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Abstract As hydrological systems are pushed outside the envelope of historical experience, the ability of
current hydrological models to serve as a basis for credible prediction and decision making is increasingly
challenged. Conceptual models are the most common type of surface water hydrological model used for
decision support due to reasonable performance in the absence of change, ease of use and computational speed
that facilitate scenario, sensitivity and uncertainty analysis. Hence, conceptual models in effect represent the
current “shopfront” of hydrological science as seen by practitioners. However, these models have notable
limitations in their ability to resolve internal catchment processes and subsequently capture hydrological
change. New thinking is needed to confront the challenges faced by the current generation of conceptual models
in dealing with a changing environment. We argue the next generation of conceptual models should combine the
parsimony of conceptual models with our best available scientific understanding. We propose a strategy to
develop such models using multiple hydrological lines of evidence. This strategy includes using appropriately
selected physically resolved models as “Virtual Hydrological Laboratories” to test and refine the simpler
models' ability to predict future hydrological changes. This approach moves beyond the sole focus on
“predictive skill” measured using metrics of historical performance, facilitating the development of the next
generation of conceptual models with hydrological fidelity (i.e., models that “get the right answers for the right
reasons”). This quest is more than a scientific curiosity; it is expected by policy makers who need to know what
to plan for.

1. Introduction
“…the sciences do not try to explain, they hardly even try to interpret, they mainly make models.
By a model is meant a mathematical construct which, with the addition of certain verbal in-
terpretations, describes observed phenomena. The justification of such a mathematical construct is
solely and precisely that it is expected to work—that is, correctly describe phenomena from a
reasonably wide area. Furthermore, it must satisfy certain aesthetic criteria—that is, in relation to
how much it describes, it must be rather simple.” (von Neumann, 1955)

1.1. Hydrological Science Is Limited by the Inability to Perform Controlled Experiments

Catchments represent the outcome of physical, biological and social processes that play out across multiple spatial
and temporal scales (Gunderson & Holling, 2002). Whilst hydrological systems globally are subject to the same
fundamental underlying physical (if not necessarily biological or social) processes, their diverse local expressions
mean that each catchment is generally regarded as unique (Beven, 2000). Moreover, observational limitations
mean that it is impossible to fully characterize internal functioning due to poor identifiability of the system (e.g.,
Guillaume et al., 2019), which is often referred to as equifinality in hydrology (Beven, 2006) or under-
determination in the philosophy of science (Rosenberg & McIntyre, 2019). Moreover, catchment responses are
both highly non‐linear (with small changes potentially having large consequences) and constantly changing at a
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range of spatial and temporal scales (Fowler et al., 2022; Montanari et al., 2013) leading to complex causal chains
with multiple interactions and feedbacks.

These statements form the backdrop for the hydrological science enterprise, differentiating it from fields that
can rely heavily on controlled laboratory experiments (e.g., physical sciences), and from fields where ran-
domized control trials are viewed as the highest line of evidence (e.g., medical sciences). We simply do not
have access to multiple identical (or even functionally equivalent) realizations of a hydrological system (such as
a catchment) for which we can alter one or more physical characteristics and/or boundary conditions in one set
while leaving the other set as controls. Likewise, for practical and ethical reasons, we cannot randomly select a
statistical sample of catchments to modify (e.g., construct dams, modify land use, or some other sort of
intervention) while using an equivalent statistical sample as a control. Hydrological studies that do involve the
use of controlled experiments generally occur at the laboratory or small plot scale and focus on understanding
component processes at scales that do not easily or directly translate to the scales relevant to water
management.

1.2. Progress in Hydrological Science Can Be Considered a Qualified Success

Despite its challenges, the hydrological sciences have seen tremendous progress during the last century and a half,
and our capacity to predict hydrological fluxes at a range of spatial and temporal scales is unprecedented. A key
feature of the scientific discipline is a heavy reliance on models—where models are the main expression of
hydrological theory and represent complex sets of hypotheses (always multiple), which can be tested on data from
those elements of the hydrological system that lend themselves to observation. In keeping with common in-
terpretations of the scientific method, we should expect such models (representing competing hypotheses) to
undergo a type of scientific natural selection—gradually weeding out the weaker potential explanations and
retaining the stronger ones—by confronting them with more and different kinds of data.

However, taking the pragmatic perspective that the quality of a scientific endeavor is ultimately measured through
its predictive skill under varied conditions, we might call this partnership a qualified success. While our capacity
to predict dominant hydrological quantities generally continues to increase, our capacity to verify the proposed
models remains limited by inadequate access to relevant data (e.g., Maier et al., 2023), and by the unavoidable
inability to conduct controlled experiments. Put simply, our capacity to test and refine hydrological models at the
catchment scale, for a wide range of catchments, is severely limited.

