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• The assimilation of Sentinel-1 snow 
depth identifies biases in gridded pre
cipitation products across elevation 
gradients 

• The posterior cumulative snowfall 
elevation patterns are consistent across 
precipitation products 

• Correcting the spatial distribution of 
snowfall leads to basin-wide improved 
snow and streamflow estimates  
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A B S T R A C T   

Precipitation in mountain regions is highly variable and poorly measured, posing important challenges to water 
resource management. Traditional methods to estimate precipitation include in-situ gauges, Doppler weather 
radars, satellite radars and radiometers, numerical modeling and reanalysis products. Each of these methods is 
unable to adequately capture complex orographic precipitation. Here, we propose a novel approach to charac
terize orographic snowfall over mountain regions. We use a particle batch smoother to leverage satellite infor
mation from Sentinel-1 derived snow depth retrievals and to correct various gridded precipitation products. This 
novel approach is tested using a simple snow model for an alpine basin located in Trentino Alto Adige, Italy. We 
quantify the precipitation biases across the basin and found that the assimilation method (i) corrects for snowfall 
biases and uncertainties, (ii) leads to cumulative snowfall elevation patterns that are consistent across precipi
tation products, and (iii) results in overall improved basin-wide snow variables (snow depth and snow cover 
area) and basin streamflow estimates.  
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1. Introduction 

Mountain head-watersheds are often referred to as “water towers” 
because they store freshwater during winter months and release it when 
it is most needed for agriculture purposes during the spring and summer 
months (e.g., Viviroli et al., 2007; Immerzeel et al., 2020; Qin et al., 
2020). The hydrology of mountains is driven by orographic (i.e., 
elevation dependent) precipitation, an inherently complex physical 
mechanism that brings enhanced amounts of rain and snow to the higher 
elevations of the mountains (e.g., Mott et al., 2014; Sarmadi et al., 
2019). The mechanism is poorly understood because of the complicated 
feedbacks between the complex terrain and the atmosphere. The 
knowledge uncertainty in snowfall spatial patterns primarily encom
passes magnitude and seasonality of precipitation elevation gradients, as 
well as the drivers (e.g., landscape or atmospheric variables) of their 
variability (Harpold et al., 2017; Avanzi et al., 2020). 

The knowledge gap around the spatiotemporal heterogeneity of 
orographic precipitation is exacerbated by the lack of reliable precipi
tation observations in mountain regions. Meteorological networks at 
high elevations are sparse (Bhatt and Nakamura, 2005) and, in snow- 
dominated regions, precipitation gauges are prone to large errors 
because of wind-driven undercatch or snow plugging issues (Rasmussen 
et al., 2012). Radar- or satellite-based observations or retrievals in 
mountain terrain are challenged by complex topography, radar beam 
shielding, and ground echoing (Germann et al., 2006). The lack of in-situ 
precipitation or radar- and satellite-based observations caused several 
regional and global mountain hydrology studies to rely on readily and 
globally available precipitation products that come from satellite (e.g., 
Global Precipitation Measurement, GPM Huffman et al., 2018), rean
alysis sources (e.g., Modern-Era Retrospective analysis for Research and 
Applications, Version 2, MERRA-2 and the European centre for medium- 
range weather forecasts Atmospheric Reanalysis version 5, ERA-5 
Gelaro et al., 2017; Hersbach et al., 2020) and hybrid approaches 
(Beck et al., 2019). 

Reanalysis or satellite-based precipitation products are widely 
available worldwide. However, these gridded precipitation products 
have relatively coarse resolution (i.e., >= 10 km) with respect to the 
features of mountainous landscapes and show sub-optimal performance 
across mountainous terrain especially for satellite products which suffer 
from precipitation retrieval issues above frozen surfaces and complex 
terrain (Ebert et al., 2007; Scheel et al., 2011; Liu et al., 2017; Maggioni 
et al., 2017; Speirs et al., 2017; Xu et al., 2017; Lundquist et al., 2019; 
Wang et al., 2019). Despite their coarse resolutions, reanalysis and 
satellite products are routinely used to force hydrological models 
because they are readily available globally, or perhaps the only option in 
absence of in-situ data. At the local scale, in-situ observations of snowfall 
might be less uncertain than coarse scale resolutions products, but 
snowfall gauges also suffer from precipitation under-catch issues where 
the recorded snowfall tends to be biased low with respect to actual fallen 
precipitation amounts. When forcing snow models with the biased 
precipitation, the resulting SWE or snow depth ground estimates will 
also be severely biased (e.g., Raleigh et al., 2015; Günther et al., 2019). 

