
1.  Introduction
Reservoirs play a vital role in the supply and management of water resources. The number of reservoirs and 
their cumulative storage volume has increased rapidly over the last six decades, and it is estimated that there 
are more than 16 million reservoirs worldwide with a combined storage capacity of over 8 million cubic meters 
(MCM) (Lehner et al., 2011). Depending on their management and operation, reservoirs may have major impacts 
on downstream river basins, and the resultant flow alterations have been identified globally across a number of 
scales (Adam et al., 2007; Döll et al., 2009; Tebakari et al., 2012; Vörösmarty et al., 2003). Despite impacts to 
various parts of the flow regime, reservoirs are frequently either excluded, or poorly represented in large-scale 
hydrological models, resulting in degraded model performance and model simulations that miss key aspects of 
reservoir-induced streamflow behavior (Dang et al., 2020; Wada et al., 2017). Consequently, many researchers are 
now focusing their efforts on the challenge of appropriately incorporating reservoirs into large-scale hydrological 
models (He et al., 2017; Qiu et al., 2019; Shin et al., 2019; Turner et al., 2020; Yassin et al., 2019). Improving 
the representation of reservoirs in hydrological models is essential for enhancing our capacity to simulate current 
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simulations due to a lack of open-access data describing their operation. To help inform the representation of 
reservoirs, we use a suite of simple metrics to detect where and how rivers are being impacted by upstream 
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Britain and find that abstractions for water supply reduce the volume of water in rivers downstream of 
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improve our ability to simulate and predict river flow under changing climate and water demand.
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and future water resource availability, and will help inform national and international water management under 
nonstationary conditions of supply and demand (Brown et al., 2015; Dang et al., 2020; Turner & Galelli, 2016; 
Wagener et al., 2010).

Incorporating reservoirs into large-scale hydrological modeling still faces several key challenges (Wada 
et al., 2017). Firstly, there are very few places in the world where operating rules are publicly available, particu-
larly across large scales (Brown et al., 2015; Masaki et al., 2017). In many countries the water industry is privat-
ized and water is managed by regional companies, resulting in a lack of consistent national-scale data and often 
a higher level of data protection (Steyaert et al., 2022). Reservoir regulation frequently draws on detailed and 
undocumented decision-making processes, and thus it is rarely possible to implement control curves or opera-
tional rules directly into simulations. In some cases, operations are further complicated by the role of reservoirs in 
larger conjunctive use systems. In these locations, operation at singular reservoirs should be considered part of a 
coordinated network, managing resources over a wider area, with a more complex set of objectives and trade-offs 
(Rougé et al., 2019). Moreover, even where operating rules are available at individual locations, the application, 
or generalization, to a larger domain is problematic. Reservoir operation is often designed for a specific set of 
local or regional objectives and studies have found that ignoring individual operational nuances can result in 
significant errors when simulating downstream flow (Turner et al., 2020; Yassin et al., 2019). In deriving reser-
voir rules from generic characteristics, such as reservoir type or location, one assumes that operations will be 
consistent across a sample of reservoirs with similar properties, as well as through time, which is often not the 
case (Haddeland et al., 2006; Hanasaki et al., 2006; Masaki et al., 2017). Although in many cases this baseline 
level of reservoir representation still improves streamflow simulations compared with not including reservoirs, 
there remains significant room for improvement before performance reaches a level capable of informing water 
management across large scales (e.g., national scales).

Some studies have demonstrated the potential for assessing flow alteration, and even inferring operational 
rules, by comparison of inflow and outflow timeseries, or dividing a record into pre-and-post impoundment 
(Gao et al., 2009; Magilligan & Nislow, 2005; Richter et al., 1996; Singer, 2007; Tebakari et al., 2012; Turner 
et al., 2021). Despite the success of techniques such as the Indicators of Hydrologic Alteration (IHA) for assess-
ing small-scale reservoir impact, in most cases the necessary data is not available for these techniques to be 
upscaled. Inflow and outflow, or suitably long (pre- and post-dam) timeseries are rarely available across large 
spatial domains; neither are suitable paired catchments nor naturalized timeseries, which in some cases can 
also facilitate an assessment of flow alteration (Arheimer & Lindstrom, 2014; Brunner, 2021; Döll et al., 2009). 
Consequently, in many locations, little is known about how reservoirs are impacting the flow regime and there is 
a lack of guidance or data for how they should be represented in hydrological models. In response to this, Steyaert 
et al. (2022) have collated a national scale database for inflow, outflow and storage data at 679 major reservoirs 
across the contiguous United States. This dataset has allowed reservoir operations to be inferred nationally, and 
operation schemes derived from this data have been shown to outperform generic alternatives when forced with 
observed inflows (Turner et al., 2020, 2021). While this new dataset represents an unrivaled level of data availa-
bility, to our knowledge, no other country has a similar dataset that has been collated and made openly available. 
Consequently, here we highlight the need for a data analysis methodology which can detect and characterize 
reservoir-induced flow alteration from more widely available public data, to support the identification of reser-
voir impacts and their implementation into hydrological models.

To fill this gap, we introduce a suite of hydrological signatures designed to quantify the large-scale (e.g., can 
be applied over hundreds to thousands of catchments) impact of reservoirs on the flow regime from only down-
stream flow records. The signatures are designed to capture the principal components of reservoir-induced flow 
alteration relevant to hydrological modeling, including impacts on the water balance (WB), flow variability and 
the relationship between streamflow and precipitation at annual, monthly, and daily timescales. We calculate 
these signatures across a large sample of catchments in Great Britain, where the flow gauging network typi-
cally postdates the construction of reservoirs, resulting in a lack of upstream or pre-construction flow timeseries 
that would facilitate the use of standard approaches (e.g., IHA). To distinguish reservoir impacts from naturally 
occurring streamflow variability, we compare hydrological signatures between 186 catchments where we know 
one or more reservoir is present (“reservoir catchments”) and 111 benchmark catchments across Great Britain 
(i.e., catchments where human influence on river regime should be negligible). By calculating signatures across 
these two groups of catchments (reservoir and benchmark), we use the benchmark variability to define thresholds 
enabling the detection of reservoir catchments exhibiting significant flow alteration. Our study demonstrates the 
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feasibility of using hydrological signatures to detect and quantify the large-scale influence of reservoirs on down-
stream flow, whilst supporting diagnosis of upstream reservoir operation. We suggest that national-scale insights 
into streamflow manipulation that result from such an effort will be vital to inform the development of necessary 
reservoir operation schemes and will guide their inclusion in large-scale hydrological modeling frameworks.

