture networks worldwide (W. Dorigo et al., 2011), and the recent emer-
gence of advanced statisticalmethods for estimating accuracymetrics in
the presence of scaling errors (F. Chen et al., 2016; Gruber et al., 2013;
Gruber et al., 2016b).

1.4. ESA CCI Soil Moisture to meet climate observation demands

The ESA CCI Soil Moisture (SM) project (http://www.esa-
soilmoisture-cci.org) has been established to fulfil the soil moisture
monitoring needs in support of climate research. Although most of the
basic requirements can potentially be met by a single sensor product
(Table 1), individual satellite missions are clearly too short to provide
a CDR of N30 years (Dorigo et al., 2010). To bridge this gap, ESA's
Water Cycle Multi-mission Observation Strategy (WACMOS) project
(Su et al., 2010) provided the financial incentives to develop a long-
term soil moisture product frommultiple active and passivemicrowave
sensors. The multi-satellite approach merged various Level 2 (i.e. in
swath geometry) single-sensor soil moisture products into a
harmonised record by synergistically combining the strengths of the in-
dividual products (Liu et al., 2012; Liu et al., 2011; Wagner et al., 2012).
The success of this demonstration activity was a critical argument in fa-
vour of including soilmoisture in ESA's CCI program,which supports the
development and pre-operational production of ECVs. The first ESA CCI
SM product (v0.1)was publicly released in 2012. Since then, the dataset
has been continuously upgraded by expanding its spatial-temporal cov-
erage, by including new sensors, through algorithmic updates and sen-
sor inter-calibration efforts, and by improving the assessment and
description of product errors. This is an ongoing effort that will continue
into the future.

1.5. Scope and overview of this study

The objective of this paper is to provide the state-of-the-art of the
ESA CCI SMproducts and to review its impact on various climate-related
research sectors. Section 2 provides a detailed overview of the current
specifications of the ESA CCI SM product and the major updates to the
retrieval algorithm, first released in 2012 (Liu et al., 2012; Liu et al.,
2011; Wagner et al., 2012). A thorough understanding of the errors
and limitations of ESA CCI SM is crucial for a correct use and interpreta-
tion of the data. Therefore, we dedicate Section 3 to quality characterisa-
tion of the products and synthesise the results of the numerous error
assessments that weremade in the past. In Section 4, we provide an ex-
tensive overview and synthesis of N100 studies that used the ESA CCI
SM products to gain improved insights into Earth system processes. In
Section 5, we confront the ESA CCI SM product quality characteristics
identified in this studywith the requirements of the climate community
to identify potential deficiencies in the current product and make
prioritised recommendations for future developments.

2. The ESA CCI Soil Moisture product

2.1. Soil moisture retrievals from microwave remote sensing

The microwave domain is particularly useful for the observation of
moisture conditions in the upper few centimetres of the soil (Ulaby et
al., 1982). This capability is the result of the large contrast between
the dielectric properties of dry soil and water, which makes the micro-
wave radiance emitted or reflected by the surface soil volume almost
linearly dependent on the soil-water mixing ratio (Ulaby et al., 1982).
Both active microwave systems (radars, measuring variations in
reflected backscatter) and passive systems (radiometers, measuring
natural emissions) can make observations under nearly any weather
conditions, independent of daylight. Satellite microwave observations
have footprints with typical resolutions on the order of 25 × 25 km2

to 50 × 50 km2. The coarse spatial resolution is however compensated
by the global coverage and high revisit times, generally daily or sub-
daily, depending on sensor characteristics such as swath width. Such
short revisit times are very valuable since soil moisture is generally

https://www.wmo-sat.info/oscar
http://www.esa-soilmoisture-cci.org
http://www.esa-soilmoisture-cci.org
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highly variable in time as a function of rainfall, irrigation, and
evaporation.

Despite their general usefulness for soil moisture retrievals, micro-
wave observations have several limitations. Retrievals are impossible
under snow and ice or when the soil is frozen (Ulaby et al., 1982),
while complex topography, surface water, and urban structures have
an adverse effect on the retrieval quality (Wagner et al., 1999a). In par-
ticular, passive microwave observations can be affected by human-in-
duced radio frequency interference (RFI), which may obstruct feasible
observations over large areas (Oliva et al., 2012). However, much prog-
ress has been made to mitigate RFI by enforcement of legislation, by
new on-board hardware-driven detection and mitigation capabilities
(e.g. for AMSR2 and SMAP), or by filtering or replacing affected observa-
tions using alternative microwave frequencies (Nijs et al., 2015). In ad-
dition, vegetation water attenuates the microwave emission and
backscatter from the soil surface and may eventually completely ob-
scure the soil moisture signal above wavelength-dependent vegetation
water content density thresholds (Parinussa et al., 2011). The L-band
frequency (1.4 GHz), as used by SMOS and SMAP, has a better capacity
to penetrate vegetation than the higher microwave frequencies of C-
band (i.e. AMSR-E, AMSR2, WindSat, ERS, ASCAT) and X-band (i.e.
AMSR-E, AMSR2, TMI, Fengyun-3B) (Ulaby et al., 1982). Observations
at the lower L-bandmicrowave frequency (longerwavelength) general-
ly also sense the soil profile to a greater depth than C- and X-band sen-
sors, typically up to 5 cm depth (Ulaby et al., 1982). At the same time
however, it is more difficult to achieve a suitable spatial resolution
with high radiometric accuracy for L-band than for C- and X-band.

Most soil moisture retrieval algorithms for passive microwave ob-
servations (e.g., Jackson, 1993; Kerr et al., 2012; Mladenova et al.,
2014; Owe et al., 2008; Wigneron et al., 2007) are based on solving
the radiative transfer model by Mo et al. (1982). The algorithms differ
in their treatment of the observations, e.g. by using different frequen-
cies, polarizations, or multiple overpasses or incidence angles, and in
the parameterisation of the different geophysical variables, e.g., surface
roughness, vegetation impact, and the conversion of the soil dielectric
constant to soil moisture. Alternatively, statistical retrieval approaches
train the passive microwave observations towards a reference dataset
through machine learning (e.g., Rodríguez-Fernández et al., 2015) or
linear regressions (e.g., Al-Yaari et al., 2016). In summary, all these dif-
ferences in microwave frequencies, sensor specifications, and retrieval
algorithms result in soil moisture dataset qualities that vary both in
space and time. Characterising the accuracy of these various satellite-
based soil moisture estimates has been the subject of numerous studies
(e.g. Naeimi et al., 2009; Dorigo et al., 2010; Parinussa et al., 2011;
Wanders et al. 2012).

Table 2 shows an overview of all openly accessible coarse-resolution
microwave soil moisture products. Since none of the single sensor mis-
sions complies with the minimum CDR length requirement of 30 years,
a multi-satellite approach is needed to bridge this gap. Retrievals based
on synthetic aperture radars (SARs) yield higher spatial resolutions but
at the expense of reduced revisit times and are therefore currently not
considered appropriate for global CDR production.

2.2. The ESA CCI SM multi-sensor merging approach

Combining single sensor data into amulti-satellite soilmoisture data
record can either start from Level 1 data (brightness temperatures for
passive microwave sensors, backscatter coefficients for active micro-
wave sensors) or from Level 2 soil moisture retrievals (Wagner et al.,
2012). Starting from Level 1 would allow using the brightness temper-
ature and backscatter measurements complimentarily in the soil mois-
ture retrieval itself. For example, Kolassa et al. (2016) produced superior
soil moisture products by merging Level 1 products of AMSR-E and
ASCAT. However, for ESA CCI SM such an approach would become
very complex and of limited applicability because of themany satellites
and different sensors involved, many of them with no or only limited
temporal overlap. Therefore, the ESA CCI SM approach starts from pub-
licly available Level 2 soil moisture data records, which are merged
based on a thorough understanding of their error characteristics. This
approach has themajor advantage that the CDRproduction systemben-
efits from the efforts by space agencies and other organisations to estab-
lish single-sensor soil moisture data records that are both internally and
externally validated, while being computationally relatively
lightweight.

The architecture for the ESA CCI SM Level 2 based merging frame-
work was originally proposed by Liu et al. (2011, 2012) and Wagner
et al. (2012) and is – with some modifications – still being used today
(Fig. 1). Level 2 soil moisture products, produced outside the processing
chain by various data providers, are used as input to the merging
scheme. Currently, only activemicrowave soil moisture products gener-
ated with the TU Wien method (Naeimi et al., 2009; Wagner et al.,
1999b) and passive microwave products produced with the Land Pa-
rameter Retrieval Model (LPRM; Owe et al., 2008) are being used be-
cause of their consistency in methodology across sensors (see Table
2). Level 2 soil moisture products from all available active and passive
sensors are first mapped from their native observation times to a com-
mondaily time step (0:00UTC±12h) using a nearest neighbour search
in time. Then, the temporally rebinned Level 2 radiometer products are
inter-calibrated using cumulative distribution function (CDF) matching
(Liu et al., 2011) with AMSR-E soil moisture serving as a scaling refer-
ence, and merged into a radiometer-only (PASSIVE) product while tak-
ing into account the relative skill of the input products (Section 2.3). The
same is done for the temporally rebinned Level 2 scatterometer prod-
ucts but with ASCAT soil moisture serving as a scaling reference. This re-
sults in a scatterometer-only (ACTIVE) product.

Subsequently, the systematic differences between ACTIVE and PAS-
SIVE are corrected for by matching for the CDF of each pixel against
long-term LSM-based soil moisture, which is currently provided by
GLDAS-Noah v1 (Rodell et al., 2004). The choice of using a modelled
soil moisture product and not one of the microwave-based products
as scaling reference has been motivated by the fact that none of the lat-
ter has global coverage and spatially consistent quality (Liu et al., 2012).
In the final step, the rescaled ACTIVE and rescaled PASSIVE products are
merged into the combined active + passive product (COMBINED),
again based on their error characteristics. Given the native spatial reso-
lutions of 25 to 50 km and revisit times of approximately 1 to 2 days of
the Level 2 products, it was decided to provide a daily product with a
grid spacing of 0.25°. Note, that the actual data availability of ESA CCI
SM varies in space and time due to the varying spatial and temporal
availability of the single-sensor Level 2 input products (Section 3). The
units of measurement of ACTIVE is degree [%] of saturation while PAS-
SIVE and COMBINED are provided in volumetric units [m3 m−3].

2.3. Product evolution and latest developments

The first ESA CCI SM product (v0.1, at that time referred to as ECV
SM; Table 3) was released in 2012 and combined four radiometer and
two scatterometer products into a single COMBINED dataset according
to the methodology documented in Liu et al. (2012). Since then, the
ESA CCI SM product was updated at regular intervals and
complemented with the intermediate ACTIVE and PASSIVE products
(Table 3). One of the major modifications of each subsequent release
has been the continuous extension of ESA CCI SM into the near present,
which was mainly facilitated by the introduction of new satellite sen-
sors, i.e., Coriolis WindSat, GCOM-W1 AMSR2, SMOS MIRAS and
MetOp-B ASCAT. Particularly, the integration of SMOS has been chal-
lenging because of its sensor characteristics, which differ significantly
from earlier microwave radiometers. SMOS uses an interferometric ra-
diometer instead of a scanning radiometer, andmeasures at a lower fre-
quency (L-band) and over a wide range of incidence angles. While this
offers new opportunities, also several challenges have to be overcome,
especially with regard to the large impact of RFI over much of Eurasia



Table 2
Available global coarse resolution surface soil moisture products from passive and active satellite microwave instruments. Products are grouped according to platform sensor in order of
platform launch date.

Platform
Sensor

Frequency used for
SM retrieval (GHz)

Product name/producer Dataset
availability

Reference

Radiometers
Nimbus7
SMMR

6.6 VU University Amsterdam (VUA)/National Aeronautics and Space
Administration (NASA) (Land Parameter Retrieval Model (LPRM))

1978/10–1987/08 Owe et al. (2008)

DMSP
SSM/I

19.4 VUA/NASA (LPRM) 1987/06–onwards Owe et al. (2008)

TRMM TMI 10.7 VUA/NASA (LPRM) 1997/11–2015/04 Owe et al. (2008)
Princeton University (LSMEM) 1998/01–2004/12 Gao et al. (2006)

AQUA
AMSR-E

6.9, 10.7 VUA/NASA (LPRM) 2002/06–2011/10 Owe et al. (2008)

University of Montana/Numerical Terradynamic Simulation Group 2002/06–2011/10 Jones et al. (2010)
US National Snow and Ice Data Center (NSIDC) 2002/06–2011/10 Njoku et al. (2003)
Japanese Aerospace Exploration Agency (JAXA) 2002/06–2011/10 Koike et al. (2004)
Princeton University (LSMEM) 2002/06–2011/09 Pan et al. (2014)

Coriolis
WindSat

6.8, 10.7 VUA/NASA (LPRM) 2003/01–2012/08 Parinussa et al. (2012)

U.S. Naval Research Laboratory 2003/01–onwards Li et al. (2010)
SMOS
MIRAS

1.4 ESA/Centre Aval de Traitement des Données SMOS (CATDS) 2009/11–onwards Kerr et al. (2010)

ESA/EUMETCAST (for L2-SM-NRT-NN product) 2009/11–onwards Rodríguez-Fernández et al. (2015)
VUA/VanderSat (LPRM) 2009/11–onwards van der Schalie et al. (2016)

Aquarius 1.4 NSIDC 2011/08–2015/06 http://ieeexplore.ieee.org/document/7024139/
FengYun-3B
MWRI

10.7 VUA/NASA (LPRM) 2011/07–onwards Parinussa et al. (2014)

GCOM W1
AMSR2

6.9, 7.3, 10.7 VUA/NASA (LPRM) 2012/07–onwards Parinussa et al. (2015)

JAXA 2012/07–onwards Koike et al. (2004)
SMAP 1.4 NASA 2015/02–onwards O'Neill et al. (2016)

VUA/NASA (LPRM) 2015/02–onwards van der Schalie et al. (2016)

Scatterometers
ERS-1/2
AMI WS

5.3 Vienna University of Technology (TU Wien/WARP), ESA 1991/08–2011/07 Scipal et al. (2002); Wagner et al. (2007)

MetOp-A/B
ASCAT

5.3 EUMETSAT H-SAF, (TU Wien/WARP) 2007/01–onwards Wagner et al. (2013b)
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(Oliva et al., 2012), and the lack of simultaneous Ka-band observations
which are commonly used in LPRM to estimate land surface tempera-
tures. To overcome the latter, SMOS LPRM adopts an approach similar
as for SMOS L3 and estimates the effective soil temperature from the
skin and deeper soil temperatures provided by the Integrated Forecast
System of the European Centre For Medium Range Weather Forecasts
(ECMWF) (van der Schalie et al., 2016). Using LPRM-based SMOS re-
trievals instead of the official SMOS Level 3 product leads to a higher
consistency with the other passive microwave products used in ESA
CCI SM without significant loss of skill with regard to the latter (van
der Schalie et al., in review). Besides, it also provides a solid base for
Fig. 1. Schematic overview of ESA CCI SM productio
future integration of SMAP-based LPRM retrievals (van der Schalie et
al., 2016). In addition to the integration of new sensors, updates of
Level 1 and Level 2 products that were already used in earlier ESA CCI
SM releases are integrated in new ESA CCI SM releases. Notice, that
the datasets are not updated until the near present to allow for using
reprocessed data andmaking a thorough error assessment before public
release.