A largely unexplored solution for explaining snowfall orographic 
gradients is to directly analyze the snow that accumulates on the ground. 
This approach was used in Avanzi et al. (2020) using snow accumulation 
estimates from snow course observations. The latter are periodic manual 
measurements, generally used by water managers for forecasting, col
lecting snow depth and snow density estimates at regular intervals over 
transects of various spatial extents (Rice and Bales, 2010). The key 
assumption with this solution is that the observed ground snow depth or 
snow water equivalent (SWE, the amount of water stored in the snow 
pack) measurements directly correspond to snowfall accumulation 
(only), and are therefore able to explain orographic patterns in snowfall. 
While this is not a safe assumption everywhere, it is reasonable for re
gions with weak wind-driven snow redistribution processes and little to 
no intermittent snow melt events in between snowfall episodes at the 

ground snow depth measurement survey. Despite potentially providing 
a solution for the identification of orographic snowfall patterns, snow 
courses data are primarily available only over few data-rich mountain 
regions, including the western US (Pagano et al., 2004), Switzerland (e. 
g., Mott et al., 2023), Norway (Skaugen et al., 2012), and Finland 
(Lundberg and Koivusalo, 2003). These measurements are sparse or not 
existent over the vast majority of the water towers of the world. For 
these regions, high-resolution snow depth or SWE satellite retrievals 
could be seen as a way to overcome the lack of in-situ data. 

In spite of the absence of a dedicated snow estimation satellite 
mission, advances in remote sensing technology continue to revolu
tionize the way we monitor snow over mountain regions. As a conse
quence, the number of scientific efforts aimed at using remote sensing to 
estimate snow depth or SWE at sub-kilometer spatial resolution has 
increased. These encompass studies that take advantage of a simple 
difference of land surface elevation between snow-on and snow-off im
ages, including snow depth retrievals from airborne Lidar scanners (e.g., 
Painter et al., 2016) and from stereo satellite imagery (e.g., Deschamps- 
Berger et al., 2020). 

More recently, scientific studies have proved the ability to retrieve 
snow depth from the increased volumetric scattering observed by active 
microwave satellite (e.g., Sentinel-1 snow depth retrievals, Lievens et al. 
(2019, 2022); Tsang et al. (2022). Other studies have focused on using 
the interferometry data in which snow depth is obtained based on the 
microwave signal phase difference between two acquired satellite 
scenes (Leinss et al., 2014; Conde et al., 2019). Some studies looked at 
using synthetic aperture radar (SAR) data to detect the presence of wet 
snow (Karbou et al., 2021) and snowmelt dynamics (Marin et al., 2020). 
Despite these advances in microwave sensing of snow depth, limitations 
remain with respect to applications of these remote sensing techniques 
to characterizing orographic snowfall estimates (Tsang et al., 2022). 
These observations are only available at discrete temporal frequencies in 
agreement with the operational overpasses of the satellite. The sparse 
temporal frequencies might miss significant snow accumulation events 
and therefore not accurately capture the accumulation dynamics in the 
mountain catchments. 

A potential method to overcome the remote sensing observations 
shortcomings is data assimilation, which leverages the information 
content in the observations with that of a land surface model, while 
minimizing their limitations due to both observations and model 
inherent uncertainty (Girotto et al., 2014; Margulis et al., 2015; Mag
nusson et al., 2017; Winstral et al., 2019; Girotto et al., 2020; Smyth 
et al., 2022). 

In this paper, we hypothesize that the orographic snowfall patterns in 
mountain catchments can be identified and resolved via the assimilation 
of satellite-based snow depth retrievals from the C-band Sentinel-1 
mission. To our knowledge no other studies exist in the literature that 
assimilate Sentinel-1 data to explore its feasibility in characterizing 
patterns in mountains orographic precipitation. We test our methods 
over a snow dominated watershed in the Italian Alps that is, to a first 
order degree representative of other global mountain watersheds 
dominated by similar seasonal snow accumulation and melt patterns. 
We assert that the proposed approach can be applicable to other snow- 
covered mountain regions primarily because of the general availability 
of Sentinel-1 snow depth retrievals (Lievens et al., 2019). 