2.  Data and Catchment Selection
We used a large sample of catchments across Great Britain to test whether our suite of hydrological signatures 
could detect and quantify the influence of reservoirs on the flow regime over hundreds of gauges. To achieve 
this, we collated reservoir and hydrometeorological data for two sets of catchments: (a) benchmark catchments: 
a sample of near-natural catchments where flows should be almost completely unaffected by human activities 
and (b) reservoir catchments: a sample of catchments that include one or more reservoirs upstream of the flow 
gauge station.

2.1.  Reservoir Data

The location, capacity, use and construction date of reservoirs was obtained from the UK reservoir inventory 
(Durant & Counsell, 2018), which contains data on UK reservoirs with storage exceeding 1.6 MCM and a selec-
tion of smaller ones. After cross-referencing the UK Reservoir Inventory with the Global Reservoir and Dam 
Database (Lehner et al., 2011), it was apparent that some of the Scottish reservoirs in GranD were not included in 
the UK inventory, and in several locations the capacities were significantly different (see Text S5 in Supporting 
Information S1). Consequently, in Scotland, the UK reservoir inventory has been supplemented with data on 84 
reservoirs from the Scottish Environment Protection Agency (SEPA). Of these additional reservoirs, 65 have no 
use category, and thus their purposes (e.g., hydroelectricity generation, flood control, water supply) have been 
classified as unknown. Where mismatches in capacities were identified, the UK Reservoir Inventory has been 
updated using the supplementary SEPA data.

We excluded 82 of the UK Reservoir Inventory reservoirs from this analysis, either because there was no gauge 
downstream of the reservoir (37), they were outside of Great Britain (2) or because they could not be placed on 
the river network (43), largely because their outflow or inflow location was unclear (see Figure S1 in Support-
ing Information S1). Similarly, we have also removed reservoirs built to supply canals, those with multiple uses 
and those designed for flood storage. Since there were less than 5 reservoirs in each of these categories we 
were unable to draw any robust conclusions about their impact. In total, 232 reservoirs remained for analysis 
(Figures 1b–1d). Reservoirs with the highest capacity tend to be located in the west of Great Britain, where 
rainfall is substantially higher and where there is relatively high basin relief. A vertical belt of reservoirs run 
from north to south through Wales, and similarly through the center of England. There are very few reservoirs in 
central southern England where supply is more groundwater dominated, or along the Welsh border. In Scotland, 
reservoir coverage is reasonably widespread, with some gaps in the North East of Scotland and along the West 
coast and Islands. Water resource reservoirs make up the largest proportion of reservoirs in this study (65%) 
followed by hydropower reservoirs (10%), and the remaining portion have an unknown use (25%).

2.2.  Catchment Selection and Hydrometeorological Data

For the benchmark catchments, we selected gauging stations from the UK Benchmark Network, which are consid-
ered to be relatively free of human disturbance and that exhibit a natural flow regime (Harrigan et al., 2018). 
For the reservoir catchments, we selected all gauging stations in Great Britain from the UK National River 
Flow Archive, NRFA (https://nrfa.ceh.ac.uk/) that included at least one reservoir upstream from the reservoirs 
identified in Section 2.1. For each of these catchments, we collated open-access, nationally available rainfall, 
potential evapotranspiration (PET) and flow catchment daily timeseries (as detailed below) in order to calculate 
the hydrological signatures.

Daily rainfall data were extracted from the 1 km Centre for Ecology and Hydrology Gridded Estimates of Areal 
Rainfall (CEH-GEAR) (Tanguy et al., 2021) and daily PET data were extracted from the 1 km Climate Hydrology 
and Ecology research Support System Potential Evapotranspiration (CHESS-PE; which is calculated using the 
Penman-Monteith equation) (Robinson et al., 2017) using catchment boundaries from the National River Flow 
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Figure 1.  (a) Distribution of benchmark and reservoir catchments used in this analysis. (b, c, and d) Distribution of Water 
Resource, Hydropower and Unknown reservoirs. (a)–(d) Also display the regions underlain by chalk (in green). (e, f, and g) 
Comparison of average precipitation, average potential evapotranspiration and baseflow index across benchmark and reservoir 
catchment samples.
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Archive (NRFA). Daily flow timeseries were obtained from the NRFA database. To ensure appropriately long 
time series were available for the robust calculation of the hydrological signatures, only gauges with NRFA daily 
flow timeseries spanning from 1980 to 2014 with 90% complete data were included in the analysis. Where data 
gaps were present, NaN (no data) values were forced into the precipitation and PET timeseries at the associated 
timesteps. The timeseries start date was set to 1980, since more than 95% of the reservoirs with known construc-
tion dates were completed by this point. Finally, we removed six of the benchmark catchments due to the presence 
of a reservoir in the upstream river network.

After applying these checks, 186 reservoir catchments and 111 benchmark catchments remained for analysis 
(Figure 1a). These two sets of gauges have national coverage, with a bias toward the west and north of Great 
Britain where most of the reservoirs and near-natural catchments are located. Our new database covers a wide 
diversity of hydrologic and climatic conditions across Great Britain, with meteorological characteristics largely 
consistent between the benchmark and reservoir catchments to ensure that any differences between the two sets 
of catchments are due to impacts from reservoirs (Figures 1e and 1f). Geology is characterized by the catch-
ments' baseflow index (BFI) which measures the proportion of the river runoff that can be classified as baseflow 
(for more information see Gustard et al., 1992) and has been shown to reflect the underlying geology across 
Great Britain (Bloomfield et al., 2021). The benchmark sample has more variable BFI than the reservoir sample 
(Figure 1g), particularly at the upper end, where 12% (or 13) of the benchmark catchments have a BFI higher 
than recorded in any reservoir catchment. These are primarily chalk catchments where we expect there to be a 
significant groundwater influence (see Figure 1a) (H. Jones et al., 2000). Since this resource is often clean and 
cheap, catchments underlain by chalk tend to rely on groundwater resources more than surface water.

In comparison to the benchmark catchments, reservoir catchments have slightly higher average rainfall 
(1,285 mmyr −1 compared with 1,013 mmyr −1) and lower average PET (478 mmyr −1 compared with 505 mmyr −1). 
The upstream reservoir capacity ranges from 0.59 MCM to 8,356 MCM, with a median upstream reservoir capac-
ity of 20.6 MCM. The distance between the gauges where downstream flows are recorded and the location of the 
nearest upstream reservoir ranges from 0.05 to 202 km with a median of 21 km.