1.3. Simpler Conceptual Models Are More Commonly Used in Practical Contexts

If we accept the assertion that hydrological science is largely the discipline of building and testing models of
hydrological processes, then what do hydrological models consist of? There indeed exists a wide spectrum of
hydrological models, with varying degrees of simplification in space, time, and process representation (Peel &
McMahon, 2020). For the purposes of this discussion, we (somewhat crudely) categorize hydrological models
into two end‐member model types—“conceptual models” (CMs) and “physically resolved models” (PRMs). The
first type, CMs, refers to simplified, lumped or semi‐distributed, hydrological representations based on an
aggregate perceptual‐conceptual physical understanding of the dominant processes that give rise to the
catchment‐scale behaviors we observe under typical climatic conditions (Gupta et al., 2012). Classic examples of
CMs include GR4J (Perrin et al., 2003), HBV (Bergström, 1995) and IHACRES (Croke & Jakeman, 2004). In
contrast, the second model type, PRMs, refers to space‐time‐and‐process‐resolved spatially discretized hydro-
logical representations based on detailed physics‐based interpretation of subcatchment scale storages, flows and
physical transformations of water within the system. This physics‐based understanding is typically obtained from
detailed laboratory/plot scale and experimental catchment studies. Examples of PRMs include HydroGeoSphere
(Brunner & Simmons, 2012), HM (VanderKwaak, 1999), and ParFlow (Kollet & Maxwell, 2006). We prefer to
use the term “physically resolved” here, instead of “physically based” and/or “process‐based,” because the real
difference between conceptual and physically resolved models is not that the former have no basis in physical
reality (they clearly do, in that attributes of reality, such as the processes of catchment storage, routing and ET
fluxes are mirrored onto model attributes), but that the essential difference between them is the level of detail with
(and form of representation by) which physical attributes of space, time and hydrologically relevant processes are
resolved within them.
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In categorizing hydrological models into these two types, we recognize several drawbacks (as outlined by
Partington et al., 2022, and others), including: (a) there have been extensive debates in the hydrological literature
on the relative merits of categorizing models (e.g., Abbott et al., 2001; Beven, 1989; Fatichi et al., 2016; Grayson
et al., 1992 and many others); (b) definitions are not “sharp” but form a continuum (e.g., Mount et al., 2016); (c)
there are always exceptions to the model types summarized in the preceding paragraph; (d) this categorization
applies to models which predominantly focus on predicting surface‐water quantities rather than groundwater
quantities—noting of course there can be significant groundwater‐surface water interactions.

Of these two model types, CMs are generally the more common choice for practical management applications.
This includes eWater SOURCE, Australia's hydrological modeling platform (Welsh et al., 2013), the Sacramento
model in the US (Burnash et al., 1973), and GR4J in France (Perrin et al., 2003). A recent review of hydrological
models in Switzerland by Horton et al. (2022) (based on 157 journal articles) found that simpler conceptual
models (PREVAH and HBV‐light) dominate usage with over 45% of applications, and are the most widely used in
climate change impact studies. Similarly, Peel and McMahon (2020), who reviewed 279 rainfall‐runoff models,
found that 74% of models were conceptual.

One can postulate likely reasons for the popularity of CMs over PRMs. In terms of performance, model inter-
comparison studies have shown that CMs provide similar or better streamflow predictions than PRMs (e.g., Reed
et al., 2004; Refsgaard & Knudsen, 1996). Another obvious advantage of CMs over PRMs is their ease of use and
low computational cost, which makes it possible to explore many hundreds to thousands of scenarios; thereby
supporting evaluation of risk when making decisions to manage the potential impacts of climate variability and
change (e.g., Partington et al., 2022). Faster computational speed also permits both sensitivity (Razavi et al., 2021)
and comprehensive uncertainty analysis (Renard et al., 2010)—typically requiring parameter samples of thou-
sands or more for convergence (the number depending on complexity of the model parameter space). There is also
a strong social component to hydrological model selection, with Addor and Melsen (2019) referring to “practi-
cality, convenience, experience, and habit” as key factors, and Horton et al. (2022) establishing, via surveys of
model developers and users in Switzerland, that institutional knowledge is a key factor in model choice.

1.4. Current Conceptual Models Are Unlikely to Be Able to Deal With Hydrological Change

Recent signs suggest that increasingly rapid hydrological change will have profound implications, not just for our
modeling efforts, but for hydrological science in general. Natural and anthropogenic forces act to alter water
balances, vegetation dynamics, soil porosities and longer‐term geomorphologies, and these changes interact to
drive further change along complex, interconnected and multi‐scale causal chains (Section 2.1 will provide a
more detailed description of the types of “hydrological change”). It has become increasingly difficult to accept
that these changes can be adequately represented using highly conceptualized model abstractions, whose be-
haviors are controlled by static parameters that cannot easily be related to observed geometrical and physical
properties of the changing system. This is not mere speculation—many recent studies have highlighted the
challenges that conventional CMs face when attempting to represent the catchment‐scale changes that are taking
place (e.g., Clarke, 2007; Fowler et al., 2020; Gibbs et al., 2018; Saft et al., 2016).

Despite their popularity, CMs are known to often produce unrealistic internal hydrologic fluxes (Bouaziz
et al., 2021; L. Li et al., 2015; Peel & McMahon, 2020), as these models do not provide detailed “physically
resolved” representations of internal catchment processes. In addition, the reliance of these models on calibration
to tune parameter values can result in parameter interactions that mask structural inadequacies. Observational
limitations make it impossible to properly assess whether the “accuracy” of a CM's predictions is due to the
correct partitioning of fluxes and proper assignment of state variables within the model (see Partington
et al., 2013). Indeed, it is a major conceptual leap to view catchments as series and parallel arrangements of large
“buckets” influenced by aggregated processes, and to routinely assume that individual physical processes such as
groundwater/surface interactions, capillary drive, preferential pathways, and spatial patterns of ponding or re‐
infiltration can be ignored at catchment scales and under operational conditions.

Put simply, it is difficult to know whether the CMs are “right for the right reasons.” This concept, known as
hydrological fidelity, describes the extent to which a model faithfully simulates dominant hydrological processes
(Clark et al., 2015). Unsurprisingly, in order for CMs to represent hydrological change, their internal process
representations will likely need greater hydrological fidelity and more direct connection to physical catchment
attributes (e.g., see Duethmann et al., 2020, and case study therein).
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1.5. Will PRMs Be the Savior to Overcome the Challenge of Predicting Change?

In contrast to CMs, PRMs provide a physically resolved representation of a catchment. These models are typically
derived from laboratory/plot scale studies and experimental catchments; their mathematical representation
typically employs partial differential equations derived from continuity of mass and momentum in combination
with initial and boundary conditions (Freeze & Harlan, 1969). These models are appealing because they aim to
capture diverse catchment processes at scales that are far more detailed than those used in CMs. As noted by
Fatichi et al. (2016), “when applied spatially, from hillslope to continental scales, such a model [PRM] can
incorporate the space–time variability of the primary forcings, such as precipitation and radiation, and variations
of land‐surface properties (e.g., topography, soils, vegetation) at the sub‐hillslope scale, while resolving the
subsurface domain in horizontal and vertical directions in a way to describe catchment heterogeneity.” As such,
PRMs provide the best opportunity to capture internal catchment processes (Peel & McMahon, 2020). In turn, as
stated by Fatichi et al. (2016), it is believed this helps provide predictions under hydrological change, such as
changes in land use/land cover or a non‐stationary climate (e.g., Pierini et al., 2014; van Roosmalen et al., 2009;
Wang et al., 2008).