Our specific objectives are: 1) to propose a novel data assimilation 
method to correct precipitation bias in mountainous regions with 
Sentinel-1 snow depth retrievals; 2) to analyze the spatial characteristics 
of the snowfall orographic precipitation patterns using the updated 
snow data product; and 3) to evaluate if the derived snowfall orographic 
precipitation lead to improved mountain watershed hydrology. 

2. Methods 

Methods are illustrated in the flowchart of Fig. 1. By assimilating 
snow depth observations, we retrieve snowfall patterns that can be used 
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to improve mountain hydrological variables such as snow accumulation, 
snow melt, and spring and summer streamflow. We test our hypothesis 
over a test-bed domain located in the Italian Alps, the Aurino River Basin 
(Fig. 2, Section 2.1), using readily and globally available gridded pre
cipitation products (Section 2.2). In practice, the data assimilation sys
tem presented here constrains a snow model (Section 2.4) using the 
observed Sentinel-1 retrievals (Section 2.3). Data assimilation is indeed 
a tool to bridge models and observations in order to obtain optimized 
estimates of the specific phenomena of interest (Girotto et al., 2020). As 
part of the assimilation scheme (Section 2.5), an ensemble of possible 
prior estimates of the snowfall biases are used to run a year-long snow 
model (Section 2.4) that predicts, among other variables, snow depth 
values. The difference between predicted snow depth estimates and 
those observed by the satellite (Section 2.3) are used within a particle 
batch smoother assimilation algorithm (Section 2.5.2) to update the 
spatial distribution of snowfall error coefficients, as well as other vari
ables of interest such as snow depth, SWE, and snow melt. We subse
quently obtain streamflow estimates by forcing a semi-lumped 
streamflow model forced with rainfall and snowmelt that is output from 
the snow model (Section 2.6.2). 

2.1. Study area: the Aurino River basin 

We test our methods in the Aurino River basin, located in the Adige 
River system in the eastern Alps, marked in Fig. 2. The basin has an area 
of 614 km2 and an elevation range between 817 and 3485 m a.s.l. Our 
analysis uses a 1 km-resolution model grid, corresponding to the spatial 
resolution of the snow depth retrievals (Section 2.3). We used the Eu
ropean Digital Elevation Model, version 1.1 at 25 m resolution (https 
://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=met 
adata) and aggregated to 1 km resolution. The basin streamflow outlet is 
San Giorgio Aurino (Zaramella et al., 2019), for which streamflow data 
from 2015 to 2019 have been downloaded from the Autonomous 
Province of Bolzano (https://meteo.provincia.bz.it/stazioni-idrometr 
iche.asp). Precipitation and air temperature in-situ data can also be 
freely downloaded from https://meteo.provincia.bz.it/download-dati. 
asp. The average observed annual precipitation for the test basin is 
around 950 mm, with less precipitation in the valleys and more in the 
mountains (from ∼850 mm to ∼1300 mm, Zaramella et al. (2019)). Two 
monitoring sites with snow depth measurements were available at 
Malga Merbe (lat = 47.04∘; lon = 12.12∘; elev = 2006 m) and Malga 
Fadner (lat = 46.92∘; lon = 11.86∘; elev = 2155 m) (Fig. 2a, Table A.3). 
These are freely available to download from the open data portal of the 
Provincia Autonoma di Bolzano at https://data.civis.bz.it/it/dataset 
/misure-meteo-e-idrografiche. 

2.2. Meteorological forcings 

We use precipitation products derived from three sources: reanalysis 
(ERA-5, Hersbach et al., 2020), satellite-based (the Integrated Multi- 
satellitE Retrievals for GPM, IMERG, Huffman et al., 2018) and, in-situ 

local precipitation. Air temperature data at 2 m height were collected 
from both ERA-5 and local in-situ thermometer data (made available by 
the Autonomous Province of Bolzano). 