3.  Hydrological Signatures
Our approach investigates to what extent reservoir impact can be detected, quantified, and in many cases diag-
nosed by downstream flow timeseries. The statistical and dynamical properties of streamflow timeseries can be 
described by quantitative metrics, called hydrological signatures (see review by McMillan, 2020). For natural 
and near-natural catchments, hydrological signatures have been shown to provide useful insights into catchment 
behavior, and have been widely used to assess underlying processes and evaluate model structure and parame-
terization (McMillan et al., 2022). For example, event runoff ratios are used to explore the partitioning of fast 
and slow runoff processes, whilst the variability of flow can be connected to higher water storage (Estrany 
et  al., 2010; McMillan et  al., 2014). Signatures such as the flashiness index (which measures oscillations in 
flow relative to total flow) have also been used to quantify overall human impact, but on the whole, the metrics 
usually focus on natural processes (Baker et al., 2004; Gnann et al., 2021). In this study, we aim to define a suite 
of hydrological signatures that enable us to detect and quantify specific aspects of reservoir-induced streamflow 
behavior and that have tangible links to reservoir operation, such that their magnitude and subsequent investiga-
tion can provide insights into the upstream operational rules without the benefit of pre-and-post-reservoir flow 
data.

The selection of hydrological signatures used here focus on the WB, runoff coefficient, flow variability and the 
relationship between streamflow and precipitation at daily, monthly, and annual timescales. These signatures 
are designed to capture the principal components of reservoir management including exporting and importing 
water for water supply (WB and runoff coefficient) and the operation scheme which dictates how water is stored 
and released under normal and extreme conditions (flow variability and relationships between precipitation and 
streamflow). Most of the signatures defined in this paper rely on concepts (the runoff ratio, the flow duration 
curve (FDC), etc.) that are commonly used in the literature (McMillan, 2020; Sankarasubramanian et al., 2001; 
Sawicz et al., 2011; Yadav et al., 2007; Yilmaz et al., 2008), but here have been combined and adjusted to detect 
aspects of streamflow behavior specifically related to reservoir operation.

The following section will give a brief introduction to each signature.
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3.1.  Water Balance (WB)

The WB is a fundamental reflection of hydrological functioning in a catchment, which can be directly impacted 
by reservoir operations, particularly those related to abstractions (e.g., for water supply or irrigation) (Döll 
et al., 2009; Van Beek et al., 2011; Van Oel et al., 2008), pumped storage (where reservoir levels are sustained 
by imported water) (Ming et al., 2017) or inter-catchment transfers (Gupta & van der Zaag, 2008; Murgatroyd 
& Hall, 2020), which can lead to either net losses or gains. In this analysis, we quantify the reservoir-induced 
changes to the WB via a Budyko-type curve. The framework can be used to examine the catchment WB by 
considering the relationship between the catchment runoff coefficient (defined here as the ratio between catch-
ment mean annual discharge and catchment mean annual precipitation) and the catchment aridity index (defined 
here as the ratio between catchment mean annual PET and catchment mean annual precipitation) (Budyko, 1974; 
C. Wang et al., 2016). The runoff coefficient quantifies how much precipitation is translated into streamflow, 
whilst the aridity index considers climatic deficits induced by the ratio of precipitation to PET. Considering the 
long-term WB, a catchment with no losses or gains can be represented by:

𝑄𝑄

𝑃𝑃
= 1 −

𝑃𝑃𝑃𝑃

𝑃𝑃
� (1)

where Q, P and PE are the catchment average daily discharge, precipitation and potential evapotranspiration 
calculated from the entire available timeseries, all expressed in mm/day. Subsequently, Q/P represents the runoff 
coefficient and PE/P is the aridity index in a manner than establishes energy and water limitations for a particu-
lar  catchment. The water balance signature (WB) measures the deviation from a closed WB and is calculated as:

WB =
𝑄𝑄

𝑃𝑃
−

(

1 −
PE

𝑃𝑃

)

� (2)

This Equation 2 is represented by a dashed black line on the Budyko-type plot (Figure 3a). A negative value of the 
WB implies that a catchment experiences water losses which exceed the total PET while a positive value implies 
that a catchment gains more water than is delivered in precipitation. The magnitude of this signature can be used 
to assess the magnitude of water lost or gained by a catchment, with higher water losses or gains anticipated in  the 
reservoir catchments.

3.2.  Dry/Wet Runoff Ratio (DWRR)

By storing and redistributing water across the year, reservoirs have the potential to alter the monthly runoff coef-
ficient through sustaining downstream flow, releasing water for downstream abstraction or withholding water 
to increase storage or releasing additional water received from pumped storage (J. A. Jones & Hammond, 2020; 
Tang et al., 2021; Z. Yin et al., 2021). In natural catchments in Great Britain, we expect the monthly runoff 
coefficient to follow a seasonal cycle, with higher runoff coefficients in winter (or wet season) when PET is 
lower and rainfall totals are higher. The Dry/Wet Runoff Ratio (DWRR) assesses deviations in the seasonal cycle 
by comparing the mean runoff coefficient in the dry (in this case summer, April–September) and wet (winter, 
October–March) season, calculated as:

DWRR =
(

�
�

)

dry

/(

�
�

)

wet
� (3)

where (Q/P)dry is the mean runoff coefficient using daily data from April–September (i.e., Q and P are the average 
of daily flow and precipitation in the dry season only), and (Q/P)wet is the mean runoff coefficient using daily data 
from October–March. A value exceeding 1 implies that the dry runoff coefficient is higher than the wet runoff 
coefficient and suggests that reservoirs are redistributing water throughout the year or receiving large imports. 
Comparatively, a value near 0 implies that there is a large contrast between high wet season and low dry season 
runoff.

3.3.  Segmentation of the Flow Duration Curve (Seg-FDC)

A central component of reservoir management is determining how much water is released and when. To char-
acterize this, this signature is based on the FDC, which quantifies the cumulative frequency of flow (or the 
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percentage of time a specific flow is equaled or exceeded). Many studies have defined signatures based on the 
slope of the central part of the FDC, or on specific quantiles (Farmer et al., 2003; Yilmaz et al., 2008). However, in 
theory, reservoirs have the potential to modify the full range of flow. After comparing the FDCs from benchmark 
and reservoir catchments, we found that in some reservoir catchments, the FDC shows abrupt changes and flat 
segments (examples of this can be seen in Section 5.3), as reservoir outflows are often kept at the same constant 
value (e.g., the compensation flow) for long periods of time. This signature (Segmentation of the Flow Duration 
Curve (Seg-FDC)) thus first fits a sigmoidal function to the observed cumulative distribution function and then 
measures how closely the data follows that “natural” (sigmoidal) shape. The sigmoidal function takes the form:

𝑓𝑓 = −𝑎𝑎 ∗ log

(

1

1 − 𝑥𝑥

)