Even though the core of the ESA CCI SMmerging framework has ba-
sically remained unchanged since its first publication, individual com-
ponents and data output have been continuously upgraded and
expanded. Improvements were commonly triggered by feedback from
n system. Modified fromWagner et al. (2012).

http://ieeexplore.ieee.org/document/7024139/
Image of Fig. 1


Table 3
Specifications of ESA CCI SM public releases.

Version number

V0.1 V02.0/v02.1a V02.2 V03.2

Release date June 2012 July 2014/December 2014 December 2015 February 2017
Products provided COMBINED ACTIVE, PASSIVE, COMBINED ACTIVE, PASSIVE, COMBINED ACTIVE, PASSIVE, COMBINED
Scatterometer
products included
(algorithm +
version)

ERS-1/2 AMI WS (TU Wien
WARP 5.0), MetOp-A ASCAT
(TU Wien/WARP 5.4)

ERS-1/2 AMI WS (TU Wien/WARP
5.0), MetOp-A ASCAT (TU
Wien/WARP 5.4)

ERS-1 AMI WS (TU Wien/WARP 5.5),
ERS-2 AMI WS (TU Wien/WARP5.4),
MetOp-A ASCAT (H-SAF
H25/WARP5.5)

ERS-1/2 AMI WS (TU Wien/WARP
5.5), ERS-2 AMI WS (TU
Wien/WARP5.4), MetOp-A + B
ASCAT (H-SAF H109/H110/WARP 5.6)

Radiometer products
included
(algorithm +
version)

SMMR, SSM/I, TMI, AMSR-E
(all VUA/NASA LPRM v3)

SMMR, SSM/I, TMI, AMSR-E, WindSat,
AMSR2 (all VUA/NASA LPRM v5)

SMMR, SSM/I, TMI, AMSR-E, WindSat,
AMSR2 (all VUA/NASA LPRM v5)

SMMR, SSM/I, TMI, WindSat (all
VUA/NASA LPRM v5); AMSR-E,
AMSR2, SMOS (all VanderSat LPRM
v6)

Time period covered 1978/11–2010/12 1978/11–2013/12 (PASSIVE and
COMBINED);
1991/08–2013/12 (ACTIVE)

1978/11–2014/12 (PASSIVE and
COMBINED);
1991/08–2014/12 (ACTIVE)

1978/11–2015/12 (PASSIVE and
COMBINED);
1991/08–2015/12 (ACTIVE)

Major algorithmic
improvements
with respect to
forerunner

Original version as described
in Liu et al. (2012). Noise
estimates based on scaling and
merging of single sensor error
propagation estimates.

Data gaps in COMBINED
(2003/02–2006/12) resulting from
ERS-2 failure filled with AMSR-E data;
improved CDF-scaling, spatial
resampling of active data by
Hamming window.

Improved flagging of spuriously low
and high observations.

New weighted merging scheme for all
three products based on
signal-to-noise ratio of input datasets;
random error estimates based on SNR

Ancillary data
provided

Random error estimate for
each observation; flags for
spurious observations (e.g.
snow cover, frozen soil);
sensors used per period for
each pixel

Random error estimate for each
observation; flags for spurious
observations, day-/nighttime
observation, ascending/descending
mode; microwave frequency and
sensor used for each soil moisture
retrieval; original observation
timestamp

Random error estimate for each
observation; flags for spurious
observations; day-/nighttime
observation; ascending/descending
mode; microwave frequency and
sensor used for each soil moisture
retrieval; original observation
timestamp

Random error estimate for each
observation; flags for spurious
observations, day-/nighttime
observation, ascending/descending
mode; microwave frequency and
sensor used for each soil moisture
retrieval; original observation
timestamp; SNR blending weights

File format NetCDF-3 classic CF1.5 NetCDF-4 classic CF1.5 NetCDF-4 classic CF1.5 NetCDF-4 classic CF1.6

a v02.1 incorporated a few minor bug fixes and the product name change from ECV SM to ESA CCI SM.
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users and scientific publications. For example, the inclusion of the inter-
mediate ACTIVE and PASSIVE products in the product suite followed the
wish of users to test alternative approaches for merging active and pas-
sive observations, or to assimilate these products separately into land
surface or ecosystem models. The inclusion of ancillary data such as
error estimates andflags for spurious retrievals should above all prevent
from incorrect usage of the data (Wagner et al., 2014), but also allow for
a more in-depth analysis of the dataset and the methods used to pro-
duce it, e.g. with regard to the different sensors, frequencies, satellite
overpass times, and observation angles. For example, W. A. Dorigo et
al. (2015) showed that rebinning observations with different observa-
tion times to a common daily 00:00 UTC reference time had a negative
impact on the quality of themerged product. Based on this result, it was
decided to include also the original observation timestamp in the prod-
ucts, which also facilitates amore direct comparison against data with a
sub-daily temporal resolution, like ground probe data, and allows the
assimilation of the data in sub-daily model experiments (Miralles et
al., 2016).

For the generation of ACTIVE and PASSIVE, the original merging
framework (Liu et al., 2012) considered only the highest quality obser-
vations available during a certain period. For the COMBINED product,
the decision onwhether to use for a given pixel either ACTIVE, PASSIVE,
or an average of both was based on their relative performance with re-
spect to vegetation optical depth (VOD) obtained from AMSR-E C-band
observations (Liu et al., 2012; Owe et al., 2001). However, in the case of
sensor failure this led to reduced data coverage (W. A. Dorigo et al.,
2015). This issue was most dramatically illustrated by the absence of
drought anomalies in the ESA CCI SM v0.1 dataset for the European
heatwave of 2003 (Loew et al., 2013; Szczypta et al., 2014), which was
caused by the failure of ERS-2, the sensor that was commonly used in
this geographical region during that period. From v02.0 to v02.2 this
was resolved by filling the data gaps caused by ERS failure with
AMSR-E data. However, this resulted in a reduced quality for the gap-
filled regions during this period. Moreover, using only the best
performing individual dataset (for ACTIVE and PASSIVE) or dataset cat-
egory (for COMBINED) is suboptimal from a merging perspective as it
ignores the information contained in the retrievals that are not selected.

These issues motivated the development of a more rigorous blend-
ing scheme, which is for the first time implemented in ESA CCI SM
v03.2 (Gruber et al., in review). In this scheme, the blending does not
only consider the highest quality observations available during a certain
period but uses a weighted average of measurements from all sensors
that are available at a certain point in time to compute the merged
soil moisture estimate. This results in a merged observation whose ran-
dom errors are lower than those of each individual input dataset. The
blending weight attributed to each dataset is defined as the reciprocal
of its random error variance (Yilmaz et al., 2012), estimated separately
for each blending period (see Section 3.1) using triple collocation anal-
ysis (Gruber et al., 2016b). The error variance is expressed as a signal-to-
noise ratio (SNR), which relates the estimated error variance to the sig-
nal dynamics at the given location (Gruber et al., 2016b). The weights
are obtained separately for each day from the SNR estimates of all
datasets that provide a valid measurement on that day. If one or more
datasets donot provide a validmeasurement on a particular day, the de-
cisionwhether or not to use the remaining datasets on that day is based
on maximum error variance thresholds. This avoids degrading too se-
verely the overall performance of the blended product by filling data
gaps with input data that have too high random error variances. Note
that this new blending scheme based on weighted averages is used to
produce both the ACTIVE, PASSIVE, and COMBINED products. Fig. 2
shows the blending weights that were used to produce the COMBINED
product of v02.2 (top) and v03.2 (bottom) for the period when only
ASCAT and AMSR2 are used (Section 3.1). The general weight patterns
are in good agreement between the versions, but in v03.2 the areas
that categorically exclude the least performing product are reduced,
while the weights resolve the abrupt transitions between the active-
only and passive-only regions of v02.2 by introducing a gradual
transition.



191W. Dorigo et al. / Remote Sensing of Environment 203 (2017) 185–215
3. ESA CCI SM data characteristics and quality

3.1. Spatial-temporal coverage

Fig. 3 shows the input Level 2 sensors that were used to produce the
latest ESA CCI SM v03.2 products. Until October 2007, the sensors used
for each period are similar to those used to generate v0.1 (W. A.
Dorigo et al., 2015), although all products based on these sensors have
undergone algorithmic and/or calibration updates (Table 3). After this
date, v03.2 diverges significantly from the earliest version: on the one
hand, the products have been extended forward in time and now
cover five more years of data (until December 2015). This has been fa-
cilitated by the inclusion of additional sensors like WindSat, SMOS,
AMSR2 andMetOp-B ASCAT. On the other hand, advances in the blend-
ing procedure have facilitated the concurrent use of virtually any num-
ber of available datasets. This is reflected both in the ACTIVE and
PASSIVE product, as well as in the COMBINED product, which blends
up to four different Level 2 input products at the same time (Fig. 3).
Even more datasets may be simultaneously merged in the future, e.g.,
with the potential integration of SMAP.

Combining two or more products increases the likelihood of having
at least one observation for a given day and pixel, hence, reducing the
number of data gaps. This is reflected by the average temporal observa-
tion density (Fig. 4), which shows remarkable improvements from
Fig. 2. Blendingweights attributed to ACTIVE and PASSIVE for the production of COMBINED in t
v02.2 (top) and ESA CCI SM v03.2 (bottom).
version to version: while version v0.1 for the period January 2007–De-
cember 2010 only used MetOp-A ASCAT and AMSR-E data, v02.2 addi-
tionally includes WindSat. In version v03.2 also SMOS is introduced.
This is visible e.g. for the eastern United States or eastern China,
where the average observation frequency in this period has approxi-
mately doubled with respect to the first release.

For ESA CCI SM COMBINED v03.2 we observe a steady improvement
in spatiotemporal coverage over time, approaching full coverage in
more recent years (Fig. 5). This directly coincides with the increasing
number of satellites becoming available. Nevertheless, neither the in-
creasing number of satellites nor the improved blending techniques
are able to mitigate data gaps associated with the physical limitations
ofmicrowave observations for soilmoisture retrieval (Section 3.2). Con-
sequently, also in the latest product some areas still experience seasonal
(e.g., northern latitudes) or even continuous (e.g., tropical rain forests)
data gaps. In fact, for some northern regions the observation frequency
has even slightly reduced over time due to improved masking of frozen
conditions and snow (Fig. 5).

3.2. Data quality indicators

In both the Level 2 input products and themerged ESA CCI SM prod-
ucts, the quality of individual soil moisture observations is impacted by
numerous factors, which can be roughly subdivided into five categories
he period January–December 2014when only ASCAT and AMSR2 are used for ESA CCI SM

Image of Fig. 2


Fig. 3. Spatial-temporal coverage of input products used to construct ESACCI SMv03.2 (a) ACTIVE, (b) PASSIVE, (c) COMBINED. Blue colours indicate passive, red colours activemicrowave
sensors. Modified from W. A. Dorigo et al. (2015). The periods of unique sensor combinations are referred to as ‘blending period’.
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(Table 4): sensor properties, orbital characteristics, environmental con-
ditions, algorithmic skill (e.g., methods used to correct for vegetation
impacts), and post-processing (e.g., resampling). While some factors
may homogeneously affect the entire globe during the lifetime of a sat-
ellite mission (e.g., observation wavelength) others may be variable
through space (e.g., topography), time, or both (e.g., frozen soil condi-
tions, vegetation cover). Some factorsmay entirely impede a realistic re-
trieval (e.g., snow/ice coverage)while themajority adds some degree of
random error and bias to the obtained estimate, the amount of which
depends on the nature, intensity, and subpixel area affected (e.g., by
vegetation, open water).

Since no observation is free of error, the challenge is to mask only
those observations that are below acceptable quality thresholds while
providing reliable error estimates for the remainder. The active and pas-
sive microwave Level 2 processors flag for frozen soils, snow and ice
cover probability, RFI, and failing retrieval. These flags are readily prop-
agated into the ESACCI SMproducts and complementedwith additional
flags and metadata (e.g. for sensor, frequency, ascending/descending
mode, dense vegetation, and original observation timestamp). The
Level 2 retrieval algorithms also produce uncertainty estimates based
on the propagation of uncertainties related to instrument and observa-
tion specifications and methodological assumptions (Naeimi et al.,
2009; Parinussa et al., 2011). However, combining and merging these
error propagation estimates into ESA CCI SM is not trivial as they de-
pend both on the retrieval and the error models used, and implicitly as-
sume that the retrieval models themselves are free of error (Draper et
al., 2013). Therefore, the random error estimates provided in ESA CCI
SM are based on the triple collocation analysis (see Section 3.3 for
details).

3.3. Random error characteristics from triple collocation

The random error of an observation is – when expressed as SNR – a
direct measure of its sensitivity to soil moisture changes (Gruber et al.,
2016a, b). Moreover, it defines the weight that the observation should
receive when combined with other observations, e.g. through data as-
similation (Gruber et al., 2015). The most common way of
characterising random errors of satellite-based soil moisture estimates
over large scales is triple collocation analysis (TCA), which provides es-
timates for the average error variance or SNR (e.g., Dorigo et al., 2010;
Miralles et al., 2010; Scipal et al., 2008b; Stoffelen, 1998). However,
since TCA requires a large number of observations, it only provides a sin-
gle error estimate for a larger time period and not for each observation
individually (Zwieback et al., 2012). Moreover, TCA requires the avail-
ability of a dataset triplet with independent error structures, which is
currently – on a global scale – only provided by a combination of an ac-
tive microwave, a passive microwave, and an LSM-based soil moisture
product. In the ESA CCI SM production, TCA is applied to estimate the
error variances of the individual Level 2 input products (see Section
2.3) and - for each blending period separately – the error variances of
ACTIVE and PASSIVE, respectively. Surface soil moisture estimates
from the GLDAS-Noah v1 LSM provide the third dataset. Unfortunately,
TCA cannot be used to evaluate the random error characteristics of
COMBINED, since after blending ACTIVE and PASSIVE an additional

Image of Fig. 3


Fig. 4. Fractional coverage of ESA CCI SM v0.1 (top), v02.0-v02.2 (middle), and v03.2 (bottom) for the period January 2007–December 2010, expressed as the total number of daily
observations per time period divided by the number of days spanning that time period.