The choice of ERA-5 dataset is due to its availability and demon
strably good performance over Europe (Bandhauer et al., 2022), as well 
as its permissive usage license (Copernicus Climate Change Service, http 
s://climate.copernicus.eu/climate-reanalysis). We acquired ERA-5 data 
from 2015 to 2019 at a 36 km spatial resolution at a daily time step. For 
IMERG, we use the final run version (IMERG-FR), which integrates 
gauge observations. The IMERG product has a spatial resolution of 
0.1∘ × 0.1∘ and half-hourly temporal resolution. We used a daily version 
of the product available via https://www.earthdata.nasa.gov. The in- 
situ precipitation and temperature estimates are obtained from in-situ 
observation locations of air temperature and of precipitation (Fig. 2a). 
We interpolated them to a gridded product using a kriging with external 
drift (Garen and Marks, 2005) interpolation algorithm, which accounts 
for elevation information (Fig. 2c and f). For mountain regions, such as 
the one investigated in this study, we expect to see elevation patterns in 
both air temperature and precipitation. Elevation patterns are unrefined 
in Fig. 2b, d, and e because the products with coarse spatial resolution 
and topography cannot resolve the complex temporal and spatial dy
namics of mountain elevation ranges. 

2.3. Sentinel-1 snow depth retrievals 

The data assimilation algorithm described in Section 2.5 integrates 
snow depth retrievals from Sentinel-1 backscatter observations (Lievens 
et al., 2019, 2022). The snow depth retrieval leverages the dependence 
of the radar C-band backscatter signal to the accumulation or ablation of 
snow and it uses a change detection method to derive snow depth values 
(Lievens et al., 2019). The snow depth algorithm takes advantage of the 
fact that snow is a dense medium of clustered, irregularly shaped ice 
crystals that contribute to volume scattering. Moreover, increased 
scattering can originate from snow layer interfaces and snow-ground 
interactions. A deeper snowpack generally results in stronger scat
tering, thus the strength of the scattering can be related to snow depths. 
The retrieval quality is best for dry snow with mean absolute error 
values of 17–18 cm according to Lievens et al. (2022). However, the 
dataset also contains retrievals of wet snow (marked with an associated 
flag). In this work, we include both dry and wet flagged observations, 
and increased the associated uncertainty to 30 cm. We only assimilate 
retrievals up to snow depth peak time. While this helps to remove spring- 
time wet-flagged observations, assimilating retrievals before peak time 
also allows to better isolate the snow depth dynamics linked to snowfall 
orographic accumulation. The snow depth peak time is determined 
directly from the Sentinel-1 retrievals. Although the study region of this 
work has a greater frequency of available observations, we downsized 
the availability of Sentinel-1 observations to check whether the pro
posed methodology would also work in other areas (e.g. the Western 
United States Mountains or the High Mountains of Asia) where obser
vations are not as frequently available (Lievens et al., 2019). For this 

Fig. 1. Schematic representation of the methods used and associated Section (§) where each component is described.  
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reason, the assimilation step only uses a subset of the available Sentinel- 
1 snow depth retrievals, as we sample them with a 15 days frequency. 
Data can be freely accessed via https://ees.kuleuven.be/project/c-snow. 

2.4. Snow model 

The approach presented here is applicable to any physically based or 
empirical based (e.g., temperature index) snow models capable of esti
mating snow depth values. In this work we use a very simple model, the 
SNOW-17 snow accumulation and ablation model (Anderson, 1973). 
The primary variable of interest of this work is the characterization of 
snowfall uncertainty, which is expected to be approximately the same 
regardless of the level of complexity of the snow model. If anything, the 
results obtained using a simplistic model should be conservative and by 
simulating snow dynamics with a better model should just improve upon 
the results reported in the present analysis. SNOW-17 has also been used 
for years by the National Weather Service River Forecast System 
(Anderson, 1973). It solves a simplified snow energy balance that ac
counts for snowpack accumulation, heat exchange between the snow 
and air temperature, snow cover extent, heat storage and exchange, and 
water retention or transmission. The only two required dynamic inputs 
are total precipitation and 2 m height air temperature. Snow density is 
calculated using time-based algorithms that account for snow aging, 
mechanical compaction, and the impact of liquid water with adjust
ments for new snow deposition. We replaced the original snow density 
scheme with the iSnobal parameterization (Marks et al., 1999) which 
has been extensively adopted by the snow scientific community across a 
wide range of scales and mountain environments (Painter et al., 2016; 
Hedrick et al., 2018). 