+ 𝑏𝑏� (4)

where a and b are parameters optimized for each catchment based on a nonlinear least squares regression of 
the catchment FDC (based on historical daily flows) between the 5th and the 95th percentiles, and x is the flow 
exceedance probability. The deviation of the observed FDC from the sigmoidal function of Equation 4 are then 
quantified by the root mean square error, normalized by the standard deviation of the (log) flow, that  is,:

Seg − FDC =

√

∑𝑁𝑁

𝑖𝑖=1
(log(𝑄𝑄𝑖𝑖) − 𝑓𝑓𝑖𝑖)

2

𝑁𝑁
∗
1

𝜎𝜎

� (5)

where N is the number of data points (i.e., the length of the time series), Qi is the daily flow value in the ith 
position of the observed FDC, 𝐴𝐴 𝑓𝑓𝑖𝑖 is the corresponding flow according to the sigmoidal function of Equation 4, 
and σ the standard deviation of the (log) flow timeseries. A value close to 0 implies that there is a close match 
between the observed FDC and the sigmoidal one, suggesting that the shape of the observed FDC is “natural.” 
The higher the Seg-FDC metric, the larger the deviations from the sigmoidal function, which suggests significant 
modification to the natural flow variability.

3.4.  Low Flow Variability (LFV)

By storing and redistributing water, reservoir operations can help to sustain (and sometimes elevate) low flows and 
retain high flows, minimizing the seasonal cycles observed in natural catchments (Gibbins et al., 2001; J. A. Jones 
& Hammond, 2020; Singer, 2007; Tang et al., 2021; Tijdeman et al., 2018). To protect downstream ecosystems, 
reservoir releases must often abide by a “compensation flow,” which is a pre-defined minimum volume that must 
be released wherever possible (Maynard & Lane, 2012; X. A. Yin et al., 2011). To ensure that reservoirs maximize 
storage, the compensation flow often becomes the default release volume when a reservoir is not full. This signa-
ture identifies the effects of the compensation flow by considering how the low flow regime changes throughout 
the year. If a reservoir has a constant, pre-defined release volume, it is likely that this will remove or reduce the low 
flow seasonality, thereby lowering intra-annual variability, highlighting the control of a reservoir over the flow 
regime. This signature focuses on the flow that is exceeded 80% of the time (or the 20th percentile of flow, referred 
to as the Q80), since this has been used as threshold value for drought definition (Van Loon et al., 2016) and should 
capture the compensation flow. For each catchment, this signature calculates the difference between the maximum 
and the minimum monthly Q80 (normalized by the mean daily discharge, for comparability across catchments):

LFV = 1 −
max𝑚𝑚=1,. . . ,12(𝑄𝑄80,𝑚𝑚) − min𝑚𝑚=1,. . . ,12(𝑄𝑄80,𝑚𝑚)

𝑄𝑄
� (6)

where Q80,m is the 20th flow percentile in month m (e.g., Q80,1 is the 20th percentile of the all daily flow data 
recorded in the month of January across the entire 34 years timeseries) and Q is the mean daily discharge in mm/
day. A high value of this signature implies that there is minimal intra-annual variation in Q80 values, or that the 
low flow regime is unaffected by seasonal change. Comparatively, a low value implies that there is a more vari-
able low flow regime, usually because Q80 reflects seasonal flow patterns and is highest in winter and lowest in 
summer. We expect locations where pre-defined reservoir releases (such as the compensation flow) control low 
flows to exhibit lower Low Flow Variability (LFV) values than are seen in benchmark catchments.

3.5.  Streamflow Elasticity (E)

By design, reservoirs are intended to facilitate the redistribution of flow by storing water for release or abstrac-
tion. This can occasionally break down following extremely dry (or wet) periods, but in general, reservoirs will 
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often be able to control the downstream regime independent of precipitation (J. A. Jones & Hammond, 2020; 
Tijdeman et al., 2018). Streamflow elasticity characterizes the relationship between precipitation and flow on an 
annual timescale (Sawicz et al., 2011) and thus can characterize this relationship. This Streamflow Elasticity (E) 
signature is calculated with the equation:

𝐸𝐸 = median

(

∆𝑄𝑄year−on−year

∆𝑃𝑃year−on−year

)

∗
𝑃𝑃

𝑄𝑄
� (7)

where P and Q are, as usual, the average daily precipitation and discharge in a catchment, whereas 
𝐴𝐴 ∆𝑄𝑄year−on−year

(

or ∆𝑃𝑃year−on−year

)

 represents the change in mean annual streamflow (or precipitation) from 1 year 
to the next in the available time series (i.e., with 34 years we have 33 values of ∆Q and ∆P, from which we take 
the median). In line with previous studies, we find that the median is the most stable form of this metric (Sawicz 
et al., 2011). A value of 1 implies that the percentage change in precipitation from 1 year to the next will be matched 
by the percentage change in streamflow. Values which exceed 1 suggest a catchment is more sensitive to precipitation 
change, whilst a value of less than 1 implies that catchment flow is insensitive to changes in precipitation. A negative 
value of streamflow elasticity suggests that there is an inverse relationship between streamflow and precipitation.

4.  Application of Hydrological Signatures
Having defined the above five signatures, we compare their values across the benchmark and the reservoir sample 
to (a) detect whether significant alterations are found in any of the reservoir catchments (Section 4.1); (b) investigate 
whether we can link the magnitude of these alterations to the characteristics of the reservoir catchments (Section 4.2).

4.1.  Detecting Significant Alteration

To distinguish reservoir-driven impacts from naturally occurring streamflow behavior a threshold is defined for each 
signature, based on the maximum or minimum value recorded in the benchmark sample. In some cases, anomalous 
catchments are excluded from the threshold definition, where they are considered to exhibit significantly different 
behavior to any in the equivalent reservoir sample. For example, when defining the WB threshold, we exclude 6 
chalk catchments with significant groundwater water gains/losses, since this signature does not account for ground-
water processes. Once the thresholds have been calculated, any reservoir catchment with a signature crossing the 
associated threshold is considered to exhibit significant flow alteration (see Section 5.6 for more detail).