Fig. 5. Fraction of days per month with valid (i.e., unflagged) observations of ESA CCI SM v03.2 COMBINED for each latitude and time period.
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Table 4
Main sensor, observational, and environmental factors impacting the quality of the ESA CCI SM products.

Factor Category Affects active
(A) or passive
(P)
observations

Impact on soil moisture retrieval How it is handled in ESA CCI SM v03.2 + potential
recommendation for use

Observation
frequency/wavelength

Sensor A,P Shorter wavelengths (higher frequencies) are more
sensitive to vegetation, theoretically causing higher errors.
Different wavelengths have different soil penetration
depths, and thus represent different surface soil moisture
columns.

Preferential use of longer wavelengths when multiple
frequencies are available. Indirectly accounted for by
SNR-based weighting and indirectly quantified as part
of the random error estimate (see below). The
frequency and sensor that were used in ESA CCI SM
are provided as ancillary data.

Instrument errors and
noise

Sensor A,P Directly impacts the error of the single-sensor soil moisture
retrieval

Included in total random error ESA CCI SM products
assessed by triple collocation (see Section 3.3). Soil
moisture random error provided as separate variable.

Local incidence angle
and azimuth

Sensor A Impacts backscatter signal strength and hence retrieved
value

Accounted for by incidence angle and azimuthal
correction in Level 2 retrieval. Remaining uncertainty is
indirectly quantified as part of random error estimate.

Local observation time Orbital A,P Vegetation water content changes during the day
(Steele-Dunne et al., 2012), but this variability is not
accounted for by the retrieval models. Early morning
observations may be influenced by dew on soil and
vegetation, thus leading to higher observed soil moisture.
Solar irradiation causes discrepancies between canopy and
soil temperatures which complicate the retrieval of soil
moisture (Parinussa et al., 2016); see also “Land Surface
Temperature” below Intra-daily variations because of
convective precipitation and successive evaporation may
be missed.

Partly addressed by excluding “day-time” radiometer
observations. Remaining uncertainty is indirectly
quantified as part of random error estimate.

Vegetation cover Environmental A,P Reduces signal strength from soil and hence increases
uncertainty of soil moisture retrieval

Included in total random error of ESA CCI SM products
assessed by triple collocation (see Section 3.3). Dense
vegetation is masked for passive Level 2 products
according to sensor-specific VOD thresholds: Soil
moisture random error is provided as a separate
variable.

Topography Environmental A,P Impacts backscatter signal strength; causes heterogeneous
soil moisture conditions within the footprint

Not accounted for. Topography index is provided as
metadata. A flagging of pixels with topography index
N 10% is recommended.

Open water Environmental A,P Impacts backscatter and brightness temperature signal
strength

Not accounted for. Open water fraction is provided as
metadata. A flagging of pixels with open water
fraction N 10% is recommended

Urban areas,
infrastructure

Environmental A,P Impacts backscatter and brightness temperature signal
strength

Not directly accounted for. Uncertainty is indirectly
quantified as part of random error estimate.

Ice and snow coverage Environmental A,P Obstructs soil moisture information Masked using radiometer-based land surface
temperature observations (Holmes et al., 2009) and
freeze/thaw detection (Naeimi et al., 2012) from
Level 2 algorithms, and ancillary data from
ERA-Interim and GLDAS-Noah in ESA CCI SM
production. Flag provided as metadata.

Frozen soil water Environmental A,P Strongly impacts observed backscatter/brightness
temperatures causing a “false” reduction in soil moisture

Masked using radiometer-based land surface
temperature observations (Holmes et al., 2009) and
freeze/thaw detection (Naeimi et al., 2012) from
Level 2 algorithms, and ancillary data from
ERA-Interim and GLDAS-Noah in ESA CCI SM
production. Flag provided as metadata.

Dry soil scattering Environmental A Volume scattering causes unrealistic rises in retrieved soil
moisture (Wagner et al., 2013b)

Not directly accounted for, but indirectly accounted
for by low weight (related to high error) received in
SNR-based blending.

Land surface
temperature

Environmental P Errors in land surface temperature directly impact the
quality of surface soil moisture retrievals

Partly addressed by excluding “day-time” radiometer
observations. Remaining uncertainty is indirectly
quantified as part of random error estimate.

Radio frequency
interference (passive
only)

Environmental P Artificially emitted radiance increases brightness
temperatures and, hence, leads to a dry bias in retrieved
soil moisture.

In the case of multi-frequency radiometers, a higher
frequency channel (e.g. X-band) is used if RFI is
detected. In other cases, the observation is masked.
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dataset with independent error structures would be required to com-
plement the triplet. To address this issue, a classical error propagation
scheme (e.g., Parinussa et al., 2011) is used to propagate the TCA-
based error variance estimates of ACTIVE and PASSIVE through the
blending scheme to yield an estimate for the random error variance of
the final COMBINED product (Gruber et al., in prer.):

var εcð Þ ¼ w2
a var εað Þ þw2

p var εp
� � ð1Þ

where the superscripts denote the COMBINED (c), ACTIVE (a) and PAS-
SIVE (p) datasets, respectively; var(ε) denotes the error variances of the
datasets; andw denotes the blendingweights. Note, that similarly as for
TCA, the error propagation notation in Eq. (1) assumes mutually inde-
pendent error structures between ACTIVE and PASSIVE. From Eq. (1) it
can be seen that the error variance of the blended product is typically
smaller than the error variances of both input products unless they
are very far apart, inwhich case the blended error variancemay become
equal to or only negligibly larger than that of the better input product.

However, the ACTIVE and PASSIVE input datasets of COMBINED are
not perfectly collocated in time since the satellites do not provide mea-
surements every day. In fact, there are days when either only ACTIVE or
only PASSIVE provides a valid soil moisture estimate. As described in
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Section 2.3, we use such single-category observations to fill gaps in the
blended product, but only if the error variance is below a certain thresh-
old. Consequently, as inferred fromEq. (1), the randomerror variance of
COMBINED on days with single-category observations is typically
higher than that on days with blended multi-category observations.
This results in an overall average random error variance of COMBINED
that lies somewhere in between the random error variance of the single
input datasets and themerged random error variance of all input prod-
ucts (estimated through error propagation) (Gruber et al., in review).
How close the actual mean random error variance of COMBINED is to
these boundaries depends on the number of days that have been filled
with ACTIVE or PASSIVE only. To illustrate this, Fig. 6 shows global
maps of the estimated random error variances of ACTIVE, PASSIVE,
and COMBINED in the period where MetOp-A/B ASCAT, AMSR2, and
SMOSare jointly available (July 2012–December 2015). The comparison
with VOD from AMSR2 C-band observations (Fig. 6d) shows that at the
global scale error patterns largely coincide with vegetation density.

3.4. Agreement with ground data

Traditionally, the skill of satellite-based soil moisture products is
assessed by comparing them against ground-based observations,
allowing for the computation of statistics such as correlation, (unbi-
ased) Root-Mean-Squared-Difference ((ub)RMSD), and bias. Numerous
studies have validated the different ESA CCI SMproduct versions against
in-situ soil moisture observations from various sites around the world.
The most extensive evaluation of ESA CCI SM v0.1 was undertaken by
Dorigo et al. (2015), who employed all usable observations from the
ISMN (Dorigo et al., 2011; Dorigo et al., 2013) to assess the dataset per-
formance for different regions and blending periods. They found that
the dataset performance was slightly better during periods when
lower frequency C-band observations are available. Nevertheless, track-
ing the temporal evolution of dataset performance based on in-situ in-
formation was severely hampered by the heterogeneity of the
observations and a lack of permanent long-termmonitoring sites of ho-
mogeneous quality in time (Dorigo et al., 2015). In their study, Dorigo et
al. (2015) also confirmed that ESA CCI SM v0.1 had a performance
which was similar or slightly better than the individual Level 2 input
Fig. 6. Average error variances of ESA CCI SM for ACTIVE, PASSIVE, and COMBINED estimated th
Long-term (July 2012–December 2015) VOD climatology from AMSR2 6.9 GHz observations.
products, underlining the benefit of the merging approach. Albergel et
al. (2013b) used several globally available in-situ networkswith varying
climatic conditions to put the ESA CCI SM v0.1 performance in relation
to the skill of ERA-Interim/Land, a revised version of the land compo-
nents of ERA-Interim (Balsamo et al., 2015) and MERRA-Land (Reichle
et al., 2011). Similarly, Fang et al. (2016) performed a large-scale in-
situ validation of all three ESA CCI SM v02.2 products and NLDAS2-
Noah model simulations. Both studies showed that on average ESA CCI
SM agrees well with in-situ observations but that for several networks
the correlations still lack behind those obtained for the LSM simulations
integrating observed precipitation. It has been suggested that, among
other factors, this may be due to the discrepancy between the installa-
tion depth of the in-situ probes (typically 5 cm) and the typical depth
of ~2 cm represented by the C- and X-band satellite products used
until v02.2 (Albergel et al., 2013b; Dorigo et al., 2015). However, a re-
cent study showed that even for L-band microwave observations often
this discrepancy exists and that the surface layer represented by the ob-
servations is shallower than previously suggested (Shellito et al., 2016).

Several regional and local studies analysed the performance of ESA
CCI SM in regions characterised by different climates, land cover, and
soil types. Pratola et al. (2014) obtained high correlations (N0.7) be-
tween ESA CCI SM v0.1 over various Irish grassland sites, characterised
by a humid, temperate climate. Similar correlation values for v0.1
were obtained over grassland sites and agricultural fields in the United
States, France, Spain, China, and Australia (Albergel et al., 2013b; An et
al., 2016b). For non-grassland sites in China agreements are generally
poorer (An et al., 2016b;Mao et al., 2017; Shen et al., 2016). The high al-
titude sites located on the Tibetan Plateau and in South-Western China,
and the Tarim river basin in western China provide an exception. Here,
various versions of ESA CCI SM COMBINED agree well with in-situ soil
moisture and generally outperform LSM-based soil moisture products
and other satellite-based SM products including Level 2 input products
from ASCAT, AMSR-E/2, and SMOS (Albergel et al., 2013b; Peng et al.,
2015; Su et al., 2016; Zeng et al., 2015). Also for semi-arid areas, e.g. in
Spain or Australia, where satellite observations typically show a
high SNR (Gruber et al., 2016b), ESA CCI SM (v0.1) generally agrees
well with in-situ observations (Albergel et al., 2013b; Dorigo et al.,
2015).
rough triple collocation and error propagation for the period July 2012–December 2015. d)

Image of Fig. 6
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For certain regions, land cover types, or surface characteristics ESA
CCI SM has reduced skill. Sathyanadh et al. (2016) found that over
India LSM-based soil moisture products, specifically MERRA-Land,
show higher correlations with in-situ data than ESA CCI SM v0.1. Mod-
erate performance of ESA CCI SM v0.1 for this areawas also found byW.
A. Dorigo et al. (2015). Further, generally poor correlations against in-
situ data are found at high latitudes and in boreal forest environments
for various versions of the COMBINED product (Dorigo et al., 2015;
Ikonen et al., 2016; Pratola et al., 2015). However, Ikonen et al. (2016)
showed that with appropriate approaches to upscale the in-situ data
to the satellite footprint - which take into account local information
on soil, land cover, and sensor placement - amuchbetter agreement be-
tween ground observations and ESA CCI SM can be obtained.

Apart from assessing a temporal and spatial agreement, in-situ data
have also been used to assess more intricate properties of ESA CCI SM.
Qiu et al. (2016) and Liu et al. (2015) concluded that in China trends
in ESA CCI SM COMBINED (v0.1 and v02.1) generally reflected those ob-
served in in-situ observations. In addition, Qiu et al. (2016) concluded
that it better captures trends than ERA-Interim/Land and attributed
this to the absence of irrigation modules in the latter. Su et al. (2016b)
proposed a new methodology based on a large selection of in-situ sta-
tions in combination with various breakpoint detection techniques to
identify and correct for inhomogeneities in the mean and variance in
ESA CCI SM v02.2 related to changes in sensor constellations. Themeth-
odologyworkswell for these in-situ stations, but the availability of long-
termmonitoring stations is too low to apply themethod globally. How-
ever, Su et al. (2016b) showed that the method showed similar skill in
detecting inhomogeneities when using a global LSM instead of in-situ
data. For each transition between blending periods the authors ob-
served inhomogeneities associated with sensor changes, although for
more recent periods they are less frequent. Finally, Nicolai-Shaw et al.
(2015) used a large number of sites over the United States to assess
the spatial representativeness of ESA CCI SM v0.1. They concluded
that, particularly for the temporal anomalies, ESA CCI SMbettermatches
the spatial representativeness of in-situ observations than ERA-Interim/
Land.

Based on the studies above, it can be concluded that the ESA CCI SM
COMBINED products generally match relatively well with in-situ obser-
vations in temperate climates, over grassland and agricultural areas, and
in semi-arid regions, but have difficulties in reflecting the temporal dy-
namics in the driest andwettest areas. This may be both due to a gener-
ally lower SNR of the satellite data over such areas (Gruber et al., 2016b)
as well as a reduced skill of certain in-situ probes in extreme conditions
(Cosh et al., 2016; Dorigo et al., 2011). Most of the reported studies fo-
cused on temporal correlation (either applied to the soil moisture
values directly or to its anomalies) as a comparisonmetric, which is jus-
tifiable, being closely related to metrics such as the ((ub)RMSD)
(Entekhabi et al., 2010b; Gruber et al., 2016b). Dorigo et al. (2015)
pointed out that one should not usemetrics like bias andRMSD to assess
the skill of the COMBINED product, as the scaling step involved to com-
bine active and passive observations (see Section 2.2) imposes the dy-
namic range of the GLDAS-Noah LSM on the ESA CCI SM COMBINED
products. In addition, the gap in spatial representativeness of the in-
situ pointmeasurement and the coarse satellite footprint introduces ad-
ditional error to the metrics of agreement, which ideally should be
corrected for when using in-situ data for satellite validation (Gruber et
al., 2013).