Normally, SNOW-17 must be calibrated to produce quality simula
tion results. This could be done by both using snow depth and SWE 
observations (which are scarce - if not absent - in many mountainous 
regions) and/or by embedding the snow model in rainfall-runoff models 
to calibrate against streamflow data (which are also scarce over moun
tainous regions). Calibration does not always guarantee optimal results 

especially when the number and length of the time series of snow depth 
observations is limited. SNOW-17 is most sensitive to the following 
parameters. 1) SCF (hereafter α (− )) is the multiplying factor which 
adjusts precipitation that is determined to be in the form of snow. The 
coefficient α primarily accounts for gauge deficiencies but also implicitly 
includes the net effect of vapor transfer (sublimation and condensation, 
including from intercepted and blowing snow) and transfers across areal 
divides. 2) MFMAX is the maximum melt factor during non-rain periods 
(mm/∘C/6 h), set at the summer solstice; while 3) MFMIN is the mini
mum melt factor during non-rain (mm/∘C/6 h), set at the winter solstice. 
4) UADJ, the average wind function during rain-on-snow periods (mm/ 
mb). UADJ is only a major parameter when there are frequent rain-on- 
snow events with relatively warm temperatures. The sensitivity of the 
UADJ parameter has been assessed in several studies (Houle et al., 2017; 
Franz et al., 2008; He et al., 2011) Results, although they are very site 
specific, showed that the UADJ minimally affected the model outputs. 5) 
PXTEMP, the temperature that separates rain from snow (∘C). If the air 
temperature is less than or equal to PXTEMP, the precipitation is 
assumed to be in the form of snow. In this work, these most critical 
parameters are assumed uncertain. That is, rather than specifying a 
unique value for each of the model parameters, we use an ensemble of 
possible values (Table 1). For other less sensitive parameters, we assume 
that the calibration at the in-situ locations is representative of the entire 
test basin. These were calibrated by maximizing the Kling-Gupta Effi
ciency index (KGE; Gupta et al., 2009) between snow depth model 
simulations and snow depth observations at the two in-situ snow depth 
locations (Fig. 2a) for the snow season 2018–2019 using a particle 
swarm optimization approach (Eberhart and Kennedy, 1995, https 
://www.mathworks.com/help/gads/particleswarm.html) with a 
swarm size of 100, and chose the parameters from the one site that lead 
to maximum KGE value. Appendix A includes more details about the 
calibration. Note that the calibration of the model has the only objective 
of reducing SNOW-17 model uncertainty to approximate realistic snow 
conditions, i.e., by generally relating in-situ precipitation to in-situ snow 
depth at two locations during 1 year. 

Fig. 2. a) European Digital Elevation Model (m above sea level, a.s.l.) for the domain of interest; b) ERA-5 and c) in-situ average 01 Oct. 2017 to 01 Apr. 2018 air 
temperature; d) ERA-5, e) IMERG, and f) in-situ cumulative total precipitation for the period 01 Oct. 2017 to 01 Apr. 2018, with spatial averages indicated in the 
insert text. 
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2.5. Data assimilation approach 

The assimilation approach uses an ensemble particle batch smoother, 
a generalization of the particle filter (Van Leeuwen, 2009). Being a 
Bayesian method, the conditional probability distribution of a variable 
of interest (in our case estimates of snowfall biases, quantified by α) can 
be determined from its likelihood function, and the probabilities of its 
prior distribution (before assimilation) along with those of the obser
vations (in this case, Sentinel-1 snow depth retrievals). In an ensemble 
approach, these continuous probabilities are approximated by discrete 
distributions, with an ensemble of particles, each assigned a specific 
weight (wj). In contrast to a filter approach, a batch smoother (Margulis 
et al., 2015) allows the assimilation of multiple available observations in 
time at once (i.e., assimilation in batch and not sequential). 

The assimilation approach follows two primary steps: 1) the gener
ation of an ensemble of members (or particles, Section 2.5.1); and 2) 
update step where the Sentinel-1 snow depth retrievals are assimilated 
and the particle weights updated (Section 2.5.2). Each of these steps is 
done independently for the individual model grid cells (i.e., we assume 
no spatial correlation between model grid cells). We also repeat these 
steps for each of the water years one at the time, treating each of the 
years independently. In all these steps, the main assumption is that er
rors in modeled snow depth estimates are primarily caused by un
certainties in snowfall (i.e., snowfall biases, α) and the assimilation of 
observed Sentinel-1 snow depth retrievals allows us to estimate them. 