4.2.  Catchment Descriptors

Throughout this study, we use two catchment descriptors to examine the link between the magnitude of flow altera-
tion, as measured by our hydrological signatures, and the associated reservoir characteristics. Previous studies have 
used descriptors based on factors such as the reservoir capacity, catchment area, distance upstream, annual flood 
volume or mean annual inflow to anticipate the impacts of reservoirs on, for example, flood attenuation or river 
fragmentation (Arheimer et al., 2017; Cipollini et al., 2022; Jumani et al., 2022; Scarrott et al., 1999; Singer, 2007; 
W. Wang et al., 2017). We trialled several descriptors, finding clear links between the size and location of upstream 
reservoirs and the associated flow alteration. Thus in this study, we focus the descriptors on reservoir capacity, 
catchment precipitation and catchment area. The first descriptor is the percentage of the overall catchment surface 
area that is drained through reservoirs. This is termed the “contributing area” and is expressed as:

ContributingArea (%) =

catchment area drained by reservoirs
(

km
2
)

total catchment area
(

km
2
)

× 100� (8)

The second descriptor, referred to as the “normalized upstream capacity,” compares the capacity of a reservoir to 
the average volume of precipitation received by the catchment in a year. A value of 1 suggests that the reservoir 
is large enough to store 1x the average annual rainfall, similarly a value of 2 means a reservoir can store 2x the 
average rainfall and so on, the descriptor is expressed as:

NormalizedUpstreamCapacity =

total upstream reservoir capacity
(

mm
3
)

total catchment area (mm2) ∗ average annual catchment precipitation (mm)

� (9)

This descriptor complements the Contributing Area by accounting for the increased potential of large reservoirs 
to manipulate flow, whilst accounting for differences in water availability across catchments. Both metrics are 

 19447973, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033893 by U

niversidad D
e C

hile, W
iley O

nline L
ibrary on [03/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

SALWEY ET AL.

10.1029/2022WR033893

9 of 19

illustrated below in Figure 2. Finally, we also contextualize flow alteration by considering the purpose of upstream 
reservoirs. If this is unknown for all reservoirs in the catchment, then the category has been classified as Unknown. 
However, where at least one reservoir has a use, the catchment is either classified as a Water Resource or Hydro-
power catchment, or where both types lie upstream, a catchment is considered to have Multiple Types (Figure 1b).

5.  Results
5.1.  Reservoirs Mainly Induce Deficits in the Water Balance

Figure 3a examines the WB across benchmark and reservoir catchments by relating the runoff coefficient to the 
Aridity Index in a Budyko-type curve. The largest deficits (i.e., points significantly below the bisector line with a 

Figure 2.  Schematic visualizing catchment descriptors and their equations for reservoir catchments. As demonstrated, the 
contributing area is the sum of reservoir catchments 1 and 2 divided by the total gauge catchment area, whilst the normalized 
upstream capacity is the sum of reservoirs 1, 2 and 3 capacities divided by the gauge area multiplied by the average annual 
(catchment) rainfall.

Figure 3.  (a) Budyko-type curve investigating the relationship between runoff coefficient and aridity index. Benchmark 
catchments are shown in gray and reservoir catchments are colored by their contributing area. Circled in gray are the three 
hydropower catchments on the River Spey. Points falling below the diagonal (dashed line) indicate catchments where the 
runoff deficit exceeds total potential evapotranspiration. The Water Balance (WB) signature is the vertical distance between 
a point and the diagonal. (b) Plot showing the relationship between normalized upstream capacity and WB signature. 
Benchmark catchment variability is displayed parallel to the Y axis.
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low WB metric such as the St Johns Beck at Thirlmere Reservoir (75001) and the Haweswater Beck at Burnbanks 
(76001)) are primarily seen in catchments with a water resource reservoir upstream, particularly those with high 
contributing area (Figures 3a and 3b). In these catchments, runoff deficits significantly exceed total PET suggest-
ing that water is being removed from the catchment (most likely by abstraction for public water supply). The St 
Johns Beck at Thirlmere Reservoir (75001) and the Haweswater Beck at Burnbanks (76001) have the largest 
WB signature (and water deficit), demonstrating how in these catchments more than ∼60% of incoming water is 
abstracted from the reservoir. Despite a low contributing area, some hydro-power catchments also have notable 
deficits, such as the three gauges on the river Spey in Scotland (circled in gray on Figure 3) where the WB signa-
ture decreases from −0.15 to −0.21 to −0.23 as contributing area increases from 13.4% to 18%–22.2%. Although 
large deficits are recorded in these catchments, the lower contributing area demonstrates how at hydropower 
catchments, our chosen catchment descriptors are not as successful at anticipating flow alteration. Contrastingly, 
Figure 3b also shows several catchments with high contributing area and normalized upstream capacity which 
still have a WB metric close to zero, where there appear to be no significant deficits or surpluses. Here reservoirs 
do not appear to be manipulating the WB.

There are two catchments where the runoff coefficient is larger than 1, these are the Tay at Kenmore (15016) 
and the Wey at Broadwey (44009) which have runoff coefficients of 1.07 and 1.43 (latter catchment not shown 
on Figure 3a due to axis height). The former is a hydro-power catchment which, despite low reservoir storage, 
receives substantial imports as part of the Breadalbane Hydro Scheme. The latter is a groundwater-dominated 
benchmark catchment with significant water gains (note: we are not constraining groundwater contributions to 
streamflow in this framework). Although water deficits are most prominent in the reservoir sample, there are 
several reservoir catchments with notable water surpluses (i.e., points significantly above the bisector line). The 
Tame at Lea Marston Lakes (28080) has the largest positive WB signature of 0.5, despite a contributing area of 
only 6%, implying there is a substantial water import. Within the benchmark sample, the four catchments with 
the highest WB signature and the two with the lowest all have a BFI ≥ 0.9 and are primarily chalk catchments, 
suggesting that these losses/gains may be driven by groundwater (Oldham et al., 2022).

5.2.  Reservoirs Alter the Seasonal Runoff Patterns

Figure 4 shows the variability of the runoff coefficient over the year and the associated Dry/Wet Runoff Ratio (DWRR) 
signature. There are four water resource reservoir catchments (the St Neot at Craigshill Wood, the Clywedog at Bryn-
tail, Brenig at the Llyn Brenig outflow, and Tryweryn at the Llyn Celyn outflow; 48009, 54081, 67003 and 67017) 
where the intra-annual runoff coefficient peaks in July (Figure 4a) and the dry/wet runoff ratio exceeds 1 (Figures 4c 
and 4d). This is not seen in the benchmark and remaining reservoir catchments (see Figure S2 in Supporting Infor-
mation S1 for full reservoir results), which have a runoff peak either in the winter, or in April under the influence of 
snow. Catchments with April peaks have the highest elevation ranges and are often located in higher elevation regions 
of Scotland (Figure 4b). The reservoir-induced summer runoff peaks imply that in summer months, these catchments 
have streamflow exceeding the supplied precipitation, where reservoirs are likely to be releasing additional water 
to sustain downstream abstractions or downstream flow. In all four of these catchments the increased dry (summer) 
runoff coefficient translates into a higher DWRR. When considering the dry/wet runoff ratio in the context of the 
annual precipitation (Figure 4c), it is apparent that as well as the high dry/wet runoff ratios, there is a second group of 
water resource reservoir catchments with low DWRR signatures compared to the benchmark catchments with similar 
precipitation. This is likely driven by the artificial reduction in runoff coefficient during the drier months as reservoirs 
store water for public supply and the relationship between spill flows and heavy rain.