3.5. Comparison against land surface models and gridded precipitation

Since in-situ soil moisture measurements are limited in space, time,
and representativeness (Dorigo et al., 2015), complementary evalua-
tions based on the comparisonwith independent soilmoisture products
(e.g. from LSMs, land surface reanalysis) are fundamental for a thorough
assessment of the skill of ESA CCI SM as well as to steer algorithmic im-
provements (Albergel et al., 2013a). Particularly land surface reanalysis
products, which in regions with high quality forcing data adequately
capture the temporal dynamics of soil moisture (Albergel et al.,
2013b), are well suited for this purpose due to their comparable spatial
resolution, uniform configuration over time, and global availability. Also
comparisons against gridded datasets of climate variables with a close
physical link to soil moisture, e.g. precipitation and evaporation, are ex-
pected to provide valuable insight into the dataset performance (e.g.,
Meng et al., 2017).

Several studies compared intra- and inter-annual soil moisture dy-
namics of ESA CCI SMwith various land surface reanalysis products, in-
cluding ERA-Interim (Dee et al., 2011), ERA-Interim/Land,MERRA-Land,
and GLDAS-Noah, aswell aswith long-term satellite precipitation prod-
ucts such as the Global Precipitation Climatology Project (GPCP;
Huffman et al., 2009). In general, good temporal agreement between
LSM soil moisture and various versions of ESA CCI SM COMBINED was
found in the (sub-)tropics (with the exception of densely vegetated
areas like the Amazon or Congo basins) and in central Eurasia
(Albergel et al., 2013a; Albergel et al., 2013b; Chakravorty et al., 2016;
Dorigo et al., 2012; Loew et al., 2013). ESA CCI SM COMBINED v02.2
showed a skill in capturingwet and dry extreme events over Eastern Af-
rica comparable to the Variable Infiltration Capacity model and the
Noah LSM forced with precipitation from CHIRPS and the remaining
meteorological input from MERRA (McNally et al., 2016), while ESA
CCI SM COMBINED v02.1 showed a similar soil moisture response to
weak monsoon phases in India and Myanmar as the Climate Forecast
System Reanalysis (CFSR) produced by NCEP (Shrivastava et al., 2016).
Better correlations between ESA CCI SM COMBINED and LSMs are usu-
ally obtained in the presence of a significant fraction of bare soil. Also,
the latest ESA CCI SM COMBINED v03.2 product generally shows high
positive correlationswith ERA-Interim/Land, except for parts of the tun-
dra regions, where the two products show a strong anticyclical behav-
iour (Fig. 7a). Comparison with long-term precipitation from GPCP
(Fig. 7c) shows positive correlations with ESA CCI SM COMBINED over
these areas. This suggests that negative correlations may stem from is-
sues in ERA-Interim/Land rather than in ESA CCI SM. However, long-
term soil moisture anomalies of ESA CCI SM COMBINED v03.2 and
ERA-Interim/Land in the tundra regions mostly do correlate positively
(Fig. 7b), which may point to a deficiency of ERA-Interim/Land in
representing the seasonal cycle.

LSM products may be used to assess trend behaviour and dataset
stability, even though the forcing used to generate these products
often contains inhomogeneities (Ferguson and Mocko, 2017). Dorigo
et al. (2012) assessed trends in the ESA CCI SM v0.1 combined product
for the period 1988–2010, and compared themwith trends in soil mois-
ture from LSMs (GLDAS-Noah and ERA-Interim), in satellite-based Nor-
malised Difference Vegetation Index (NDVI) data, and in the GPCP
precipitation product. The broad correspondence in trends between
ESA CCI SM and the other products lends confidence in the dataset's ca-
pability of capturing long-term systematic changes. Albergel et al.
(2013a) found that the observed trends in ESA CCI SM v0.1 were also
in line with trends in ERA-Interim/Land but deviated more strongly
from those inMERRA-Land. Su et al. (2016b) usedMERRA-Land to iden-
tify discontinuities related to sensor blending periods in ESA CCI SM
v02.2 and assessed their potential impact on trend statistics. Even
though inconsistencies were detected, trends between ESA CCI SM
andMERRA-Land largely agreed. Moreover, Albergel et al. (2013a) test-
ed the consistency of the ESA CCI SM v0.1 over time by correlating it
with ERA-Interim/Land surface soil moisture estimates for different
sub-periods of the entire data record. They found a slight increase in
correlation over time, with the exception of the years dominated by re-
trievals fromKu-band observations of the SSM/I sensor, which aremore
sensitive to vegetation. They also highlighted the large effect changes in
spatial data coverage can have on global statistics on temporal stability
(Albergel et al., 2013a).

Comparing ESA CCI SM to LSM simulations may help to guide future
algorithmic updates. For example, Szczypta et al. (2014) compared ESA



Fig. 7. Pearson correlation over the period 1997–2013 of a) ESA CCI SM COMBINED v03.2 and ERA-Interim/Land 0–7 cm soil moisture, b) long-term anomalies of ESA CCI SM COMBINED
v03.2 and ERA-Interim/Land 0–7 cmsoilmoisture, and c) ESA CCI SMCOMBINED v03.2 soilmoisture andGPCP 1DDprecipitation.White areas indicate pixels forwhich correlations are not
significant (p N 0.05).
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CCI SM v0.1 to surface soil moisture from the CO2-responsive version of
the ISBA Land SurfaceModel (Gibelin et al., 2006) over 1991–2008. Sim-
ulated surface soil moisture (0–1 cm) generally agreed well with ESA
CCI SM and helped to highlight regions where ESA CCI SM had reduced
skill, e.g. over the Turkish Tauros mountain chain. This information was
used to improve the initial blending scheme over vegetated mountain
ranges (Section 2.3). Fang et al. (2016) compared the three products
of ESA CCI SM v02.2 against simulated soil moisture from the Noah
LSM (Ek et al., 2003) forced with National Land Data Assimilation Sys-
tem (NLDAS)-2 atmospheric forcing over the United States for the peri-
od 2000–2013. Considering soil moisture anomaly time series, ESA CCI
SM COMBINED v02.2 presented higher correlations with the Noah
LSM than ACTIVE or PASSIVE, which highlights the added value of com-
bining active and passive observations using the ESA CCI SM blending
technique. Chakravorty et al. (2016) found that ESA CCI SM v02.1 AC-
TIVE and COMBINED show a similar level of correlation with soil mois-
ture from MERRA-Land. When applying the triple collocation to the
three datasets in order to investigate the spatial distribution of random
errors, ACTIVE on average has lower random errors than PASSIVE and
COMBINED, with exception of the arid desert regions of western India.
These results suggest that, at least for this region, the blending of ACTIVE
and PASSIVE into COMBINED based on VOD thresholds in v02.1 did not
optimally exploit the information contained in the input datasets. This
observation provided an importantmotivation for revising the blending
methodology scheme as described in Section 2.3.

Another advanced (indirect) validation technique relies on assimi-
lating satellite soil moisture product into a simple water balance
model (Crow, 2007) or a more sophisticated LSM (Albergel et al.,
2017). The obtained updated dataset accounts for the synergies of the
various upstream products and provides statistics, which can be used
tomonitor the quality of the assimilated observations. The FrenchMete-
orological service (CNRM, Météo-France) is in the process of
implementing an LDAS at both continental and global scale (Albergel
et al., 2017; Barbu et al., 2014; Fairbairn et al., 2017). The long-term
LDAS statistics can be analysed to detect possible drifts in the quality
of the products: innovations (observations vs.model forecast), residuals
(observations vs. analysis) and increments (analysis vs.model forecast).

Finally, the possibility to use precipitation data for the assessment of
the ESA CCI SM products is currently investigated (Ciabatta et al., 2016).
Ciabatta et al. (subm.) used the SM2RAIN algorithm for estimating
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precipitation fromESA CCI SMdata (see Section 4.4). The estimated pre-
cipitation data are then compared with ground-observed datasets, e.g.,
GPCC, characterised by a much larger spatial-temporal coverage than
in-situ soil moisture observations, to indirectly assess the quality of
the ESA CCI SM products.

3.6. Tracking dataset quality among releases

Evaluating the quality of ESA CCI SM should be continuously repeat-
ed once a new dataset version becomes available to assess the potential
impact of improved calibrations and algorithmic changes. In this sec-
tion, we present various methods that are being adopted to assess the
impact of product updates. Fig. 8 shows the distributions of the correla-
tions between the different ESA CCI SMCOMBINED versions and global-
ly available in-situ soil moisture measurements obtained from the
ISMN, the North American Soil Moisture Database (Quiring et al.,
2015), and the Swiss Soil Moisture Experiment network (Mittelbach
and Seneviratne, 2012) for the 1991–2010 time period. To comply
with the topsoil moisture represented by ESA CCI SM we considered
only in-situ measurements down to a maximum of 5 cm depth. For
those stations that provide at least two years of data, we calculated
the correlation between the daily in-situ measurements and the corre-
sponding grid cell for the longest available time period, while only
time steps were used that provide data for all ESA CCI SM versions.
Correlations between these stations and ERA-Interim/Land layer 1
(0–7 cm) are provided as reference. Fig. 8 shows that on average the
data set quality is stable across versions, with a slight tendency towards
improved correlations for more recent releases. This confirms that
changes in the methodology and input data used generally have a
positive impact. Note, that these results are based only on regions
where in-situ soilmoisture data are available, hence restricting the anal-
ysis mainly to the United States and Europe (Dorigo et al., 2015). Be-
sides, the inclusion of v0.1 limits the common analysis period to end
in 2010. Fig. S1 in the Supplement shows that generally correlations
are higher for more recent periods (2011−2013) in which additional
Level 2 input products are integrated (e.g. SMOS, AMSR2, MetOp-B
ASCAT).

As an alternative to the in-situ-based skill tracking, which has a
strong regional and temporal bias (Dorigo et al., 2015), changes
Fig. 8. Boxplots (displayingmedian, inter-quartile range (IQR), upper (lower) quartile plus (mi
ESA CCI SM COMBINED and ERA-Interim/Landwith globally available in-situ probe observation
anomalies. Only observations within the period 1991–2010 were considered.
between dataset releases can be assessed by comparing them to a
fixed global reference, e.g. provided by an LSM. Fig. 9 plots the correla-
tions between two versions of ESA CCI SM COMBINED (v0.1 and
v02.2) and the first layer (0–7 cm) of ERA-Interim/Land. Each triangle
represents themedian global correlation over a 3-year sub-periodwith-
in the period 1979–2010, similarly as in Albergel et al. (2013a). Only lo-
cations that show a significant correlation for each 3-year sub-period in
both versions are considered. For both absolute soil moisture values
(left) and anomalies (right) all symbols fall below the 1:1 line. Since
error correlations between any of the ESA CCI SM datasets and ERA-In-
terim/Land are expected to be close to zero (Gruber et al., 2016a), all in-
creases in the correlation can be reliably interpreted as an increase in
the SNR for the newer ESA CCI SM product. Differences between the
two versions are smaller in the most recent sub-periods, which may
be related to the fact that algorithmic updates, i.e., a change from
LPRMv3 to v5 (see Table 3) andfiltering of spurious observations herein
have had a larger impact on the Level 2 radiometer products usedbefore
2002 (the year in which AMSR-Ewas introduced) than on the relatively
high quality products used after this date.

Fig. 10 shows the differences in correlation between soil moisture
from the first soil layer (0–7 cm) of ERA-Interim/Land and ESA CCI SM
COMBINED of v02.1 and v03.2, respectively. Figs. S2 and S3 in the Sup-
plement show the changes in correlation for the intermediate product
updates and reveal that the most prominent changes occur between
v02.2 and v03.2, illustrating the impact of the new merging scheme
(Section 2.3). The figures show that most areas and land cover types,
particularly moderately vegetated areas, experienced an overall im-
provement in correlation, both for absolute values and anomalies. In
contrast, in desert areas correlations are lower for the latest product re-
lease, which is most likely related to the filling of temporal gaps in the
passivemicrowave time series with lower quality activemicrowave ob-
servations (Dorigo et al., 2010). Thus, in these areas the increase in frac-
tional coverage observed in Fig. 4 goes at the cost of the product
accuracy. It should be noted however that a decrease in correlation
with ERA-Interim/Land does not always indicate a reduction in
product skill, as ERA-Interim/Landmaynot capture all soilmoisture var-
iations correctly (e.g. Fig. 7). Hence, assessing changes in product skill
over time should entail a combination of methods and reference
datasets.
nus) 1.5 times the IQR, and outliers) of the correlations of the publicly released versions of
s down to amaximumdepth of 5 cm, both for absolute values and long-term soil moisture
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Fig. 9. Correlations between soil moisture from the first soil layer (0–7 cm) of ERA-Interim/Land and ESA CCI SM COMBINED v0.1 (y-axis) and v02.2 (x-axis), respectively. The left image
shows the results for absolute values, the right image for anomalies from a 35-daymoving window. Each triangle represents themedian global correlation over a 3-year period, similar as
in (Albergel et al., 2013a). Only pixels that show significant correlations (p b 0.05) for both product versions and for all periods were used in the computation of the global median values.
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4. ESA CCI SM in Earth system applications

A wide variety of studies have explored the potential of ESA CCI SM
product for improving our understanding of Earth system processes, in
particular with respect to climate variability and change (Table 5). Even
though the application fields are seemingly different, in all of them ESA
CCI SMplays a central role in benchmarking, calibrating, or providing an
alternative to the land surface hydrology in dedicated models. The fol-
lowing sections will provide an extensive synthesis of how ESA CCI
Fig. 10.Differences in correlation between soilmoisture from thefirst soil layer (0–7 cm) of ERA
moisture; b) long-term soil moisture anomalies. Blue colours denote an increase in correlation f
where no significant correlations (p b 0.05) were observed for one or both product versions. C
SM has been used in the different application areas, the motivation of
each study for using this product in particular, and the main drawbacks
encounteredwhen using the ESA CCI SM data. A synthesis of the limita-
tions and the unexploited potential of the dataset is given in Section 5.
For our assessment, we reviewed all scientific papers that correctly
cite any of the key publications on the dataset (i.e., Dorigo et al., 2012;
W. A. Dorigo et al., 2015; Liu et al., 2012; Liu et al., 2011; Wagner et
al., 2012) and were listed either in Scopus (http://scopus.com/) or Goo-
gle Scholar (https://scholar.google.com) as of June 22, 2017.
-Interim/Land and ESA CCI SMCOMBINED v03.2 and v02.1, respectively for a) absolute soil
rom v02.1 to v03.2, red colours a decrease, grey colours no change, andwhite colours areas
orrelations were computed for the period 1997–2013.

http://scopus.com
https://scholar.google.com
Image of Fig. 9
Image of Fig. 10


Table 5
Applications where ESA CCI SM has been used to improve our Earth system understanding. Modified from Dorigo and De Jeu (2016).