2.5.1. Ensemble generation 
The first step of the algorithm is to generate an ensemble of possible 

particles, meant to represent the probability density function of the 
model realizations prior to the assimilation. That is, we know that model 
estimates contain uncertainties that can be difficult to resolve and can 
potentially impact accurate estimates of snow depth. By generating an 
ensemble of possible model realizations, the data assimilation method 
avoids unrealistic confidence in the model estimates. To fully capture 
model uncertainties, the ensemble of realizations could be obtained 
from multi model simulations. In this work, we aim to represent model 
uncertainties by perturbing key parameters as described next. We use an 
ensemble size of 100 members (or particles, Nens = 100). Previous 
literature demonstrates that this number is large enough to stabilize 
performances of particle filter approaches (Han et al., 2021; Magnusson 
et al., 2017). The ensemble is generated via the perturbation of a series 
of model parameters and meteorological forcings as summarized in 
Table 1. Again, the underlying assumption is that most of the uncer
tainty comes from biases in snowfall (e.g., Raleigh et al., 2015). This is 
represented by perturbing the parameter α (snowfall correction factor). 
Possible values of α are sampled from a log-normal distribution with 
mean= 1.0 and coefficient of variation CV = 1.0 (Table 1). These values 
imply that perturbations are unbiased and, on average, correspond to 
100 % of the magnitude of the nominal precipitation. We also perturbed 
other forcings and model parameters that are known to be uncertain and 
hard to calibrate (Section 2.4). These are listed in Table 1 and include 
perturbations of air temperature, and model parameters dictating melt 
factors (MFMAX and MFMIN), snow-density parameters (C1–C5, CX, 

THRESD), wind function for rain-on-snow events (UADJ), and the 
temperature function to distinguish between rainfall and snowfall 
events (PXTEMP). Total precipitation is assumed to be all in the form of 
snowfall or rainfall if air temperature is less than − 1∘C, or greater than 
3∘C, respectively. If the air temperature is between − 1∘C and 3∘C, only a 
fraction of the total precipitation is assumed to be snowfall based on the 
model parameter PXTEMP. 

The generation of the ensemble also translate snowfall biases (α) (i. 
e., the assimilation control variable) into observation-like variables (i.e., 
snow depth observations). For this, we run SNOW-17 Nens times, each 
time using a different suite of inputs as obtained by the ensemble gen
eration step (Section 2.5.1). The ensemble generation step generates 
(among others) an ensemble of Nens precipitation biases (α), and snow 
depth particles. Prior to the update step (Section 2.5.2), each of these 
particles has the same probability of occurrence that corresponds 
weights equal to: 

w−
j =

1
Nens

;
∑Nens

j=1
w−

j = 1 (1)  

2.5.2. Update step 
The goal of the update step is to renew the weights of the ensemble 

particles (Eq. 1) by assimilating Sentinel-1 snow depth retrievals. This is 
done by calculating the observations likelihood function pZ|Y(Z|Y), 
where Z corresponds to an array containing all Sentinel-1 snow depth 
retrievals within the assimilation window (i.e., the entire water year) 
and Y is the assimilation control vector. In our case, Y contains the Nens 
values of snowfall biases α. The likelihood function corresponds to the 
specified probability distribution function for the observation errors, 

pv

(
Z − M−

j

)
, of size Nobs (i.e., number of retrievals in the assimilation 

window), where M−
j is predicted snow depth from ensemble member j. 

The data assimilation scientific community often refers to 
(

Z − M−
j

)
as 

the “vector of innovations”. The probability distribution function for the 

observation errors, pv

(
Z − M−

j

)
is typically represented by Gaussian 

processes where observation errors are assumed to have zero mean and a 
specified Cv error covariance: 

pv

(
Z − M−

j

)
=

1
̅̅̅̅̅̅̅̅
|Cv|

√ ̅̅̅̅̅
2π

√ Nobs
e−

1
2

(
[Z− M−

j ]
T
|Cv |

− 1[Z− M−
j ]
)

(2) 

Assuming observations have negligible autocorrelations when 
compared to the specified single observation errors, we can treat Cv as a 
diagonal matrix with the diagonal values corresponding to the assumed 
observations error standard deviation (Section 2.3). The updated par
ticle weights are calculated by: 

w+
j =

C0

Nens
pv

(
Z − M−

j

)
(3)  

where C0 is an integration constant and it is obtained from constraining 
the likelihood function to be a valid probability distribution (

∑Nens
j=1 w+

j =

1): 

Table 1 
Perturbation values to generate the ensemble of prior snow depth estimates. The table also lists types and magnitude Multiplicative (M), Additive (A), or Uniform (U) of 
the sampling distributions used for each of the perturbed variable. The magnitude (Magn.) of the perturbations is defined by the standard deviation (σ), or the co
efficient of variation (CV), or the minimum and maximum range (Range), for the additive, multiplicative, uniform perturbation types respectively.   