The challenges with using PRMs in practical contexts are twofold: (a) observational constraints limit the ability to
establish reliable model constitutive functions and may result in over‐parametrization, providing a risk to model
accuracy, and (b) there is a high cost related to their practical implementation.

In regard to the first challenge, hydrological systems exist in the so‐called realm of “organized complexity”
(Dooge, 1986; Weinberg, 2001), where it is difficult to (a) acquire detailed process‐relevant data at space‐time
resolutions required to study the fundamental scale‐dependent nature of hydrologically relevant processes, (b)
develop and verify accurate mathematical representations of those processes at those various scales, and (c)
constrain the values of the extremely large number of parameters that must be specified when applying PRMs to
common real‐world catchments. This makes it difficult to test the fidelity of PRMs, except for a relatively small
number of “data‐rich” experimental catchments (e.g., Camporese et al., 2014, 2015; Thyer et al., 2004). Thus,
calibration of PRMs is susceptible to over‐parameterization problems. It is generally recognized that only a small
number of parameters can be identified from typically available catchment data; see Jakeman and Horn-
berger (1993) and Shin et al. (2015) for further discussion.

In regard to the second challenge, PRMs have a significant cost associated with model development, as field
observations, data preparation and parameter calibrations are very expensive (Ampadu et al., 2013) and often
unavailable at the intended model scale. The computational costs of PRMs often preclude comprehensive sce-
nario, sensitivity and/or uncertainty analysis. The computational challenges are being gradually overcome by
massively parallel super‐computers (Kollet et al., 2010) (and to some extent by model emulation), though such
resources are not readily available to the majority of hydrological modelers.

These considerations, in our view, suggest that PRMs, while being attractive in terms of potentially more
appealing process presentation, are on their own unlikely to provide a reliable and practical basis for representing
environmental changes across a wide range of scenarios and locations.

1.6. The Need for a New Approach to Conceptual Models to Represent Change

The evidence presented in Section 1.4 suggests that CMs are the most common type of model used for practical
applications by hydrological model users (e.g., engineers/planners/designers/operators of water resource sys-
tems) for decision support. In effect, CMs and their predictions represent the “shopfront” of hydrological science.
Given the pressing and profound implications of hydrological change, it is critical that the hydrological com-
munity develop models with a higher hydrological fidelity than current CMs.

This does not mean that we should reject CMs in favor of PRMs, or vice versa. It is unlikely that the challenges
associated with PRMs related to observational limitations, practical implementation and institutional convenience
will be alleviated any time soon, hence there is unlikely to be widespread adoption of PRMs in practical contexts
in the foreseeable future. Similarly, it seems wasteful for the development of CMs to not take advantage of the
tremendous investment and hydrological knowledge generated by PRMs. We need to find a “sweet spot” where
we can take advantage of strengths and overcome the weaknesses of both model types.
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It is time to re‐think how we assemble our hydrological lines of evidence when constructing CMs so that our
evolving best available understanding can be used to provide the next generation of CMs with better hydrological
fidelity, and therefore greater confidence in their predictions in the face of hydrological change.

2. Accelerating Development of the Next Generation of Conceptual Models
As an empirical science, hydrology can be characterized as the process of developing hypotheses (through
models) and testing them against available evidence (in the form of observations/process understanding) (Sec-
tion 1.2). A number of “hydrological lines of evidence” (HLEs) are used in the hydrological literature to inform
process understanding and provide the evidence to change our hydrological models (i.e., update our hypotheses).
These HLEs range from laboratory scale experiments to large sample hydrology (described below in Section 2.3).
This section evaluates HLEs in terms of their ability to accelerate the development of the next generation of
conceptual models that are robust in terms of both predictive ability and hydrological fidelity when faced with
hydrological change.

The outcomes of this evaluation of the HLEs are summarized in Figure 1. An overview of the evaluation
process is outlined as follows. Section 2.1 starts by defining “hydrological change” and discussing the con-
sequences of hydrological science's limitations in controlling these changes (which impacts our ability to
conduct controlled experiments). Section 2.2 identifies five key questions that need to be asked of each HLE to
identify models that provide robust predictions of hydrological change for a broad range of catchments and/or
changing conditions. Section 2.3 defines and evaluates four existing HLEs against these key questions. Sec-
tion 3 then provides a comprehensive definition and evaluation of an emerging fifth HLE, Virtual Hydrological
Laboratories (VHLs), which are increasingly being used to provide virtual observations for experimentation
(see Fatichi et al., 2016). This includes a discussion of the unique opportunities and challenges provided by the
VHL approach.

Figure 1. Evaluation of hydrological lines of evidence against five key questions to accelerate the development of the next generation of conceptual models. The
questions are listed as row headings on left hand side of the figure (see description in Section 2.2). The four existing HLEs are listed as column headings (light blue
background). The “cells” in the figure provide the outcomes of the evaluation (Section 2.3 for further information). For question 1, regarding “hydrological change,” we
assess whether the HLEs can evaluate the model for robustness to hydrological change using either a controlled experimental or observational approach. For questions
2–5 the HLEs are classified into three categories (“yes”, “no”, “limited”), based on the authors' experience. The right hand column (dark blue background) evaluates an
emerging HLE, Virtual Hydrological Laboratories (see Section 3 for detailed discussion).
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2.1. Hydrological Change Is Itself a Complex Issue

Hydrological changes occurring within a catchment can be complex. Building upon Thirel et al. (2015), we define
hydrological change as a significant change in physical characteristics (e.g., land use), or boundary conditions
(e.g., rainfall/temperature change). “Significant change” refers to systematic deviations of the system behaviors
from the historical record. Though this definition is subjective, it is important to distinguish from trivial changes.