Application area Main purpose References Motivation for using ESA CCI SM Limitations identified

Climate variability and
change

Long-term trends in soil
moisture

Albergel et al. (2013b); An et al.
(2016b); Dorigo et al. (2012); Feng and
Zhang (2015); Li et al. (2015); Qiu et al.
(2016); Rahmani et al. (2016); Su et al.
(2016b); Wang et al. (2016); Zheng et
al. (2016)

Long-term coverage needed for
robust trend assessment

No global coverage; no representation
of root-zone; data quality changes over
time

Assessment of drivers of
soil moisture trends

Chen et al. (2017); Feng (2016); Liu et
al. (2015); Meng et al. (2017); Zhan et
al. (2017)

Long-term coverage for robust driver
assessment

Data gaps in time and space

Soil moisture as driver of
multi-annual variability
in land evaporation

Miralles et al. (2014b) Independent evidence of long-term
trends and variability in modelled
soil moisture, constraining errors in
water balance model

Not mentioned

Impact of ocean
atmosphere system on
soil moisture variability

Bauer-Marschallinger et al. (2013);
Miralles et al. (2014b); Nicolai-Shaw et
al. (2016)

Long-term dataset required for
assessing low impact of frequency
climate oscillations

Data periods with reduced spatial
coverage

Soil moisture as indicator
of global climate
variability and change

De Jeu et al. (2011); De Jeu et al. (2012);
Dorigo et al. (2014); W. Dorigo et al.
(2015); Dorigo et al. (2016); Dorigo et
al. (accepted); Parinussa et al. (2013)

Assess actual soil moisture condition
with respect to historical context

Lack of global coverage hampers
assessment of mean global and
hemispherical trends

Impact of soil moisture on
trends in aerosols

Klingmüller et al. (2016) Long-term coverage required for
robust trend and driver assessment

Not mentioned

Validation of ESMs and
climate models (mean
fields, spatial patterns,
temporal variability,
trends)

Agrawal and Chakraborty (2016); Du et
al. (2016); Huang et al. (2016); Lauer et
al. (2017); Pieczka et al. (2016);
Ruosteenoja et al. (2017); van den Hurk
et al. (2016); Yuan and Quiring (2017)

Potential for assessing long-term
climatology, variability, and trends

Layer thickness not consistent among
models and satellite observations; ESA
CCI SM uncertainties are larger than the
RMSE of many of the models; data gaps
due to frozen soils, snow, and dense
vegetation.

Validation and sensitivity
analysis of regional
climate models

Pieczka et al. (2016); Unnikrishnan et al.
(2017)

Potential for assessing long-term
climatology, variability, and trends

Evaluation of absolute values not
possible; discrepancy in layer thickness
represented.

Assimilation in regional
climate model

Paxian et al. (2016) Not mentioned Not mentioned

Variability of
precipitation and soil
moisture during South
Asian Monsoon

Shrivastava et al. (2016, 2017) Convergence of evidence together
with reanalysis soil moisture and
precipitation, robust assessment of
inter-annual variability

Temporal data gaps during monsoon
season

Land atmosphere
interactions

Improved understanding
of soil moisture feedbacks
on precipitation

Guillod et al. (2014); Guillod et al.
(2015) (indirectly, through assimilation
of ESA CCI SM into GLEAM)

Constraining errors in water balance
model over long period

Not mentioned

Feedback of antecedent
soil moisture on Tibetan
and Indian monsoon
intensity

Zhou et al. (2016); (KanthaRao and
Rakesh, 2017)

Long-term dataset for robust
statistics

Dataset not suitable due to large data
gaps in winter

Identifying role of soil
moisture on temperature
variability and heatwaves

Casagrande et al. (2015); Hirschi et al.
(2014); Miralles et al. (2014a)

Constraining errors in water balance
model over long period by data
assimilation; long period provides
robust coupling statistics

No representation of root-zone soil
moisture; lacking information about
exact sampling depth

Observation-based
land-atmosphere
coupling (to evaluate
coupling of LSM products
and ensembles)

Catalano et al. (2016); Knist et al.
(2017); Li et al. (2016); Li et al. (2017)

Independent reference for long
period.

Spatial data gaps; seasonal variation in
spatial coverage

Improved modelling of
land evaporation

Martens et al. (2017); Miralles et al.
(2014b); Park et al. (2017)

Constraining errors in water balance
model over long period by data
assimilation

Negative impact in very dry areas and
areas where quality of precipitation is
high

Explaining trends in
evapotranspiration

Rigden and Salvucci (2017); Zeng et al.
(2014)

Long-term availability for trend
assessment

Not mentioned

Impact of soil moisture
(among other drivers) on
dust aerosol dynamics

Klingmüller et al. (2016); Xi and Sokolik
(2015)

Long-term coverage required for
robust trend and driver assessment

Not mentioned

Global biogeochemical
cycles and ecology

Evaluation of global
vegetation models

Sato et al. (2016); Szczypta et al. (2014);
Traore et al. (2014) Willeit and
Ganopolski (2016)

Long-term coverage for robust
statistics

Poor performance for some mountain
ranges; No data available for densely
vegetated areas; seasonal variation in
spatial coverage

Impact of soil moisture
dynamics on vegetation
productivity

Barichivich et al. (2014); Chen et al.
(2014); Cissé et al. (2016); Ghazaryan et
al. (2016); N. Liu et al. (2017); McNally
et al. (2016); Muñoz et al. (2014);
Nicolai-Shaw et al. (2017);
Papagiannopoulou et al. (2016);
Papagiannopoulou et al. (2017);
Szczypta et al. (2014); Wu et al. (2016)

Long-term coverage for robust
assessment of drivers

Poor data quality and data gaps for
densely vegetated areas, frozen
conditions, and mountain areas;
temporal data gaps

Validation of dry season
intensity indicator

Murray-Tortarolo et al. (2016) Lon-term dataset required for robust
evaluation

Not mentioned
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Table 5 (continued)

Application area Main purpose References Motivation for using ESA CCI SM Limitations identified

Impact of large-scale
re-vegetation on soil
moisture

Jiao et al. (2016a) Long-term coverage allows for trend
assessment

Not mentioned

Connecting trends in soil
moisture and vegetation
productivity

Dorigo et al. (2012); Feng (2016) Long-term coverage required for
trend assessment

Spatial data gaps, ESA CCI SM has trend
removed before 1987

Assessing ecosystem
water use efficiency

He et al. (2017) Long-term data availability for
robust statistics

Reduced quality over densely vegetated
areas; high uncertainty for earlier
periods

Improved crop modelling Park et al. (2017); Sakai et al. (2016);
Wang et al. (2016); Wang et al. (2017)

Complementarity of active and
passive microwave soil moisture for
different land cover types;
assessment of long-term links
between soil moisture and
vegetation

Poor performance along coasts;
differences in spatial scale;
representativeness for fragmented
landscapes; impact of irrigation;
spatiotemporal data gaps

Assessing drivers of fire
activity

Forkel et al. (2016); Ichoku et al. (2016) Long-term availability is essential for
assessing dynamics and drivers of
infrequent fire activity

No coverage for dense vegetation,
temporal gaps

Potential for constraining
terrestrial carbon cycle
simulations by data
assimilation

Kaminski et al. (2013); Scholze et al.
(2017)

Long-term data availability Accurate description of random error
for each observation; Does not provide
estimate of root-zone soil moisture

Assessment of
satellite-observed carbon
fluxes

Detmers et al. (2015) Long-term availability Not mentioned

Forcing for simulating
global atmospheric CH4

uptake by soils

Murguia-Flores et al. (2017) Long-term availability Data gaps for dense vegetation

Soil moisture as driver of
animal species migration

Madani et al. (2016) Long-term dataset required for
robust pattern assessment

Coarse resolution

Impact of wind farms on
environmental conditions
for vegetation growth

Tang et al. (2017) Long-term availability Not mentioned

Hydrological and land
surface modelling

Evaluating model states in
hydrological models and
LSMs

Du et al. (2016); Fang et al. (2016); Lai
et al. (2016); Lauer et al. (2017); Loew
et al. (2013); Mao et al. (2017); Okada
et al. (2015); Rakovec et al. (2015);
Schellekens et al. (2016); Spennemann
et al. (2015); Szczypta et al. (2014)
Ghosh et al. (2016); Mishra et al.
(2014); Mueller and Zhang (2016); Parr
et al. (2015)

Robust statistics based on long
comparison period

Not suited for validating absolute values
(bias, root-mean-square-difference);
discrepancy between model and
observation layer depths; different
dataset characteristics for different
periods (variance, data gaps);
spatiotemporal data gaps.

Evaluating model
processes in hydrological
models and LSMs (e.g. dry
down)

T. Chen et al. (2016) More realistic dry down
characteristics than LSM-based soil
moisture

None

Assimilated to constrain
coupled LSM and
hydrological simulations

Albergel et al. (2017) Long-term availability No impact on deeper soil layers

Used to estimate the error
covariance matrix of an
ensemble of LSM
simulations in order to
optimally merge them.

Crow et al. (2015) Long data record length essential for
reducing sampling errors

large temporal variations in temporal
frequency, actual spatial resolution, and
accuracy; dependency on GLDAS-Noah
as scaling reference; differences in
vertical measurement support between
models and observations

Persistence and
prediction of soil
moisture anomalies in
LSMs

Nicolai-Shaw et al. (2016) Long-term dataset required for
robust statistics

Exact vertical measurement support
unknown

Improving runoff
predictions and flood
(risk) modelling

Massari et al. (2015); Tramblay et al.
(2014)

Not specified Not mentioned

Calibrating Soil and
Water Assessment Tool
hydrological model

Kundu et al. (in press) Not specified Only few model parameters sensitive to
surface soil moisture

Improved water budget
modelling

Abera et al. (2016); Allam et al. (2016) Long-term availability for more
robust statistics

Vertical measurement support too
shallow to provide indication of changes
in soil and ground water storage

Computing changes in
groundwater storage

Asoka et al. (2017) Long-term availability for trends
assessment

Not mentioned

Modelling surface water
dynamics

Heimhuber et al. (2017) Long-term availability for more
robust statistics

Not mentioned

Assessing irrigation Kumar et al. (2015); Qiu et al. (2016) Long-term data required for
trend-based method of Qiu et al.
(2016)

Coarse spatial resolution for detecting
fine scale irrigation

(continued on next page)
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Table 5 (continued)

Application area Main purpose References Motivation for using ESA CCI SM Limitations identified

Assessing the impact of
agricultural
intensification on soil
moisture

Liu et al. (2015) Long-term data coverage needed for
long-term impacts

Spatial gaps

Trigger of landslides Dahigamuwa et al. (2016) Long-term availability Not mentioned
Improving satellite
rainfall retrievals

Bhuiyan et al. (in review-a), (in
review-b); Kumar et al. (2015); Qiu et
al. (2016)

Data record spans multiple satellite
precipitation missions

Not mentioned

Computing cumulative
precipitation amounts

Ciabatta et al. (subm.); Ciabatta et al.
(2016); Liu et al. (2015)

Long data record needed for
generation of long-term
precipitation dataset

Too low signal-to-noise ratio in some
areas; spatial and temporal data gaps

Validating soil moisture
products derived from
precipitation

Dahigamuwa et al. (2016); Das and
Maity (2015)

Long-term availability for robust
statistics

Not mentioned

Drought applications Validation of drought
indices

van der Schrier et al. (2013) M. Liu et al.
(2017)

Lon-term dataset required for robust
assessment

Reduced temporal coverage before
1991

Development of new
drought monitoring
index

Carrão et al. (2016); Enenkel et al.
(2016b); Rahmani et al. (2016)

Long-term dataset required for
robust computation of normal soil
moisture distributions

Variable data availability in time;
reduced data quality over densely
vegetated areas; not available in
near-real-time

Improved detection of
agricultural droughts

Liu et al. (2015); Padhee et al. (2017);
Yuan et al. (2015a)

Long-term dataset required for
robust long-term statistics

Because of temporal data gaps extreme
events may not be captured; reduced
skill of COMBINED compared to ACTIVE
in densely vegetated areas

Probabilistic drought
forecasting

Asoka and Mishra (2015); Linés et al.
(2017); Yan et al. (2017)

Long-term dataset required for
robust computation of normal soil
moisture distributions

Coarse resolution; data gaps

Soil moisture for
integrated drought
monitoring and
assessment

Cammalleri et al. (2017); Enenkel et al.
(2016b); McNally et al. (2016);
(Nicolai-Shaw et al. 2017); Rahmani et
al. (2016)

Long-term dataset required for
robust long-term statistics

Poor spatio-temporal coverage prior to
1992; spatial data gaps; lack of
root-zone soil moisture

Evaluation of drought
forecasting systems

McNally et al. (2017); Shah and Mishra
(2016); Yuan et al. (2015b)

Long-term availability for robust
evaluation. Sensitivity to wetlands
(which are not represented LSMs).

Poor spatio-temporal coverage prior to
1992; differences in representative
depth

(Hydro)meteorological
applications

NWP model evaluation Arnault et al. (2015) Not mentioned Discrepancy in scale
Supporting NWP land
surface scheme
improvements

This study (Section 4.6) Long-term dataset required for
robust evaluation of land surface
scheme

Spatial data gaps for densely vegetated
areas

Assimilation into NWP
model

Zhan et al. (2016) Reducing uncertainties in
temperature and humidity

Not mentioned
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4.1. Climate variability and change

As soilmoisture is an integrative component of the Earth system, any
large scale variability or change in our climate should manifest itself in
globally observed soil moisture patterns. In this role, ESA CCI SM has
made a significant contribution to the body of evidence of natural and
human-induced climate variability and change. Indicative for this, is
the contribution of ESA CCI SM to the State of the Climate Reports that
are issued every year by National Oceanic and Atmospheric Administra-
tion (e.g., Blunden and Arndt, 2016). Several studies have shown a clear
relationship between major oceanic-atmospheric modes of variability
in the climate system, e.g. El Niño Southern Oscillation (ENSO), and var-
iations in ESA CCI SM (Bauer-Marschallinger et al., 2013; Dorigo et al.,
2016;Miralles et al., 2014b); Nicolai-Shaw et al. (2016). By applying en-
hanced statisticalmethods to themulti-decadal ESACCI SM v0.1 dataset
over Australia, Bauer-Marschallinger et al. (2013) were able to disen-
tangle the portion of soil moisture variability that is driven by the
major climate oscillations affecting this continent, i.e., ENSO, the Indian
Ocean Dipole and the Antarctic Oscillation, from other modes of short-
term and long-term variability. Miralles et al. (2014b) showed that
inter-annual soil moisture variability as observed by ESA CCI SM COM-
BINED v02.2 largely drives the observed large-scale variability in conti-
nental evaporation.