5.3.  Catchments Downstream of Reservoirs Have Segmented Flow Duration Curves

The second component of the flow regime examined in this analysis was the FDC. We defined the Seg-FDC 
metric to quantify deviations from a “natural,” that is, smooth, FDC (Figure 5a). The higher the Seg-FDC metric, 
the more the FDC shows abrupt changes and flat segments (i.e., Figures 5b–5d), which are distinctly unnatu-
ral. Figure 5e shows that reservoir catchments with the highest Seg-FDC signature also have a higher contrib-
uting area and normalized upstream capacity, demonstrating that the flow variability is impacted the most at 
gauges close to large reservoirs. There are some exceptions to this, notably the Ness at Ness-side (6007) which 
has high normalized upstream capacity and high contributing area (4,718 mm and 97%) despite low Seg-FDC, 
and contrastingly, the Tame at Lea Marston Lakes (28080) which has a low contributing area and normalized 
upstream capacity (6.3% and 5.43 mm) despite a high Seg-FDC.
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Figure 4.  (a and b) Intra-annual variability in monthly runoff coefficient of (a) water resource reservoir catchments colored 
by their contributing area and (b) benchmark catchments colored by their elevation range. See Text S2 and Figure S2 in 
Supporting Information S1 for results from Hydropower, Unknown and Multiple Types catchments. (c) Dry/Wet Runoff 
Ratio (DWRR) plotted against a catchments annual precipitation, benchmark catchments are displayed in gray and reservoir 
catchments are colored by their contributing area. (d) Plot showing the relationship between normalized upstream capacity 
and the DWRR signature. Reservoir catchments are colored by their contributing area and benchmark catchment variability is 
displayed parallel to the Y axis.

Figure 5.  (a–d) Observed flow duration curves (red) at selected reservoir catchments and their sigmoidal interpolation (black 
dashed). (e) Plot showing the relationship between normalized upstream capacity and Segmentation of the Flow Duration 
Curve (Seg-FDC) signature for the reservoir catchments. Reservoir catchments are colored by their contributing area and 
benchmark catchment variability is displayed parallel to the Y axis.
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5.4.  Reservoir Operation Can Reduce Intra-Annual Low Flow Variability

Figures 6a–6c plot the monthly Q80 at water resource, benchmark and hydropower catchments normalized by the 
mean annual flow (see Figure S3 in Supporting Information S1 for full results). In the benchmark sample (Figure 6b) 
a seasonal cycle can be seen, with higher Q80 in winter and lower Q80 in summer. The color coding also shows that 
catchments with higher BFI (and potentially higher groundwater contributions) have higher Q80 as a percentage of 
mean flow. While many of the water resource (Figure 6a) and hydropower reservoir catchments (Figure 6c) exhibit a 
similar pattern to the benchmark catchments, where Q80 is highest in January and lowest in summer, there are some 
water resource catchments with high contributing area that exhibit a different pattern. In several of these catchments, 
Q80 remains constant throughout the year, demonstrating a disconnect between low flows and seasonal change. This 
translates into a high LFV signature displayed in Figure 6c. There is also a second cluster of reservoir catchments 
which can be distinguished from the benchmark sample by their Q80 peak in the summer months. The Clywedog at 
Bryntail, Brenig at the Llyn Brenig outflow, and Tryweryn at the Llyn Celyn outflow (54081, 67003 and 67017, with 
their peaks circled in Figure 6a) all have notable peaks in July/August, which coincide with their peaks in intra-annual 
runoff coefficient and high DWRR signatures (Figure 4). This is likely to be driven by their need to sustain down-
stream abstraction and although this can be seen in Figure 6a, the effect is not captured by the LFV signature.

5.5.  Reservoirs Can Both Strengthen and Weaken the Relationship Between Streamflow and 
Precipitation

Finally, Figure 7a shows the relationship between streamflow elasticity (E) and a catchment's annual precipita-
tion. When compared against those with similar annual precipitation values, it is clear that reservoir catchments 
with the highest contributing area behave differently to the benchmark sample. This is particularly true for those 
catchments with annual precipitation exceeding 1,350 mm, which in benchmark catchments have an elasticity 
from ∼1 to 1.5, whilst in reservoir catchments elasticity ranges from ∼0 to 2.5. This suggests that in these wetter 
catchments, reservoir catchments are both more and less sensitive to precipitation than benchmark catchments. 
The increased variability in catchments with high normalized upstream capacity and contributing area can also 
be seen in Figure 7b. Although no benchmark catchments have an elasticity of less than 0.5, five reservoir catch-
ments can be identified below this threshold.

Figure 6.  Intra-annual variations in monthly Q80 expressed as a percentage of mean annual flow at (a) water resource 
reservoir catchments colored by their contributing area, here catchments 54081, 67003 and 67017 have been circled in gray 
to highlight their peak in July/August (b) benchmark catchments colored by their baseflow index (BFI) and (c) hydropower 
catchments colored by their contributing area. See Text S3 and Figure S3 in Supporting Information S1 for results from 
Unknown and Multiple Types catchments. (d) Plot showing the relationship between normalized upstream capacity and 
Low Flow Variability signature. Points are colored by their contributing area. Benchmark catchment variability is displayed 
parallel to the Y axis.
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5.6.  Defining Signature Thresholds to Identify Reservoir-Impacted Catchments

Figure 8 shows the full range of signatures calculated across all catchments. Thresholds of benchmark variability 
were calculated using the maximum and minimum signature values from the benchmark sample and are repre-
sented by dashed gray lines, above (or below) which reservoir signatures classify a catchment as having signif-
icant flow alteration, distinguishing a catchment from the benchmark sample. For some signatures, we alter the 
thresholds to exclude anomalous catchments, which is discussed below.

Forty of the 186 reservoir catchments cross at least one signature threshold and thus are considered to be 
significantly altered by upstream reservoir operation. There are no catchments that are identified by all four 
metrics, but eight water resource catchments exceed the benchmark threshold for three of the five signatures 
(WB, Seg-FDC and LFV). The Seg-FDC signature identifies 22 catchments of which 13 have a contributing 
area of more than 70%. The threshold chosen for this signature disregards one benchmark catchment, the West 
Glen at Easton Wood (31023). This catchment is ephemeral and flow is recorded as 0 from the 60th percen-
tile upwards causing a large plateau in flow values. In total, the WB metric identifies 24 catchments below 
the negative threshold and 4 above the positive threshold, where 13 have a contributing area exceeding 70% 
or normalized upstream capacity of over 300  mm. When defining thresholds for this signature, benchmark 
variability (and hence the chosen threshold) excludes 6 chalk catchments with significant groundwater gains/
losses. The WB signature does not account for groundwater and we assume that the manipulations to the WB 
in these catchments are not relevant to the definition of the reservoir-induced flow alteration threshold. The 
LFV signature identifies nine catchments in excess of the benchmark signature threshold. These are all water 
resource catchments and all have a contributing area over 70% and normalized upstream capacity of more than 
0.18. Similarly five water resource catchments are identified by the streamflow elasticity metric, of which four 
have contributing area exceeding 84% and normalized upstream capacity of over 0.26 and 2 are not picked up 
by any other signature. The DWRR signature picks up the smallest number of catchments (4) which all have a 
contributing area exceeding 50%.