The inability of hydrological science to undertake controlled experiments (see Section 1.1) provides the moti-
vation to classify the drivers of change into two groups, based on level of control that we have as hydrological
scientists and practitioners.

(a) “Climatic phenomena” refers to changes that we cannot control (at the scale of the catchment) due to climate
variability or anthropogenic climate change. Climatic phenomena can alter boundary conditions (e.g., pre-
cipitation/temperature), which can change flow dynamics by activating or deactivating hydrological pro-
cesses as the system adapts to the changes. Physical characteristics can also change as ecosystems adapt in
response to climate and/or are subject to disturbances such as bushfires/vegetation mortality, which have a
substantial impact on a catchment's hydrology (Anderegg et al., 2015; Partington et al., 2022).

(b) “Human interventions” refers to changes that we can have some degree of control over. This includes changes
to land cover (e.g., agriculture/urbanization), water management (e.g., dam construction, or streambed
mining) or other interventions (e.g., water withdrawals/pumping/diversions) that will have significant impact
on flow dynamics.

2.2. Key Questions to Evaluate Hydrological Lines of Evidence

Regardless of their origin, hydrological changes to catchment characteristics or boundary conditions lead to
changes in hydrological processes and manifest as changes in the input‐state‐output dynamics of the system.
The altered system dynamics will challenge our assumptions regarding catchment structure and function as
embodied by CMs. This is a key challenge faced by catchment models—will they be robust to these changes?
In this study we build upon the definition of Mathevet et al. (2020) and use the term “robustness” to refer to the
capability of a model to hold a certain level of performance for a broad range of different or changing
conditions.

This definition provides the motivation to propose the following key questions to evaluate the HLEs, starting with
a focus on evaluating hydrological change:

1. How can the HLE evaluate the model for robustness to hydrological change due to (a) climatic phenomena, or
(b) human intervention?

This question has two possible answers, depending on our ability to control the real‐world system of interest:

• Controlled experimental approach. The real‐world system can be manipulated and the dynamical response of
the system to this change can be observed. The benefits are that confounding factors can be controlled so that
the impact of changes in the experimental factors on the system can definitively be determined. The challenge
is that it is not always practical, feasible or ethical to manipulate real‐world systems.

• Observational approach. The system cannot be manipulated and only its response to changes (e.g., climatic
phenomena) can be observed. The benefits are that existing data from real‐world systems can be used for
studying the impact of changes that happened in the past, or phenomena/processes that are too vast or complex
to control easily. The challenges are that uncontrolled confounding factors make it difficult to determine
causation and one may have to wait a long time to obtain observations of rare, naturally occurring phenomena
and/or detect trends due to slow moving gradual changes.

The next key questions (2–5) are motivated by the need for predictions to be robust to change for a range of
realistic catchment types (size, properties etc.) and processes (moving beyond streamflow‐only evaluation):

2. Can the HLE evaluate the model for robustness on catchments of practically relevant size? Although catchment
management decisions can occur at a range of sizes, it is common for practitioners to be interested in impacts at
larger catchment with sizes of the order of 10–10,000 km2 or greater.

3. Can the HLE evaluate the model for robustness on a diverse range of catchment properties? Hydrological
model users require robust predictions on catchments with a wide variety of properties (sizes, slopes, eleva-
tions, soil vegetation types, etc.).
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4. Can the HLE evaluate the model for robustness on a wide range of processes/predictions? This question refers
to moving beyond evaluating only streamflow prediction at the outlet, and could include streamflow at internal
catchment locations, different streamflow generating mechanisms (infiltration excess vs. saturation excess), ET
processes, snow/ice related physical phenomena, and groundwater/surface water exchanges.

5. Can the HLE evaluate the model for robustness using real data? To ensure realistic predictions, it is important
to evaluate models against observations from real catchments. This consideration becomes important when
using synthetic data generated in a Virtual Hydrological Laboratory for experimentation—see Section 3 for
detailed discussion.

2.3. Evaluating Existing Hydrological Lines of Evidence

This section evaluates each of the existing hydrological lines of evidence against the five key questions outlined
above, with outcomes summarized in Figure 1.

To answer question 1, regarding hydrological change, each HLE is categorized by whether the change can be
evaluated using either a controlled experimental approach or an observational approach. In Figure 1, the answer to
this question is split into two components as it depends on whether the change is due to (a) climatic phenomena or
(b) human interventions (see Section 2.1). Key questions 2–5 are answered by classifying the HLEs into three
different categories (“yes”, “no”, “limited”), based on the authors' experience, and with justification provided
below. We recognize this classification is subjective, but the analysis has value because it starts a conversation on
the pathway we should take to develop the next generation of CMs.

The principal lines of evidence that have been used in hydrology to inform process understanding and its
incorporation into hydrological models are categorized and evaluated as follows:

• Lab/plot scale experiments. These focus on using detailed observations at small spatial scales (∼5 m2) at a plot
or in a laboratory to enable the use of controlled experiments (Glaser et al., 2019; Nanda et al., 2018). Evidence
of this kind is used to develop small scale process understanding, for a diverse range of hydrological prop-
erties, but has limited applicability for modeling catchments of practically relevant size.

• Experimental catchments. Heavily instrumented experimental catchments provide high‐resolution observa-
tions of multiple hydrological variables and catchment properties. Evidence of this kind facilitates under-
standing of key hydrological processes (e.g., McGlynn et al., 2002) and can test the ability of models to
represent dominant processes (e.g., Fenicia et al., 2014). However, experimental catchments are somewhat
rare, typically small in size, and usually provide data for only short time periods (a few years). While these
catchments enable experimental studies of the impacts of human intervention (e.g., land‐use change), eval-
uation of changes related to climate is necessarily limited to the observational approach.