ESA CCI SMhas beenwidely used to assess global trends in soilmois-
ture, mostly in combination with LSMs. Based on ESA CCI SM v0.1,
Dorigo et al. (2012) revealed that for the period 1988–2010 27% of the
area covered by the dataset showed significant trends, of which almost
three quarters were drying trends. A similar conclusion was drawn by
Feng and Zhang (2015) based on ESA CCI SM COMBINED v02.1. The
strong tendency towards drying was largely confirmed by trends com-
puted for the same period from ERA-Interim and GLDAS-Noah (Dorigo
et al., 2012), and ERA-Interim/Land and MERRA-Land (Albergel et al.,
2013b), although the spatial trend patterns were not everywhere con-
gruent between datasets. The agreement in trends between a newer
version of ESA CCI SM (v02.2) and MERRA-Land were recently con-
firmed by Su et al. (2016b). Trend analyses performedon amore region-
al scale, but for different time periods (e.g., An et al., 2016b; Li et al.,
2015; Rahmani et al., 2016; Wang et al., 2016; Zheng et al., 2016) gen-
erally confirmed the results obtained at the global scale, while providing
amore detailed view on the impact of local landmanagement practices,
e.g. irrigation, on observed trends (Qiu et al., 2016), and the impact of
soil moisture trends on regional climate (Klingmüller et al., 2016).
Feng (2016) assessed the drivers of trends in ESA CCI SM COMBINED
v02.2 and concluded that at the global scale climate change is by far
the most important driver of long-term changes in soil moisture, al-
though at the regional level land cover and land use change may play
a significant role. Similar conclusions were drawn by regional studies
over China (Chen et al., 2017; Liu et al., 2015; Meng et al., 2017).
Other studies analysed the variability and trends in ESA CCI SM in rela-
tion to other atmospheric variables and circulation patterns over Asia
(Shrivastava et al., 2016, 2017; Zhan et al. 2017). Nevertheless, given
the limited data record length, the impact of low-frequency climate
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oscillations on trends should first be carefully addressed before any ro-
bust conclusion about the sign andmagnitude of perpetual changes can
be drawn (Miralles et al., 2014b). Likewise, the potential impact of
dataset artefacts should be carefully quantified and corrected for (Su
et al., 2016b).

ESA CCI SMhas beenwidely used as a reference for evaluatingmodel
states and trends in global and regional climate simulations. Different
versions of ESA CCI SM COMBINEDwere used to systematically evaluate
soil moisture states, trends, and dynamics ofmodels participating in the
latest CoupledModel Intercomparison Project (CMIP5) (Du et al., 2016;
Huang et al., 2016; Lauer et al. 2017; Yuan and Quiring, 2017). At the re-
gional scale, various studies used ESA CCI SM COMBINED to assess the
sensitivity to soil moisture of various processes in global and regional
climate models (Agrawal and Chakraborty, 2016; Pieczka et al., 2016;
Unnikrishnan et al., 2017) or to improve climate simulations by assim-
ilating ESA CCI SMdirectly (Paxian et al., 2016). Even thoughmost stud-
ies report positive experiences, the use of ESA CCI SM for climate model
evaluations is primarily limited by discrepancies in surface layer thick-
ness betweenmodels and satellite observations, the existence of spatial
data gaps, and the fact that it does not provide an independent reference
for evaluating absolute values. Despite these limitations, ESA CCI SMhas
been proposed (together with other land-based products) as an official
reference for validating the land surface components of the CMIP6
models (van den Hurk et al., 2016).

4.2. Land-atmosphere interactions

As soil moisture is essential in partitioning the fluxes of water and
energy at the land surface, it can affect the dynamics of humidity and
temperature in the planetary boundary layer. This control of soil mois-
ture on evapotranspiration is important for the intensity and persis-
tence of heatwaves, as the depletion of soil moisture and the resulting
reduction in evaporative cooling may trigger an amplified increase in
air temperature (Fischer et al., 2007; Hirschi et al., 2011; Miralles et
al., 2014a; Seneviratne et al., 2006b). While many studies on soil mois-
ture–evapotranspiration and soil moisture–temperature coupling are
based on modelling results or use precipitation-based drought indices
as a proxy for soil moisture, ESA CCI SM enables analyses based on
long-term observed soil moisture estimates (Casagrande et al., 2015;
Hirschi et al., 2014;Miralles et al., 2014a). Therefore, ESA CCI SM in com-
bination with other large-scale observations has been widely used to
evaluate the coupling diagnostics found in models (Catalano et al.,
2016; Knist et al., 2017; Li et al., 2016; Li et al., 2017; Zhou et al., 2016).

Limitations with respect to the depth of the soil moisture retrievals
(i.e., reporting the content ofmoisture in thefirst few centimetres as op-
posed to the entire root depth affecting transpiration) have triggered
some debate about the appropriateness of ESA CCI SM to investigate
evapotranspiration dynamics and atmospheric feedbacks (Hirschi et
al., 2014). Hirschi et al. (2014) showed that the strength of the relation-
ship between soil moisture and temperature extremes appears
underestimated with ESA CCI SM compared to estimates based on the
Standardized Precipitation Index (SPI; McKee et al., 1993; Stagge et al.,
2015), which seems to be related to an underestimation of the temporal
dynamics and of large dry/wet anomalies within ESA CCI SM. This effect
is enhanced under extreme dry conditions andmay lead to a decoupling
of the surface layer from deeper layers and from atmospheric fluxes
(and resulting temperatures). Thus the added value of root-zone soil
moisture is likelymore important for applications dealingwith extreme
conditions, while for mean climatological applications the information
content in the surface layer appears adequate. The assimilation of re-
mote sensing surface soil moisture into a land surface model (e.g.,
Albergel et al., 2017; De Lannoy and Reichle, 2016) provides a possible
alternative here. In fact, root zone soil moisture estimates by the satel-
lite-based Global Land Evaporation Amsterdam Model (GLEAM;
Miralles et al., 2011) have been improved by the assimilation of ESA
CCI SM, while the overall quality of evaporation estimates remains
similar after assimilation (Martens et al., 2017). Also, the assimilation
of ESA CCI SM COMBINED v02.1 helped interpreting global land evapo-
ration patterns and multi-annual variability in response to the El Niño
Southern Oscillation (Miralles et al., 2014b). The obvious link between
soil moisture and evaporation has motivated several studies to use
ESA CCI SM COMBINED (v0.1 and v02.1) to attribute trends observed
for evaporation (Rigden and Salvucci, 2017; Zeng et al., 2014).

Soil moisture also affects precipitation through evapotranspiration.
Yet, the effect of soil moisture on precipitation is much more debated
than for air temperature. Studies report both positive or negative feed-
backs, and even no feedback. Using a precursor of ESA CCI SM, Taylor et
al. (2012) identified a spatially negative feedback of soil moisture on
convective precipitation regarding the location, i.e., that afternoon rain
is more likely over relatively dry soils due to mesoscale circulation ef-
fects. Guillod et al. (2015) revisited the soil moisture effect on precipita-
tion using GLEAM root-zone soil moisture with ESA CCI SM COMBINED
v02.1 assimilated, and showed that spatial and temporal correlations
with opposite signs may coexist within the same region: precipitation
events take place preferentially during wet periods (moisture
recycling), but within the area have a preference to fall over compara-
tively drier patches (local, spatially negative feedbacks).

A more indirect but potentially strong soil moisture – atmosphere
feedback was found by Klingmüller et al. (2016), who were able to
link an observed positive trend in Aerosol Optical Depth (AOD) in the
Middle East to a negative trend in ESA CCI SM COMBINED v02.1. As
lower soil moisture translates into enhanced dust emissions, their re-
sults suggested that increasing temperature and decreasing relative hu-
midity in the last decade have promoted soil drying, leading to
increased dust emissions and AOD. Also Xi and Sokolik (2015) found
significant correlations between the variability in AOD and soil mois-
ture. These changes in atmospheric composition again may have con-
siderable impact on radiative forcing and precipitation initiation
(Ramanathan et al., 2001) and as such impact the energy and water cy-
cles in the area.

4.3. Global biogeochemical cycles and ecosystems

Soil moisture is a regulator for various processes in terrestrial eco-
systems such as plant phenology, photosynthesis, biomass allocation,
turnover, and mortality, and the accumulation and decomposition of
carbon in soils (Carvalhais et al., 2014; Nemani et al., 2003; Reichstein
et al., 2013; Richardson et al., 2013). Low soil moisture during drought
reduces photosynthesis, enhances ecosystem disturbances such as in-
sect infestations or fires, and thus causes plant mortality and accumula-
tion of dead biomass in litter and soils (Allen et al., 2010; McDowell et
al., 2011; Thurner et al., 2016). The release of carbon from soils to the at-
mosphere through respiration is also controlled by soil moisture
(Reichstein and Beer, 2008). Consequently, soilmoisture is a strong con-
trol on variations in the global carbon cycle (Ahlström et al., 2013;
Poulter et al., 2014; van der Molen et al., 2012).

Despite the importance of soil moisture for the global carbon cycle,
satellite-derived soil moisture data are currently under-explored in car-
bon cycle and ecosystem research. Because long-term soil moisture ob-
servationswere lacking until recently, most studies on the effects of soil
moisture on vegetation relied on precipitation estimates (Du et al.,
2013; Poulter et al., 2013), indirect drought indices (Hogg et al., 2013;
Ji and Peters, 2003), or soil moisture estimates from land surfacemodels
(Forkel et al., 2015; Rahmani et al., 2016). More recently, studies used
ESA CCI SM to assess impacts of water availability and droughts on
plant phenology and productivity based on satellite-derived vegetation
indices and variables such as the NDVI or the Leaf Area Index (LAI), or
directly of vegetation productivity (Murray-Tortarolo et al., 2016). For
example, Szczypta et al. (2014) used ESA CCI SM v0.1, modelled soil
moisture, and LAI over the Euro-Mediterranean zone to evaluate two
land surface models and to predict LAI anomalies over cropland. LAI
was predictable from ESA CCI SM in large homogeneous cropland
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regions, e.g. in Southern Russia (Szczypta et al., 2014). Strong positive
relationships between ESA CCI SM COMBINED and NDVI and/or LAI
were also found for Australia (Chen et al., 2014; v0.1; N. Liu et al.,
2017; v02.1), for croplands in North China (Wang et al., 2016; v0.1;
Wang et al., 2017; v02.1) and the Ukraine (Ghazaryan et al., 2016;
v02.1), for East Africa (McNally et al., 2016; v02.1; Wu et al., 2016;
v02.0), and Senegal (Cissé et al., 2016; v0.1). Generally, many regions
with positive (greening) or negative (browning) trends in NDVI show
also positive and negative trends in ESA CCI SM v0.1, respectively
(Dorigo et al., 2012). This co-occurrence of soil moisture and NDVI
trends reflects the strong water control on vegetation phenology and
productivity. Interestingly, soil moisture from ESA CCI SM v0.1 was
also correlated with NDVI in some boreal forests, which are primarily
temperature-controlled (Barichivich et al., 2014). In these regions, soil
moisture and vegetation productivity were controlled by variations in
the accumulation and thawing of winter snow packs (Barichivich et
al., 2014). However, some water-limited regions showed negative ESA
CCI SM v0.1 soil moisture trends with no corresponding trend in NDVI
(Dorigo et al., 2012). In these cases, the positive relation between sur-
face soil moisture and vegetation is likely modified by vegetation type
and vegetation density (Feng, 2016; McNally et al., 2016). For example,
densely vegetated areas in East Africa show stronger correlations be-
tween ESA CCI SM COMBINED v02.1 soil moisture and NDVI than
sparsely vegetated areas (McNally et al., 2016). Regional differences in
the response of ecosystems to soil moisture variability have also been
attributed to differences in water use efficiency (He et al., 2017).
Novel data-driven approaches enable quantification of the share
of ESA CCI SM in controlling NDVI variability as opposed to
other water and climate drivers (Papagiannopoulou et al., 2016;
Papagiannopoulou et al., 2017). Fig. 11 shows the correlation between
the latest ESA CCI SM COMBINED (v03.2) product and NDVI GIMMS
3G (Tucker et al., 2005) with a lag time of soil moisture preceding
NDVI of 16 days. In most regions and especially in water-limited areas
such as the Sahel, there is a strong and direct response of NDVI to soil
moisture. On the other hand, correlations are negative in many temper-
ate regions. This is likely because NDVI is highest in summer months
when soil moisture decreases. This demonstrates that vegetation pro-
ductivity in temperate regions is primarily temperature-controlled
and strongly affected by human activities through agriculture or forest
management (Forkel et al., 2015; Papagiannopoulou et al., 2017).

Apart from the analysis of relations with vegetation indices, the ESA
CCI SM datasets have been used in other ecosystem studies. For exam-
ple, Muñoz et al. (2014) investigated tree ring chronologies of conifers
in the Andeans in conjunction with soil moisture variability from ESA
CCI SM v0.1. The study revealed a previously unobserved relation be-
tween tree growth and summer soil moisture (Muñoz et al., 2014).
While most studies have looked at the impact of soil moisture on vege-
tation, only very few studies have assessed the opposite, i.e. the impact
Fig. 11. Mean Pearson correlation coefficient R between ESA CCI Soil Moisture v03.2 and GIMM
16 days. White areas indicate pixels for which correlations are not significant (p N 0.05).
of vegetation on soil moisture. One such example is the study of Jiao et
al. (2016b) who looked at the impact of large-scale reforestation on soil
moisture in China. Indirect links between soil moisture and ecosystem
dynamics have been the studies of Madani et al. (2016), who used
ESA CCI SM COMBINED v0.1 as one of the predictors of Emumigrations
in Australia and of Tang et al. (2017) who assessed the impact of wind
farms on ESA CCI SM COMBINED v02.2 and vegetation productivity.