6.  Discussion
6.1.  Signatures and Catchment Descriptors as Methods of Detection

This study introduces a novel suite of hydrologic signatures that can be used to detect and quantify reservoir-induced 
flow alteration solely from downstream flow timeseries. Hydrologic signatures have been widely used to quantify 
and better understand “natural” hydrologic processes (Addor et al., 2018; Euser et al., 2013; Gnann et al., 2021; 
Sawicz et al., 2011), but to our knowledge this is the first study to have focused on hydrological signatures linked 
to reservoir operation schemes that only require downstream flow (McMillan, 2020). The suite of hydrological 
signatures introduced in this study have tangible links to reservoir operation, such that their magnitude and subse-
quent investigation can provide insights into the upstream operational rules.

Figure 7.  Streamflow elasticity against (a) annual precipitation and (b) normalized upstream capacity. Benchmark 
catchments are displayed in gray, whilst reservoir catchments are colored by their contributing area. Flow in catchments 
falling above the black dashed line is more sensitive to changes in precipitation, whilst flow in catchments falling below the 
line is less sensitive to changes in precipitation.
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Using thresholds from the set of benchmark catchments, we detect significant flow alteration in 40 of the 186 
reservoir catchments. Catchments with the highest degree of alteration, or those flagged by multiple signatures, 
usually also have high contributing area (>70%) and normalized upstream capacity (>0.2). In line with other 
studies, this finding highlights the importance of a reservoirs size and location for determining the magnitude 
of flow alteration at a given downstream gauge location (Arheimer et al., 2017; Cipollini et al., 2022; Jumani 
et al., 2022; Ruhi et al., 2019; Singer, 2007). These catchment descriptors could therefore be useful for envi-
ronmental flow planning and forecasting significant flow alteration (Grantham et al., 2014). However, there are 
several exceptions to this pattern, where the nuances of individual reservoir operation schemes highlight the 
difficulties involved in generalizing the downstream impacts of reservoirs (Turner et al., 2020). We find exam-
ples of large reservoirs with high contributing area having a non-distinguishable impact on downstream flow 
(e.g., the Dee at Bala Lake which has a contributing area of 80% and normalized upstream capacity of 0.29 but 
has no significant alteration), as well as identifying flow alteration at locations significantly far from a reser-
voir outflow (e.g., the Carron at Headswood which despite contributing area of 10% and normalized upstream 
capacity of 0.09 is flagged by both the WB and Seg-FDC signatures). Importantly, in those catchments where 
we do not detect significant alteration, we acknowledge that this does not mean reservoir operations are not 
influencing flow, rather their impact cannot be detected at the downstream gauge with the signatures we have 
used.

As found in previous studies (Ferrazzi & Botter, 2019; Ruhi et al., 2019; Singer, 2007), our results highlight 
the importance of using a suite of signatures. None of the reservoir catchments are above/below the benchmark 
thresholds for all five signatures, one is picked up by four of the five signatures (the Brenig at the Llyn Brenig 
outflow; 67003; picked up by all but the WB signature) and 10 catchments exceed the benchmark thresholds for 

Figure 8.  Bar charts which demonstrate the signature values recorded in the reservoir catchment sample. Catchments are 
ordered by increasing Segmentation of the Flow Duration Curve (Seg-FDC) signature (panel e). The same order is used for 
all other signatures (a–d) to enable comparison across plots. Benchmark variability is displayed in gray boxplots to the right 
of the reservoir sample. Reservoir catchments are colored by their contributing area and signature thresholds are marked by 
the gray dashed line(s) for each metric.
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three of the five metrics. The WB signature (WB) detects the largest number of catchments (28), but this signature 
alone still only detects 70% of the total impacted catchments.

6.2.  How Are Reservoirs Impacting the Flow Regime?

Using our suite of signatures, we find that reservoirs across Great Britain can induce deficits in the WB, alter 
flow variability and manipulate streamflow elasticity, aligning with findings elsewhere in the literature (Döll 
et al., 2009; Maynard & Lane, 2012; Tebakari et al., 2012; Tijdeman et al., 2018). We see the most widespread 
impacts on the WB and FDC, and suggest that accounting for pre-defined reservoir releases and abstractions will 
be essential for adequately simulating flow downstream of reservoirs in impacted catchments. In light of water 
scarcity and changing patterns of rainfall and evapotranspiration (Dobson et al., 2020; Watts et al., 2015), we also 
highlight the importance of accounting for a reservoirs compensation flow requirements, which in many cases 
dominate the low flow regime.

Whilst water resource catchments are detected by all five metrics, hydropower catchments only show signifi-
cant alterations to the WB. These catchments induce both water deficits and surpluses, which in some cases, 
suggests that they exchange water between one another. In agreement with Rougé et al. (2019) this confirms 
that multi-reservoir coordination can be a vital aspect of local and regional reservoir operation and consid-
eration of the propagation/dissipation effects on the flow regime through the river network is important 
(Singer, 2007). These apsects may be missed when considering reservoirs in isolation. We hypothesize that 
in many cases hydropower gauges are not detected by the remaining metrics due to a smaller (or lack of) 
influence from compensation flows. This requirement is most dominant at water resource reservoirs (Black 
et al., 2005) and as well as inducing flat segments in the FDC, it drastically reduces the LFV in water resource 
catchments.

6.3.  Implications for Hydrological Modeling

By using signatures to detect reservoir-impacted catchments, this study has provided a large-scale framework to 
identify where current hydrological modeling practices are missing vital reservoir representation and to inform 
the development of a reservoir operation scheme. The signatures proposed in this study can be used to add local 
observational insight into tailored reservoir operation schemes, and to tune parameters based on the diagnostic 
power of the metrics extracted from downstream flow.