• Paired catchments. These are typically catchments selected to experience the same hydroclimate, with
similar properties such as slope, aspect, soils, area, climate, and vegetation. This experimental setup reduces
the influence of confounding factors. Evidence of this kind can be useful when one catchment undergoes
change (e.g., alteration of land‐use) so that the other catchment can serve as a control against which to
assess the impacts of that change (Brown et al., 2005; McDonnell et al., 2018). Paired catchments can
provide valuable evidence at practically relevant catchment sizes; however, it can be difficult to find
suitably paired catchments that span the wide range of hydrological diversity of practical relevance, and
such pairs typically are not heavily instrumented and thus cannot be used to test over a wide range of
processes/predictions. While hydrological change is controlled for, any evidence pertaining to changing
climate will be observational.

• Large sample hydrology. This involves the compilation of historical data for a common set of hydrologically
relevant variables and catchment attributes across a large number of catchments (100–1000s) with widely
varying catchment properties. Evidence of this kind can be used to assess model adequacy and performance
for a wide range of catchments in a statistical sense and to study hydroclimatic and hydrogeological vari-
ability. To achieve relative consistency of input/output data used across catchments, the data sets used in large
sample hydrology studies are typically limited to a few key variables (e.g., streamflow at catchment outlets,
interpolated catchment rainfall and PET). For example, see data sets such as CAMELS (Addor et al., 2017;
Fowler et al., 2021) and studies that use this HLE (Coron et al., 2012; Fowler et al., 2016; Gupta et al., 2014).
Hence, this HLE only supports testing on a narrow range of processes/predictions, using an observational
approach that is limited to historical changes in climate and/or land‐use. It is noted that remotely sensed data,
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across a range of scales from local to global, is increasingly used to derive new and even larger scale data sets
for other hydrological variables for use in large sample hydrology studies (McCabe et al., 2017; Sheffield
et al., 2018), and can overcome some of these limitations.

Figure 1 shows that the four existing HLEs are unable to simultaneously address all five key questions. They do
not provide sufficient information to support the development of a new generation of CMs that can provide robust
support for decision making in the face of hydrological change across a wide range of situations of practical
relevance.

However, there exists another complementary approach that provides the opportunity to integrate multiple lines
of evidence, while taking advantage of their respective strengths and overcoming their respective weaknesses—
the Virtual Hydrological Laboratory—as described in the next section.

3. The Value of “Virtual Hydrological Laboratories” as Another Emerging Line of
Evidence
3.1. Overview of a Virtual Hydrological Laboratory Approach

We envisage the Virtual Hydrological Laboratory (VHL; Figure 2) to be a conceptual framework consisting of a
computational component that can generate a wide range of “virtual catchments” and an evaluation component
that enables the use of controlled experiments to test conceptual models for a range of hydrological change
scenarios. Each virtual catchment (VC) will be constructed using the best available PRMs that provide detailed
physics‐based understanding of sub‐catchment scale storages, flows and physical transformations of water within
the system. Being virtual, these VCs can differ systematically (and widely) in their climate and/or catchment
characteristics, and can be subjected to a range of change scenarios to determine how their hydrological behaviors
respond to such changes. Being based in process understanding, the VHL should be constructed to be consistent
with the four other HLEs discussed above. The VHL can then provide a framework within which the next
generation of CMs can be developed, by comprehensively evaluating competing catchment‐scale model struc-
tures (systems architectures and process parameterizations) against these virtual catchments. We emphasize that
while VCs are constructed from PRMs, they are distinct from traditional applications where a PRM is imple-
mented for a specific catchment.

As discussed above, broad application of PRMs within a decision making context is limited by data availability
and computation time. In a VHL, catchment characteristics can be assigned to cover a range of likely values, and
VHL simulations used to create and test CMs that can then be more broadly applied. Testing the VHL could focus
on behavioral modeling (Schaefli et al., 2011; Yang & Chui, 2021) to ensure that relationships between drivers of
change and hydrologic responses are consistent with the four lines of evidence rather than using catchment
specific performance metrics for single hydrologic variables (e.g., Nash Sutcliffe efficiency between observed
and modeled flow) that rely heavily on having complete and accurate data sets to parameterize the model and
define boundary conditions. Note that in this VHL approach, selection of suitable “trustworthy” PRMs for the
particular change experiment of interest will be crucial—see Section 3.3 for further discussion.

The VHL approach will facilitate and accelerate CM development because:

(1) In a virtual catchment all hydrological components can be observed (albeit virtually), and thus CMs can be
subjected to a more comprehensive level of scrutiny than current observational data sets allow;

(2) The capability to systematically change catchment characteristics will provide the ability to conduct
controlled experiments that isolate the key changes in hydrological processes for different catchments types
—this is currently not possible with real‐world experiments; and

(3) The ability to systematically change climate and land cover/use characteristics will provide the opportunity to
undertake hydrological change experiments and evaluate CMs on a wide range of future hydrological change
scenarios that are outside the envelope of observations. This strategy provides real potential to proactively
“future‐proof” CMs to be able to support decision making in the face of changes that are yet to be observed.

The concept of a “virtual laboratory” or “digital twins,” although not (yet) fully utilized in hydrology, is
extensively applied in other scientific and engineering fields. For instance, virtual simulators are used in military,
aviation, and medical training to prepare for rare events that don't often occur during short training periods
(Lateef, 2010). Hydrology faces similar challenges, particularly in predicting rare events like extreme floods due
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to changing climate. Climate modeling also employs virtual approaches, using complex, highly resolved models
to guide the parameterization of less‐resolved but computationally viable global climate models, which are too
coarse to model cloud processes (O'Gorman & Dwyer, 2018). This parallels the hydrological challenge of
capturing aggregate effects of surface and sub‐surface heterogeneity in catchment‐scale CMs. In biology, “virtual
simulators” enhance the range of data for machine learning (ML) model training (Deist et al., 2019). Similarly, in
hydrology, we often have limited observations for a catchment (typically areal rainfall/PET and outlet stream-
flow), hence a VHL could generate a wider range of synthetic data to enhance system knowledge for better
process evaluation and prediction.