Furthermore, ESA CCI SM v0.1 and vegetation data were used to
evaluate ecosystem models (Sato et al., 2016; Szczypta et al., 2014;
Traore et al., 2014; Willeit and Ganopolski, 2016). Thereby, the results
of Traore et al. (2014) demonstrate that a model that best performs
for soil moisture does not necessarily best perform for plant productiv-
ity. This demonstrates the need to jointly use soil moisture and vegeta-
tion or carbon cycle observations to improve global ecosystem/carbon
cycle models (Kaminski et al., 2013; Scholze et al., 2016). The use of
the ESA CCI SM in such an analysis could potentially constrain model
uncertainties regarding the long-term hydrological control on vegeta-
tion productivity and ecosystem respiration (Detmers et al., 2015;
Scholze et al., 2017). However, a major source of uncertainty about
the future terrestrial carbon cycle is related to how global ecosystem
models represent carbon turnover, vegetation dynamics, and distur-
bances such as fires (Friend et al., 2014). It was previously shown that
variations in satellite-derived soil moisture are related to extreme fire
events in boreal forests (Bartsch et al., 2009; Forkel et al., 2012). Conse-
quently, the ESA CCI SM COMBINED dataset has been used together
with climate, vegetation, and socio-economic data to assess controls
on fire activity globally and to identify appropriate model physics struc-
tures for global fire models (Forkel et al., 2016; Ichoku et al., 2016). Be-
cause of the role of soil moisture on microbial activity, ESA CCI SM v0.1
has been used as one of the forcings to simulate global atmospheric
methane uptake by soils (Murguia-Flores et al., 2017).

4.4. Hydrological and land surface modelling

As soil moisture drives processes like runoff, flooding, evaporation,
infiltration, and groundwater recharge, it is important that hydrological
models accurately map soil moisture states. The potential of using ESA
CCI SM to validate surface soil moisture fields in state-of-the-art LSMs,
reanalysis products, and large-scale hydrologicalmodels has been large-
ly recognized (Fang et al., 2016; Ghosh et al., 2016; Lai et al., 2016; Loew
et al., 2013; Mao et al., 2017; Mishra et al., 2014; Mueller and Zhang,
2016; Okada et al., 2015; Parr et al., 2015; Rakovec et al., 2015;
Spennemann et al., 2015; Szczypta et al., 2014). Schellekens et al.
(2016) exploited the long-term availability of ESA CCI SM COMBINED
v02.2 to validate according to the standardised International Land
Model Benchmarking (ILAMB) protocol the soil moisture fields of ten
global hydrological and land surface models, all forced with the same
meteorological forcing dataset for the period 1979–2012. New insights
S NDVI3g for the period 1991 to 2013 for a lag time of soil moisture preceding NDVI by

Image of Fig. 11
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in the model representation of hydrological processes like infiltration
have been offered by comparing the memory length (T. Chen et al.,
2016; Lauer et al. 2017) and the frequency domains (Polcher et al.,
2016) between LSMs and remote sensing products, including ESA CCI
SM COMBINED v02.3. Crow et al. (2015) utilized ESA CCI SM v0.1 to es-
timate the error covariance matrix for an ensemble of LSM simulations
of surface soil moisture in order to optimally merge them. The authors
claim that the long period covered by the ESA CCI SM product is essen-
tial for removing sampling error in these estimates. Similarly as for cli-
mate model evaluations, the use of ESA CCI SM for hydrological model
evaluations is hampered by discrepancies in surface layer thickness be-
tween models and satellite observations, the existence of spatial data
gaps, heterogeneity of data properties over time, and the dependency
of the absolute values in an LSM (Table 5).

Satellite soil moisture data can bring important benefits in runoff
modelling and forecasting both through an improved initialization of
rainfall-runoff models and through data assimilation techniques that
allow for updating the soil moisture states. Several studies have
shown the positive impact on flood and runoff prediction through as-
similation of single sensor Level 2 products used in ESA CCI SM, e.g. ob-
tained from ASCAT (Brocca et al., 2010), AMSR-E (Sahoo et al., 2013),
and SMOS (Lievens et al., 2015). Wanders et al. (2014) and Alvarez-
Garreton et al. (2015) showed the improved skill of runoff predictions
when jointly assimilating multiple soil moisture products (SMOS,
ASCAT and AMSR-E), resulting mainly from improved temporal sam-
pling. Long-term homogeneous soil moisture products like ESA CCI SM
become important in flood modelling studies that require a multi-year
period for the calibration and validation of model parameters.
Assimilating the ESA CCI SM COMBINED v02.2 product over the
Upper Niger River basin improved runoff predictions even though the
simulation of the rainfall-runoff model was already good (Massari et
al., 2015). Tramblay et al. (2014) used ESA CCI SM v0.1 to better
constrainmodel parameters, and hence reduce uncertainties, of a parsi-
monious hydrological model in the Mono River basin (Africa), with the
goal to evaluate the impact of climate change on extreme events. Fur-
ther studies are clearly needed to assess the full potential of ESA CCI
SM product for runoff modelling and forecasting. For example, even a
simple model based only on persistence allows for the prediction of
soil moisture (Nicolai-Shaw et al., 2016), and exploiting this character-
istic could contibute to improved early warning systems. At the
local scale, Dahigamuwa et al. (2016) used ESA CCI SM v0.1 in combina-
tion with vegetation cover to improve the prediction of landslide
ocurrence.

ESA CCI SM products have been used for improving the quantifica-
tion of the different components of the hydrological cycle, i.e. evapora-
tion (Allam et al., 2016; Martens et al., 2017; Miralles et al., 2014b),
groundwater storage (Asoka et al., 2017), and rainfall (Bhuiyan et al.,
in review-a, in review-b; Ciabatta et al., 2016). Soilmoisture contains in-
formation on antecedent precipitation. This principle is being exploited
by the SM2RAINmethod (Brocca et al., 2014; Brocca et al., 2013), which
uses an inversion of the soil-water balance equation to obtain a simple
analytical relationship for estimating precipitation accumulations from
the knowledge of a soil moisture time-series. Themethod has been test-
ed on a wide range of Level 2 satellite soil moisture products and ESA
CCI SM COMBINED v02.2 (Brocca et al., 2014; Ciabatta et al., 2016).
SM2RAIN realistically reproduces daily precipitation amounts when
compared to gauge observations and in certain regions may even out-
perform direct satellite-based estimates of precipitation, even though
its performance hinges on the quality of the soil moisture product
used as input (Brocca et al., 2014; Ciabatta et al., 2016). Its application
to ESA CCI SM COMBINED provides an independent global climatology
of precipitation from 1979 onwards. Abera et al. (2016) used the
SM2RAIN precipitation product from ESA CCI SM (Ciabatta et al.,
subm., 2016) to quantify the space-time variability of rainfall, evapora-
tion, runoff and water storage for the Upper Blue Nile river basin in
Africa.
Heimhuber et al. (2017) used ESA CCI SM (version unknown) in a
statistical framework to predict the dynamics in surface water in
south-eastern Australia. ESA CCI SM has also been used to map large-
scale irrigation, which is largely unquantified on a global scale and, con-
sequently, not included inmost large scale hydrological and/or land sur-
face models (Qiu et al., 2016). By comparing modelled and satellite soil
moisture data, irrigated areas can be detected when satellite data and
modelled data (the latter do not include irrigation) show different tem-
poral dynamics. Kumar et al. (2015) used satellite soil moisture obser-
vations from ESA CCI SM COMBINED v02.1, ASCAT, AMSR-E, SMOS,
and WindSat for detecting irrigation over the United States. Similarly,
Qiu et al. (2016) detected irrigated areas in China by evaluating the dif-
ferences in trends between ESA CCI SM COMBINED v02.1 and precipita-
tion. Liu et al. (2015) used ESA CCI SM v0.1 to support the attribution of
negative trends in soil moisture in Northern China to agricultural
intensification.
4.5. Drought applications

Soilmoisture droughts, also referred to as agricultural droughts, may
be driven by a lack of precipitation and/or increased evapotranspiration
(Seneviratne et al., 2012). In addition to natural variability, human land
modification and water management can contribute to agricultural
drought (Liu et al., 2015; Van Loon et al., 2016). Prior to the availability
of global satellite-based soil moisture datasets, precipitation and tem-
perature gridded datasets were favoured for developing drought moni-
toring indices. Well-known examples, although primarily indicative of
meteorological drought rather than agricultural drought, are the SPI
and the Palmer Drought Severity Index (PDSI; Palmer, 1965). ESA CCI
SM has been repeatedly used to evaluate the performance of such indi-
ces (M. Liu et al., 2017; van der Schrier et al., 2013).

ESA CCI SM can be used to directly monitor agricultural drought, or
help to set up alternative drought indicators. For example, Carrão et al.
(2016) and Rahmani et al. (2016) used ESA CCI SM COMBINED (v02.0
and v02.1, respectively) to develop a drought index comparable to SPI
but based on actual soil moisture observations instead of precipitation,
naming them the Empirical Standardized Soil Moisture Index (ESSMI)
and Standardized Soil Moisture Index (SSI), respectively. Carrão et al.
(2016) found high correlations between ESSMI and maize, soybean,
and wheat crop yields in Latin America and with this index could accu-
rately describe the severe and extreme drought intensities in north-
eastern Brazil in 1993, 2012, and 2013. Based on SSI, Rahmani et al.
(2016) were able to identify a severe drought event that started in De-
cember 2012 in the northern part of Iran. The Enhanced Combined
Drought Index (ECDI) proposed by Enenkel et al. (2016b) combines
ESA CCI SM COMBINED v02.2 with satellite-derived observations of
rainfall, land surface temperature and NDVI for the detection of drought
events, and has been successfully used to detect large-scale drought
events in Ethiopia between the years 1992–2014.

McNally et al. (2016) specifically evaluated the use of ESA CCI SM
COMBINED v02.2 for agricultural drought and food security monitoring
in East Africa, and found that ESA CCI SM is a valuable addition to a ‘con-
vergence of evidence’ framework for drought monitoring. Like W. A.
Dorigo et al. (2015) they emphasize that users should be aware of the
spatial and temporal differences in data quality caused for example by
significant data gaps prior to 1992, the lack of overlap between sensors,
or difficulties with soil moisture retrievals over certain terrains such as
heavily vegetated areas. Post 1992, McNally et al. (2016) generally
found good agreement between ESA CCI SM and other soil moisture
products aswell aswithNDVI in East Africa. Yuan et al. (2015a) assessed
the skill of ESA CCI SM v02.1 in capturing short-term soil moisture
droughts over China. They found that the PASSIVE andCOMBINEDprod-
ucts have better drought detection skills over the sparsely vegetated re-
gions in north-western China while ACTIVE worked best in the more
densely vegetated areas of eastern China.
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At the global scale, Miralles et al. (2014b) identified the effect of El
Niño-driven droughts in soil moisture, NDVI and evaporation, using
GLEAM and ESA CCI SM COMBINED v02.1. This in combination with
the high persistence of soil moisture (Nicolai-Shaw et al., 2016;
Seneviratne et al., 2006a) makes the ESA CCI SM dataset valuable for
the monitoring and prediction of drought events. Hence, various ver-
sions of ESA CCI SM COMBINED have been used as a piece of evidence
for probabilistic drought monitoring and forecasting in India (Asoka
and Mishra, 2015; Padhee et al., 2017), Spain (Linés et al., 2017), and
the United States (Yan et al., 2017). Recently, ESA CCI SM COMBINED
v02.2 was used to validate the predictions of process-based drought
forecasting models applied in Sub-Saharan Africa (McNally et al.,
2017) and India (Shah and Mishra, 2016).

4.6. (Hydro)meteorological applications

Numerical Weather Prediction (NWP) involves the use of computer
models of the Earth system to simulate how the state of the Earth sys-
tem is likely to evolve over a period of a few hours up to 1–2 weeks
ahead. It also considers longer timescales (seasonal and climate)
through the notion of seamless prediction (Palmer et al., 2008). A num-
ber of studies provide strong support for the notion that high skill in
short- and medium-range forecasts of air temperature and humidity
over land requires proper initialization of soil moisture (Beljaars et al.,
1996; Douville et al., 2000; Drusch and Viterbo, 2007; van den Hurk et
al., 2012). There is evidence also of a similar impact from soil moisture
on seasonal forecasts (Dirmeyer and Halder, 2016; Koster et al., 2011;
Koster et al., 2004; Weisheimer et al., 2011).

Remotely sensed soil moisture datasets like ESA CCI SM can serve
NWP by offering a long-term, consistent, and independent reference
against which NWP output fields can be evaluated. This may eventually
improvemeteorological forecasts through a better representation of the
land surface and of the fluxes between the land surface and the atmo-
sphere in the NWP (see Section 4.2). For example, Arnault et al.
(2015) used ESA CCI SM (version unknown) to evaluate soil moisture
predictedwith aWeather Research and Forecast (WRF)-Hydro Coupled
Modeling System forWest Africa. Recently, ECMWFmade an offline de-
velopment in its Land Surface Model HTESSEL (Balsamo et al., 2015;
Balsamo et al., 2009), making it possible to add extra layers of soil as
well as changing their thickness (Mueller et al., 2016). An experiment
was run which increases the number of soil layers from four to nine
and reduces the thickness of the upper soil layer from seven (0–7 cm)
to one (0–1) centimetre. One of the rationales for having this thin top-
soil layer is having a surface layer that is closer to the depth sampled
by existing satellite observations and thus allowing for a better assimi-
lation of these observations. Soil moisture from the first layer of two
offline experiments, forced by ERA-Interim reanalysis, and considering
either a 1 cmdepth (GE8F) or a 7 cmdepth (GA89) layer was compared
to the ESA CCI SM COMBINED v02.2 over the period 1979–2014. Corre-
lations were computed for absolute soil moisture and anomaly time
Fig. 12. Differences in correlations of absolute soil moisture values (left) and anomalies (right)
soil of two offline experiments over 1979–2014. Experiment GE8F has a first layer of soil of 1 cm
provide significant correlations (p b 0.05) for both experiments. Pixels where these conditions
series from a 35-day moving average (W. A. Dorigo et al., 2015). We il-
lustrate differences in correlation between the two experiments in
Fig. 12. The red colours illustrate that inmost areas using a 1 cm instead
of a 7 cm surface layer depth leads to a better match with the ESA CCI
SM COMBINED dataset. Positive differences frequently reach values
higher than 0.2, particularly for correlations on anomaly time series,
which shows that a thinner model layer better mimics satellite-
observed surface soil moisture variations, as was expected.