Our WB signature can provide an indication of how abstraction volumes relate to total streamflow, whilst the 
Seg-FDC metric can identify routine release volumes, and the LFV signature can pinpoint where compensation 
flow dominates the flow regime and estimate its magnitude. Figure S4 and Text S4 in Supporting Information S1 
provide an example of the diagnostic capability of the signatures for inferring reservoir operations at the Vyrnwy 
Reservoir (54003). As well as for the definition of reservoir operation schemes, signatures might also be used to 
evaluate simulated streamflow after reservoirs have been included in a large-scale hydrological model, as each 
signature can link to a different parameter from the operation scheme. This approach to model evaluation has 
significant advantages over commonly used aggregate measures of performance (e.g., Nash Sutcliffe Efficiency 
or Mean Squared Error) which often struggle to isolate the influence of specific model components on the output 
(McMillan, 2020; Yilmaz et al., 2008).

Furthermore, many of our results have confirmed the notion that generic operation schemes (such as those 
which are defined based on reservoir use categories) may miss key differences in reservoir operation (Masaki 
et al., 2017). For example, for reservoirs categorized as “water resource” reservoirs, we found a cluster of three 
catchments in Wales (the Clywedog at Bryntail, Brenig at the Llyn Brenig outflow, and Tryweryn at the Llyn 
Celyn outflow; 54081, 67003 and 67017) with much higher DWRR signatures than the remaining water resource 
reservoirs. Here, abstractions are carried out downstream of the gauges, and although reservoirs are still signif-
icantly altering downstream flow variability, we observe no changes to the overall WB (unlike the deficits seen 
elsewhere). As well as the DWRR, the downstream abstractions can also be identified by the unnatural peaks in 
the monthly runoff coefficient and Q80 in summer months. This behavior is not seen in the other catchments with 
water resource reservoirs (where abstractions are directly taken from reservoirs) and highlights a difference that 
should not be ignored (as is often the case in generic schemes) when introducing reservoirs into a large-scale 
hydrological model.
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6.4.  Future Work and Limitations

Although this suite of signatures aims to highlight the most significant impacts of reservoirs on the flow 
regime, this is not exhaustive. 76% of the reservoirs in the UK reservoir inventory are designed for water 
resources (Durant & Counsell, 2018), and consequently, the hydrological signatures introduced here have bias 
toward the effects of this type of management. Similarly, the signatures are also based on several assumptions 
surrounding the climate, hydrology and reservoir management practices of Great Britain. In many other loca-
tions signatures may have to consider the specific impacts of flood control, hydropower or irrigation reservoirs 
in more detail (Arheimer & Lindstrom, 2014; Ferrazzi & Botter, 2019), and may find differing management 
practices reduce the applicability of this suite of metrics. Both the Seg-FDC and LFV signatures look for devi-
ations in a seasonal climatic regime, whilst the WB signature assumes that catchments have a largely closed 
WB. These assumptions may not always hold in other locations, and we hope that the future application of 
these signatures across more catchments will help to inform the generalizability of the metrics. The signature 
thresholds we have defined in this study are also specific to Great Britain, although following a similar proce-
dure in other countries could lead to the definition of new thresholds, and we suggest that this may be a focus 
for future work.

We also suggest future work should focus on developing the threshold definition process. Here we adopt a 
simple method which, whilst largely successful, could be enhanced to better identify reservoir catchments with 
significant alteration. In some cases we find reservoir catchments to exhibit notably different behavior to the 
benchmark sample when considered in the context of their annual precipitation (see Figures 4c and 7a), but 
these are not detected by thresholds based solely on the range of benchmark variability. To overcome this we 
suggest that in future it may be preferable to develop a threshold which varies with climatic, or geological vari-
ability, or to adopt a classification based technique which increases the discriminatory power of the signatures. 
Whilst our two samples of catchments were deemed to have a comparable spread of climatic and geological 
variables, in some cases we still had to exclude small clusters of catchments from the threshold definition. 
Although this could be improved by a more advanced threshold approach, this also emphasizes the impor-
tance of using two comparable catchment samples. Future work might also consider calculating the signatures 
over different time periods and consider their applicability to data-scarce regions where the robustness of the 
signatures may be affected by missing data. A simple sensitivity analysis of our results to timeseries length 
and percentage of missing data suggest that our approach would (overall) produce similar results in a more 
data-scarce environment (see Text S6 and Table S1 in Supporting Information S1), but this would benefit from 
further testing. In this study we also assumed that reservoir operations were static over time, which is unlikely 
to be the case.

Finally, to test the diagnostic ability of our signatures we recommend that further work should apply them to the 
definition and development of reservoir operation schemes within large-scale hydrological models. Incorporating 
reservoirs into hydrological models may significantly influence flow simulations, particularly under drought 
conditions, which is increasingly relevant given projections of increasing water scarcity and changing patterns of 
rainfall and evapotranspiration (Dobson et al., 2020; He et al., 2017; Watts et al., 2015).

7.  Conclusions
This study introduces a novel suite of hydrologic signatures that can be used to detect and quantify reservoir-induced 
flow alteration solely from downstream flow timeseries. We have demonstrated the use of these hydrological 
signatures in a new framework that aims to detect and estimate the magnitude of reservoir-driven flow alteration 
and have demonstrated its feasibility by applying the framework nationally across Great Britain. This methodology 
differs from others of its kind for its minimal data requirements, large-scale applicability and diagnostic power. 
We find that in Great Britain, the main impacts on the flow regime are driven by abstractions and periods of 
constant release, where the compensation flow is particularly significant. The magnitude of alteration can be 
related to a catchments contributing area and normalized upstream capacity, where these catchment descriptors 
have potential for predicting the degree of flow alteration experienced at a downstream catchment. We hope 
these signatures will facilitate the diagnostic evaluation of reservoir operation schemes built into hydrological 
models, and that in Great Britain, the knowledge gained from this study will aid the development of national-scale 
reservoir representation, emphasizing the locations at which our current modeling practices may be insufficient.
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Data Availability Statement
The outputs of this study (signature values and catchment descriptors) can be found in the Supporting Information 
(Data Set S1). The code for calculating the signatures from this paper and producing the associated plots has been 
published by Salwey (2023) through Zenodo and is accessible at https://doi.org/10.5281/zenodo.7712750. The 
UK Reservoir Inventory (Durant & Counsell, 2018), CEH-GEAR (Tanguy et al., 2021) and CHESS-PE (Robinson 
et al., 2017) datasets are all publicly available through the CEH Environmental Information Data Centre. Flow 
timeseries and catchment BFI can be obtained on the NFRA website. Geological information was obtained from 
the British Geological Survey. The DECIPHeR model code from Coxon et al., 2019 has been provided by Coxon 
and Dunne (2019) through Zenodo and is accessible at https://doi.org/10.5281/zenodo.2604120, this was used to 
obtain the data for calculating the catchment descriptors.
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