The VHL concept has been gradually emerging in the hydrological sciences. Fatichi et al. (2016) provided several
examples of how virtual labs could be integrated with natural ones (e.g., experimental catchments) to advance
theory and process understanding by coordinating model development with field observation activities. Weiler
and McDonnell (2004) used a range of VHL‐like experiments to develop perceptual models of hillslope pro-
cesses. Tague and Moritz (2019) used an eco‐hydrological model as a VHL to investigate how different as-
sumptions about plant root characteristics are likely to impact hydrologic responses to forest thinning. L. Li
et al. (2014) used a VHL approach to enhance the performance of recursive digital baseflow filters and evaluate a
conceptual model's (AWBM) ability to simulate quick‐flow and slow flow responses. J. Li et al. (2014) used a
VHL to assess the ability of event‐based methods to estimate flood frequency in different Australian climates.

Figure 2. Schematic of the Virtual Hydrological Laboratory. (Catchment image adapted from https://sage‐loir.fr/wp‐content/
uploads/2022/03/SchemaBV.png).
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Bennett et al. (2018) used a VHL to evaluate the ability of stochastic rainfall models to provide reliable
streamflow predictions. Stephens et al. (2020) used a VHL to show historical periods with equivalent precipi-
tation statistics cannot necessarily be used as proxies for future climate change when examining catchment runoff
or model performance.

Inspired by the past use of VHLs, we argue that VHLs need to become a key hydrological line of evidence to
inform development of the next generation of CMs.

3.2. Arguments for Development of the VHL Approach

To accelerate the development of the next generation of CMs, the use of VHL‐type approaches needs to be
expanded to become the backbone of the workflow in CM development and evaluation. Three key arguments why
this transformation is required are outlined below:

Argument 1: The VHL approach enables construction of conceptual models as simplified models guided by
scientific understanding of the key dominant processes under hydrological change.

To provide greater confidence that the next generation of CMs can provide robust predictions of hydrological
change, these models will need to faithfully represent key processes—that is, they will need to improve their
hydrological fidelity.

Initially—starting as far back as Linsley and Kohler (1958)—catchment CM development relied substantially on
hydrologists' personal assessments regarding model structure and parameterization. Hence, the CMs reflected the
knowledge, experience and prejudices of their developers (Gharari et al., 2021; Gupta et al., 2012). Contemporary
CM development has evolved considerably since those early days. Notably, conceptual models of the GR family
are derived from extensive testing using large sample hydrology (e.g., Mathevet et al., 2020; Perrin et al., 2003),
while models such as SuperFlex have incorporated process understanding from the experimental catchments HLE
(Fenicia et al., 2014, 2016). However, while current CMs share many common principles—for example, the
conceptualization of water flowing through series and parallel assemblages of storage tanks—their system ar-
chitectures, process parameterization equations, and parameter specifications vary widely (Clark et al., 2008).

One of the key challenges with the HLEs of large sample hydrology and experimental catchments for CM
development is that these approaches are typically “backward” looking. The use of past historical data sets can
only evaluate the ability of the CMs to represent past hydrological change (and the report card on those evalu-
ations is generally not good—see Section 1.4). Large sample hydrology and experimental catchments will
continue to play a role in hydrological model development as there is still significant scope to improve CMs by
learning from the past. However, for the future, as we face unprecedented hydrological change, how do we
provide greater confidence in our models to provide predictions of future change? If we continue to rely solely on
the use of HLEs such as large sample hydrology and experimental catchments, we will have to wait until the
hydrological change has occurred before we can evaluate and improve CMs. That is too late for supporting
decisions in the interim. We cannot wait. We need new thinking to accelerate the development of CMs that can
capture the dominant processes under hydrological change.

To capitalize on current scientific knowledge, one strategy is to treat CM development as “reduced‐order”
modeling, using detailed PRMs to guide simpler CMs. The CM should aim to retain key input‐state‐output
dynamics from PRMs, particularly those that are relevant for the hydro‐climatic region of interest and applica-
tion objective (e.g., capturing future changes in catchment yield or flood peaks). This approach recognizes that the
best CM for a particular hydro‐climatic region, and for a specific hydrological purpose, may be different (Watson
et al., 2013). A VHL‐like approach can be followed, starting with a highly realistic model for the target envi-
ronment, and conducting virtual experiments to design a minimal‐information‐loss, reduced‐order CM. This
creates a continuum of progressively simpler model representations, minimizing information loss with respect to
a model's intended purpose (Tishby et al., 2000). By doing so, it could be argued that the resulting CMs reflect
current best available relevant scientific understanding, at least for the given scale and context. This reasoning
aligns with the “organizing principles” of the behavioral modeling approach proposed by Schaefli et al. (2011).
As such, the “reduced‐order” approach aims to get “the right answers for the right reasons” and achieve hy-
drological fidelity under climate change.
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The VHL could be designed to quickly compare different CMs—and help the modeler choose the appropriate CM
for the particular application—similar to frameworks such as FUSE (Clark et al., 2008), SuperFlex (Kavetski &
Fenicia, 2011), MaRRMoT (Knoben et al., 2019), Raven (Craig et al., 2020), and others. An approach that could
be helpful in terms of identifying the appropriate reduced‐order models here is surrogate or emulation modeling
(e.g., Asher et al., 2015; Yang et al., 2018), where simplified models that capture the behavior of specific
quantities of interest are developed from PRMs. These surrogate approaches could be explored to help identify (or
used instead of) suitable CMs. The VHL could also provide improved visualization of model structure and un-
derlying hydrologic concepts, which would contribute to more reliable, and defensible use of CMs, particularly in
decision‐making contexts (e.g., Partington et al., 2013; Tague & Frew, 2021).