Few studies have assimilated remotely sensed soil moisture directly
into NWPs and climate models to update their soil moisture fields. Even
though this mostly leads to a significant improvement of the model's
soil moisture fields, its impact on the meteorological forecast itself, e.g.
on 2 m air (T2 m) temperature (Bisselink et al., 2011), screen tempera-
ture or relative humidity predictions (de Rosnay et al., 2013; Dharssi et
al., 2011; Scipal et al., 2008a), is typically limited in areas with dense
coverage of the ground-based meteorological observing network and
difficult to evaluate in poorly observed areas. We are only aware of
one study that assimilated ESA CCI SM (version unknown) directly
into an NWP to update its soil moisture field (Zhan et al., 2017). This
study showed that assimilating ESA CCI SM into the NASA Unified
WRF model coupled with NASA Land Information System could de-
crease the RMSEs of near-surface air temperature and humidity for cer-
tain forecasts and decrease the biases of NUWRF model longer term
rainfall forecasts more significantly than those of the shorter term
forecasts.
5. Closing the gap between Earth system research requirements and
observations

Our overview of product characteristics in Section 3 shows that the
ESA CCI SM products are able to overcome several of the drawbacks
that single-sensor products have with respect to their applicability in
a climate context, particularly concerning the dataset length and revisit
times. Even though ESA CCI SM is approaching the requirements
outlined in the 2015 GCOS Status Report our analysis also shows that
these characteristics vary significantly through space and time. Thus, it
is often not meaningful to capture certain dataset characteristics in a
single statistical number. Besides, the GCOS requirements present only
a high-level consensus view on what is required to meet the increasing
and more varied needs for climate data and information (GCOS-200,
2016). Therefore, our review of validation and application studies
is crucial for identifying more specific requirements and the degree to
which these are currently met by ESA CCI SM. It reveals that not all ap-
plications have the same requirements: for example, while for flood
forecasting a high observation density appears to be of ultimate impor-
tance, this may be less crucial when studying long-term global trends
in mean soil moisture. Based on our review we see the following re-
search priorities for improving ESA CCI SM and soil moisture CDRs in
general.
differences between ESA CCI SM COMBINED v02.2 and soil moisture from the first layer of
depth (0–1 cm), GA89 of 7 cm depth (0–7 cm). Differences are only shown for pixels that
are not met have been left blank.

Image of Fig. 12
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5.1. Higher spatial resolutions

Higher spatial resolutions are required to serve more regional appli-
cations, e.g., to map the impact of irrigation on local water budgets or to
assess the impacts of local soil moisture variability on atmospheric in-
stability (Taylor et al., 2013). Higher spatial resolutions of ESA CCI SM
can be either achieved by including observationswith higher native res-
olution (e.g. SAR, thermal infrared) or by applying appropriate down-
scaling techniques to the coarse scale observations (An et al., 2016a;
Peng et al., 2016).

5.2. Filling data gaps and improved temporal sampling

Many users and applications have difficulties in dealing with inter-
mittent data. A way to address this would be the creation of gap-filled
time series, which would improve the nominal observation density. At
the same time, increasing the actual (real) observation density prior to
2002 to a daily resolutionwould be required to have a significant impact
on data assimilation, e.g. in hydrological models or land surface
reanalyses (Alvarez-Garreton et al., 2015). This may be partly overcome
by improved blending approaches, although data density will remain
insufficient in the earliest periods due to a lack of appropriate satellites.
Sub-daily resolutionswould be necessary to capture the high-frequency
components of the soil moisture signal which in the temporal domain
are driven mainly by precipitation and the diurnal cycle of solar radia-
tion (Dorigo et al., 2013). A denser temporal sampling is also crucial to
better quantify land-atmosphere interactions, e.g., soil moisture con-
trols on convective precipitation (Guillod et al., 2014; Taylor et al.,
2012). Fortunately, the current constellation of coarse-scale microwave
satellites is capable of providing measurements several times per day
(SMOS and SMAP at around 6:00 am and pm, ASCAT at 9:30 am and
pm, and AMSR2 at 1:30 am and pm). At the same time, due to physical
limitations of microwave remote sensing in providing useful informa-
tion below snow/ice cover, under frozen conditions, or underneath
dense vegetation, spatial data gaps will remain an issue also in the
future.

5.3. Improved product accuracy

Section 3 showed that there is still considerable room for reducing
errors. Especially for Level 2 products from scatterometers a lot could
still be gained by an improved modelling of vegetation effects and
sub-surface scattering effects in dry soils (Liu et al., 2016; Morrison,
2013; Wagner et al., 2013a). Passive microwave Level 2 products
would benefit from an improvedmodelling of the effect of diurnal tem-
perature variations on soil moisture retrievals (Parinussa et al., 2016)
and a better quantification of the actual soil depths sampled by the dif-
ferent microwave frequencies (Wilheit, 1978). Both the active and pas-
sive Level 2 products would profit from an improved characterisation of
the sub-daily behaviour of soil and canopymoisture and the application
of de-noising methods (Su et al., 2015). These improved Level 2 prod-
ucts would in turn contribute to reduced errors in the ESA CCI SM prod-
ucts. Not only product errors themselves need to be improved, but also
their characterisation in space and time and their communication to the
users. As suggested earlier, providing a single error estimate for the en-
tire dataset is impractical and insufficient. Applications based on data
assimilation only profit maximally if the product errors are accurately
and dynamically characterised at the level of individual observations
(Lahoz and Schneider, 2014).

5.4. Improved blending methods

Some studies observed a reduced skill of COMBINEDwith respect to
the ACTIVE or PASSIVE products (Chakravorty et al., 2016; Szczypta et
al., 2014; Yuan et al., 2015a). Even though this issue has been largely re-
solved for the reported study areas in the latest version (Fig. 13), there
remain some areas where the merging of ACTIVE and PASSIVE into
COMBINED leads to a reduction of skill. In-depth analyses are needed
to reveal whether this is related to the scaling of the remote sensing
products against an LSM-based climatology or to the merging strategy
itself. Also, the temporal gap filling of the best performing product
with lower quality observations has a negative impact on the overall
skill of COMBINED (Gruber et al., in prep.). Thus, the challenge of the
merging procedure is to find an optimum trade-off between increased
spatial-temporal coverage and maintaining acceptable data quality. A
potential way to optimise the current merging methodology may be
to assess errors and merge datasets at different temporal scales (Su et
al., 2016a). In addition, it may be worthwhile looking into alternative
merging approaches, e.g. machine learning approaches (Kolassa et al.,
2016; Rodríguez-Fernández et al., 2015) or data assimilation frame-
works (Kolassa et al., 2017).

5.5. Improved temporal consistency

For climate change applications it is of utmost importance that the
trend signal contained in the ESA CCI SM products have a geophysical
meaning and are not introduced, e.g., by changes in sensor constellation.
Assessing, and possibly correcting for such potential artefacts should
therefore receive high priority in future product releases (Su et al.,
2016b). However, despite the potential detection and correction of
more obvious inhomogeneities like changes in the mean or variance,
more intricate inhomogeneities, e.g. changes in data quality and spatio-
temporal coverage, may be easily overlooked. Yet, these may have con-
siderable impact on several applications, e.g. the attribution of the
frequency of extreme events (Loew et al., 2013; Padhee et al., 2017;
Yuan et al., 2015a) or the assessment of mean global trends (Dorigo et
al., 2012). Long-term missions with consistent specifications, e.g., as
provided by the ERS andMetOp satellites, are crucial for supporting ho-
mogenisation and intercalibration efforts.

5.6. Shorter latency times between data acquisition and data availability

Short latency times are required for embedding the ESA CCI SM
product in operational services. While monitoring services, e.g. drought
monitors, would already profit from a latency of ten days, operational
flood forecasting and the initialization of boundary conditions in NWP
models require a near-real-time availability of the product. Enenkel et
al. (2016a) demonstrated the feasibility of producing an ESA CCI SM
near-real-time dataset, although they also showed that such a service
is constrained by the latency and quality of available Level 2 products.
Operational production andupdating of thedatasetwith amaximum la-
tency of 10 days is foreseen to take place within the Copernicus Climate
Change Services (C3S; https://climate.copernicus.eu/) from June 2017
onwards. ESA CCI SM v03.2 will form the basis for this service.

5.7. Independency of LSMs

To optimally serve model benchmarking activities, especially re-
garding the assessment of biases, the ESA CCI SM COMBINED product
should become entirely independent of any LSM. Even though the cur-
rent scaling against the GLDAS-Noah reference LSM hardly affects
trends and temporal dynamics in the product, it does make the ESA
CCI SMCOMBINED dataset impractical for assessingmodel biases. Glob-
ally available L-band observations from SMOSand SMAPmaybe consid-
ered as an alternative scaling reference in the future.

5.8. Creation of a root-zone soil moisture product

Root-zone soil moisture is required for a complete assessment of
land-atmosphere interactions, for better linking soil moisture variability
to ecosystem and agricultural drought dynamics, and for hydrological
modelling. Although this is seemingly unattainable without the

https://climate.copernicus.eu


Fig. 13.Differences in correlation between ERA-Interim/Land and ESA CCI SMv03.2 COMBINED on the one hand, and ERA/Interim-Land and the best performing ESA CCI SMv03.2 product
(either COMBINED, ACTIVE, or PASSIVE) on the other. Differences close or equal to zero indicate that COMBINED merges the input products without a substantial loss in skill, while
negative values indicate that either ACTIVE or PASSIVE outperforms COMBINED.
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intervention of an LSM to propagate surface soil moisture observations
to the root-zone, simplified approaches such as the Soil Water Index
method (Albergel et al., 2008; Wagner et al., 1999b) may already be
useful (Brocca et al., 2012).

One should be aware that user requirements on satellite soil mois-
ture will continue to change, reflecting advances in Earth system re-
search and evolving societal needs. As regards climate applications,
the latest GCOS Implementation Plan (GCOS-200, 2016) already ad-
dresses a couple of the new top-level requirements identified in this
study, including improvements in the spatial resolution and the need
to provide subsidiary variables to better characterise the quality of the
surface soil moisture data. The required subsidiary variables are the
freeze/thaw status, surface inundation, VOD and root-zone soil mois-
ture. Freeze/thaw status and surface inundation are needed to flag envi-
ronmental conditions when the retrieval of soil moisture data from
microwave measurements is not possible due to fundamental physical
reasons (Zwieback et al., 2015).

Even with consolidated user requirements for soil moisture CDRs,
themain challenge remains to determine to what degree these require-
ments are actually met by long-term products like ESA CCI SM. This re-
quires standardised strategies based on commonly agreed reference
datasets, methodologies, and metrics. Some examples of potential
methods were adopted in this study but these need to be further elabo-
rated. Apart from statistical approaches like the triple collocation, all
other evaluation methods to some degree suffer from a general data
sparsity in several regions of the world, e.g. the tropical forests or the
sub-arctic. In these regions, there is not only a lack of in-situ soil mois-
ture stations (Ochsner et al., 2013) but also of meteorological monitor-
ing stations. Thus, also the precipitation and LSM products used in
various evaluation approaches have larger uncertainties here. For exam-
ple, Albergel et al. (2013a) showed that the trends in two reanalysis
datasets widely diverged in these areas. Therefore, to date, data-rich
areas dominate in the evaluation process. One of the main priorities of
the international community should therefore be to establish in-situ
networks in data-poor regions and guarantee the continuation of
existing long-term monitoring sites to assess stability and trends over
awide range of land surface conditions. A good starting pointmay be of-
fered by the globally well-distributed and error-characterised SMAP
core validation sites (Colliander et al., 2017).
6. Conclusion and outlook

In this study, we provided a comprehensive overview of the specifi-
cations of the ESA CCI SM product suite and the Earth system applica-
tions that have made use of these datasets either to benchmark or to
improve current process understanding as captured in state-of-the-art
models. The strong user interest in the soil moisture CDRs is reflected
by thewide variety of science communities who have exploited the po-
tential of these products. Themainmotivation for using the ESA CCI SM
products over existing single-sensor products is its unique long period
of coverage, which makes it potentially suitable to assessing long-term
variability and change, although users should confirm data homogene-
ity for their region of application.

ESA CCI SM products have already led to numerous publications,
which were used in this study to review the capabilities and shortcom-
ings of the products for Earth system applications and provide valuable
information for shaping the priorities of new product releases. Yet, the
full potential of ESA CCI SM remains underexploited. This is partly due
to the complexity and limitations of the data, e.g., the varying dataset
quality through space and time, and the occurrence of data gaps,
which makes it difficult for users to integrate the data in their applica-
tions. Such limitations can be partly addressed by continuing efforts to
improve Level 2 retrievals and merging methodologies, and through
the introduction of new, high-quality sensors like SMAP in the merged
products. However, it will not be possible to mitigate all issues related
to the creation of an entirely homogeneous dataset from 1978 onwards.
These issues relate to the absence of suitable sensors in the early de-
cades and the physical limitations of the microwave signal in general.
Thus, to exploit the full potential of the ESA CCI SM datasets, future ef-
forts should not only focus on algorithmic improvements but also on
clearly communicating the dataset characteristics to expert and non-ex-
pert users alike.

Finally, the acceptance of the ESA CI SM products by a broad user
community and integration into operational applications strongly
hinges on its long-term sustainability. For the coming years, it is very
likely that ESA will continue to support the scientific development of
ESA CCI SM. At the same time, operational reprocessing, softwaremain-
tenance, and near-real-time updating of ESA CCI SM v03.2 is foreseen to
take place within the Copernicus Climate Change Services from June

Image of Fig. 13
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2017 onwards. However, a successful continuation of ESA CCI SM also
requires sustenance of the input missions. Currently, the risk of failing
missions is relatively low: From the active microwave side two almost
identical MetOp-A and MetOp-B ASCAT scatterometers are currently
operated by EUMETSAT, while MetOp-C ASCAT will be launched in
2018 to replace MetOp-A (Lin et al., 2016). From that time, MetOp-A
will remain in orbit to serve as backup in case of failure of one of the
other MetOp satellites. Continuation beyond the current MetOp pro-
gram will be provided by the approved MetOp Second Generation
(MetOp-SG) program, which will start in 2021/22 and has the goal to
provide continuation of C-band scatterometer and other systematic ob-
servations for another 21 years, i.e., at least until 2042. Also for the pas-
sive microwave part there is currently a redundancy of suitable
missions: AMSR2 C-band observations, ASMR2, GPMGMI, and Fengyun
1B X-band radiometers, and of course the dedicated L-band missions
SMOS and SMAP. GPM GMI, Fengyun 1B, and SMAP are currently not
exploited in ESA CCI SM, so there is even potential to further improve
the quality and coverage of the merged ESA CCI SM products. In case
of failure of one of these missions, there is enough potential backup to
reduce the impact of satellite failure on the short to mid-term. More
worrying is the long-term continuation of L-band and C-band radiome-
ter missions, since neither SMOS, nor SMAP nor AMSR2 has confirmed
continuation. Nevertheless, the planned Water Cycle Observation Mis-
sion (WCOM) of the Chinese Academy of Sciences has the potential to
bridge the looming gap in L- and C-band observation time series from
2020 onwards (Shi et al., 2016). Yet, a strong commitment of space
agencies worldwide to provide continuation of single sensor missions
and ESA CCI SM is needed to bolster the acceptance of satellite-derived
soil moisture by a large user community in general.
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