Inevitably, when moving from a complex PRM to a simpler CM, there will be some information loss and there is a
risk that simplified CMs are unable to capture the entire range of streamflow regimes. To overcome this defi-
ciency, probabilistic error models (e.g., Hunter et al., 2021; McInerney et al., 2017, 2020) could be used in
combination with these simpler CMs to capture streamflow uncertainty that is important for management ap-
plications such as streamflow forecasting.

Argument 2: A VHL enables the use of controlled experiments to evaluate hydrological change.

Clark et al. (2011) considered the set of available CMs to be “Multiple Working Hypotheses” of catchment
process representations. Since we must account for processes that are relevant to hydrological change of various
kinds, our “hypotheses” of catchment processes clearly need to be improved. However, there is a potentially large
variety of processes that may need to be included in these new CMs to enable investigation of the impacts of
changes to boundary conditions and/or physical properties of the catchment of interest.

A key challenge to determining whether a process should be included in a CM is the existence of “confounding
factors” that make it difficult to test hypotheses. As an example, a change in catchment vegetation due to bushfire
and/or land clearing may lead to a change in catchment yield. However, yield is also dependent on climate
variability (annual rainfall, temperature), which can act as a confounding factor. If we try to correlate changes in
catchment yield with changes in vegetation pre‐ and post‐bushfire, the different climates pre‐ and post‐ bushfire
can confound the development of a suitable relationship. Such confounding effects of climate variability could be
reduced by computing yields over longer periods (i.e., 20 years instead of 10 years), but then as the vegetation
grows back, the change in catchment yield can become very difficult to determine.

A major advantage of the VHL, which is not easily provided by the existing HLEs, is the powerful ability to
conduct controlled experiments to test for changes in either climatic phenomena (via virtual simulation of
climate) or human interventions (via virtual simulation of water management/land‐use change) at practically
relevant catchment scales (Figure 1). In a VHL, we can (more or less) independently vary, and therefore control
for, a variety of important factors, such as catchment size and shape, geology, topographic gradient (aspect and
slope), channel network form, vegetation type, soil layering and structure, material properties, sub‐surface
boundary conditions, and climate drivers, among many more. Accordingly, we can represent a very diverse
range of catchments (limited only by hydrological understanding and computational power). As the VHL can
comprehensively embody our current state of knowledge regarding the catchment system (albeit, virtually), it can
be used as a benchmark against which any simpler CM hypothesis can be tested over a wide range of potential
applications. Being able to conduct controlled experiments provides the VHL with the unique ability to evaluate
the impact of hydrological change in a controlled way for both human intervention (e.g., land‐use change) and
climatic phenomena (e.g., climate variability/change). As Figure 1 shows, no other HLE provides this capability
at practically relevant scales of interest. This translates into the opportunity to proactively build CMs that are
robust under hydrological change, rather than passively waiting (potentially years or, more likely, decades) for the
observational data sets to reveal the flaws in existing CMs.

Argument 3: VHLs provide the vehicle that enables the integrating of multiple lines of evidence into the next
generation of conceptual models.

The first two arguments outline the particular strengths of the VHL approach that overcome the limitations of
existing HLEs. However, rather than replacing existing HLEs, we envision that the VHL approach represents a
fifth HLE (Figure 1).
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The VHL approach enables us to integrate multiple lines of evidence, complementing and integrating existing
HLEs (Figure 3). The resulting framework uses data‐rich observations from experimental catchments and/or
paired catchments to improve process understanding, and subsequently improve PRMs (blue section, Figure 3).
The VHL can be used to develop virtual catchments and undertake hydrological change experiments, enabling the
development of candidate CMs as simpler reduced‐order models and proactive evaluation of robustness to hy-
drological change (green section, Figure 3). Large‐sample hydrological studies can be used to test these candidate
CMs and ensure high quality performance on a wide range of catchments (orange section, Figure 3), weeding out
any candidate CMs that are unable to match real observations. Finally, calibration with local data remains part of
the conceptual model application step (black section, Figure 3). While each step uses different lines of evidence, it
will almost certainly benefit from iterative feedback from the other steps to identify and address limitations at
each stage.

A key benefit of the integrated multiple HLE framework (Figure 3) is that it does not rely solely on a single line of
evidence to develop the next generation of CMs. We are not relying exclusively on PRMs to provide the basis for
all CM future model development. We are not building CMs using only Large Sample Hydrology, which has
provided a solid foundation for CM development, but can only look at past change using an observational
approach. This integrated approach based on multiple HLEs will enable the cross‐pollination of ideas across
different sub‐disciplines within hydrological sciences. This is why the iterative feedback loop is so important—it
provides opportunity for ideas such as a reverse coupling, where the use of existing well‐performing CMs could
serve as a check on the PRMs, thus yielding a coherent combination of PRMs and CMs. We argue, based on these
benefits, that this integrated multiple HLE framework should become a standard part of the CM development
workflow, rather than the exception.

3.3. Limitations of the VHL Approach: Selection of a Trustworthy PRM Is Crucial

It is important to acknowledge the limitations of using the VHL approach as a fifth HLE. These include:

(1) The data used in the VHL approach to test the CMs for hydrological change are not “real” observations (see
Figures 1 and 2). The ability to conduct hydrological change experiments using the VHL (see argument 2)

Figure 3. Framework that integrates multiple hydrological lines of evidence, including a VHL, to provide the best available scientific understanding and develop the next
generation of conceptual models.
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relies on the assumption that the PRMs incorporate not only relevant‐scale hydrological processes (such as
soil infiltration and evapotranspiration from vegetation), but that they also provide realistic representations of
emergent properties at the catchment scale, such as flood peaks (e.g., Farmer et al., 2015) and/or Budyko
curves.

(2) The VHL approach assumes a level of “trust” that the PRMs capture future hydrological change. This is a
thorny issue because the ability to capture future change cannot be guaranteed for any environmental model.
If we accept the premise that PRMs reflect our best current understanding of environmental physics, then it is
logical to propose that such models represent our best current chance to simulate future changes. The review
by Fatichi et al. (2016) cites several studies where this assumption was made and PRMs were used to estimate
the impact of future climates (e.g., Huntington & Niswonger, 2012; Piras et al., 2014; Sulis et al., 2012) and
land‐use/cover change (e.g., Ebel & Mirus, 2014; Ogden & Stallard, 2013; Pierini et al., 2014; van Roos-
malen et al., 2009). Rodriguez and Tomasella (2016) used a PRM to examine the impact of land‐use change in
Amazonian basins. More recently, Gelfan and Millionshchikova (2018) and Gelfan et al. (2020) proposed
comprehensive evaluation/validation tests of PRMs for climate change impacts. Stephens et al. (2020) used a
PRM in a series of virtual change experiments to evaluate the impact of changing climate and its interaction
with vegetation dynamics on catchment runoff response.

For the VHL approach to be adopted, it is important to be aware of these assumptions/limitations and take steps to
mitigate them. The aim is to avoid the situation, where, as eloquently stated by a reviewer “we encircle ourselves
by developing models with different models that we have already built.” A key step is the requirement for careful
scrutiny and selection of PRMs. This selection process needs to consider the strength of evidence for the use of a
given PRM for the chosen hydrological change experiment in a given catchment type (hereafter in this paragraph
referred to as a “scenario”). The aim of this selection process is to identify PRMs that are sufficiently “trust-
worthy” to be used in the VHL for a given scenario. For example, if the scenario of interest is to capture changes in
vegetation dynamics, the ecohydrological model RHESSys could be considered a “trustworthy” PRM because its
representation of processes related to vegetation dynamics have been developed, tested and refined based on large
number of studies and using multiple HLEs, namely experimental and/or paired catchments (Son et al., 2016;
Tsamir et al., 2019; Zierl et al., 2007). Indeed, RHESSys has already been used in virtual change experiments
(Stephens et al., 2020). For other scenarios, a “trustworthy” PRM may not currently exist, especially considering
the wide range of potentially different hydrological changes (see Section 2.1), wide range of catchment types and
potential processes of interest. In these scenarios, the lack of trustworthy PRM will hopefully motivate further
research to develop a sufficiently trustworthy PRM. This research may involve comparisons with CMs and
observed data in order to question and improve existing PRMs. An example of a scenario where a trustworthy
PRM does not currently exist is the shifts in streamflow found by Fowler et al. (2020), and references therein, for
which there is yet to be a study that evaluates whether a PRM can capture this change.

If the VHL approach is to be adopted, there is a clear need to develop an objective process for determining if a
PRM is trustworthy. This could include adapting the criteria used for multiple lines and levels of evidence in
ecology (e.g., Norris et al., 2012), while recent developments of validation techniques by Gelfan and Million-
shchikova (2018) and Gelfan et al. (2020) are also promising in terms of developing and establishing trustworthy
PRMs for climate change.

One could argue these limitations preclude the VHL approach from helping guide CM development. However,
this argument misses several important points.

(1) In order to predict future behavior of environmental systems, we must unavoidably use our best available
current understanding of these systems to make assumptions about the future.

(2) The integration of multiple HLEs in an iterative framework (as outlined in Figure 3) will likely lead to
explicitly confronting, questioning and ultimately improving the assumptions underlying both CMs and
PRMs and the impact of those assumptions on predicting future change. Indeed, we hope this framework will
further encourage the ongoing improvement and refinement of PRMs themselves, to make them more
“trustworthy.”

(3) The integration of multiple HLEs, notably large sample hydrology, also mitigates these limitations by
avoiding exclusive reliance on the VHL. By constraining CM development to be consistent with the un-
derstanding encoded into VHLs and emergent catchment behavior from real catchment data used in large
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sample hydrology, we gain a potentially very powerful way to develop scientifically informed predictions of
future change.

Finally, we note that the modification of CMs to simulate past change has already been successful in certain
contexts. For example, Duethmann et al. (2020) modified the HBV model to account for vegetation dynamics in
156 Austrian catchments. These types of studies give more confidence that CMs can be modified to provide more
reliable predictions of change. The VHL approach provides a mechanism to inform these modifications for future
changes (as yet unseen) by reconciling the strengths of multiple HLEs.

4. Summary and Call to Action
The need for new thinking becomes ever more pressing as the predictive skill of current hydrological models is
confronted by rapid, multi‐faceted change and catchments are pushed outside of the envelope of historical
experience. To continue to advance our scientific enterprise, we should revisit the role of conceptual models as
our most important workhorse, ensuring their use not merely as tools for prediction, but as agents that represent
our best available scientific understanding (applied in a given context).

Conceptual models are the model type most commonly used for supporting decision making in surface water
hydrology. As such, they and their predictions essentially represent the “shopfront” of hydrological science. Our
next generation of conceptual models will need to be firmly founded upon the multiple lines of evidence available
in hydrology. This paper argues that the key to integrating these lines of evidence is the use of Virtual Hydro-
logical Laboratories (VHLs). The VHL approach enables the integration of knowledge from experimental/paired
catchments through physically resolved models and provides the ability to conduct controlled experiments using
appropriately selected physically resolved models in a virtual lab‐type environment. This VHL approach will
accelerate the development of the next generation of conceptual models for providing robust predictions of
hydrological change through a process of hypothesis falsification—rather than waiting decades or even centuries
for the observations to do the falsification for us. This VHL approach also requires us, as hydrologists, to confront
and enhance the assumptions regarding future change that are embodied in both conceptual and physically
resolved models.

The VHL approach aims to spearhead the proactive development of the next generation of conceptual models that
can better support decision making, and will shift the focus toward hydrological fidelity (i.e., “getting the right
answers for the right reasons”). This proactive development of conceptual models that can reliably predict future
outcomes before they occur is expected by policy makers who need to know what to plan for.
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