Type Magn. Range 

Snowfall correction factor (α, [0, ∞]) M CV = 1  
Air temperature (oC) A σ=1  
Maximum melt factor (MFMAX,[mm⋅oC− 1⋅6hr− 1] U  [1, 2] 

Minimum melt factor (MFMIN,[mm⋅oC− 1⋅6hr− 1] U  [0, 1] 
Wind function rain-on-snow (UADJ, [mm⋅mb− 1]) U  [0.001, 0.1] 
Rain- snow-fall temp. threshold (PXTEMP, [oC]) U  [0, 3] 
Snow density parameters (C1–C5, CX, THRESD) M CV = 0.5   
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C0 =
Nens

∑Nens

j=1
pv

(
Z − M−

j

) (4) 

This process assigns higher weights to the “more likely” particles 
because their snow depth prediction (M−

j ) is closer to the observed 
values (Z). Conversely, the process reduces the weights of those particles 
whose observation error is higher (i.e., snow depth estimates and ob
servations are farther apart). A typical issue associated with sequential 
particle filters is the collapse of the ensemble, occurring when too much 
weight is assigned to only a few particles (those similar to the obser
vations). In such case, resampling techniques are used to guarantee a 
adequate ensemble spread. In this work, resampling was not done since 
we assimilate all observations occurring in one water year at once (in a 
batch rather than sequential format). The updated weights (Eq. (3)) 
provide a discrete estimate of the posterior probability distribution 
which can be used to determine posterior statistics of the α distribution, 
and consequently our updated snowfall variable. The update weights 
can also be used to calculate statistics and ensemble percentiles for other 
variables of interest such as snow water equivalent, snow melt, and snow 
depth. In this article we present results for the percentiles 25 %, 50 %, 
and 75 % (i.e., the interquartile range), as well as mean and standard 
deviation statistics. 

2.6. Experimental setup and evaluation criteria 

We tested the methods for water years 2016, 2017, 2018, and 2019. 
For the example of year 2016, the water year is defined as the period that 
goes from 01 October 2015 to 30 September 2016. 

We developed three experiments each using a different combination 
of atmospheric forcings (Section 2.2): 1) “in-situ”, where air tempera
ture and precipitation are both from the in-situ observations; 2) “ERA- 
5”, where both air temperature and precipitation are derived from the 
gridded ERA-5 atmospheric reanalysis product; 3) “IMERG”, where air 
temperature is taken from in-situ observations and precipitation from 
IMERG. The “in-situ” case could be considered the best possible scenario 
since both precipitation and air temperature are locally observed, thus 
considered more representative of the basin dynamics. The “ERA-5” 
configuration could be seen as representative of those scenarios that 
would be adopted in data-scarce regions where in-situ observations 
might be lacking. Finally, the “IMERG” scenario can be seen as a more 
sophisticated case with respect to the previous configuration because of 
the elevation aware air-temperature inputs (in-situ air temperature) 
allow for orographic partitioning of rainfall vs. snowfall; further, the 
satellite-derived precipitation (IMERG) allows for a precipitation prod
uct that is directly observed rather than modeled. This last experiment 
setup could be seen as representative of applications where gridded 
precipitation products are used along with some downscaling tech
niques to represent local-scale orographic dynamics (e.g., Girotto et al., 
2014; Wang et al., 2019; Xue et al., 2021). The methods are evaluated 
using independent variables of snow cover area (Section 2.6.1) and 
streamflow (Section 2.6.2). We only assimilate one Sentinel-1 retrieval 
every 15 days as we want to ensure the robustness of the method to be 
applied in regions where the Sentinel-1 retrievals are not as abundant as 
they are in our test domain (Section 2.3). 

2.6.1. Snow cover area 
A basin-wide 8-day averaged observation of the fractional snow 

cover area estimates is calculated from the MODIS MOD10A1 (Hall 
et al., 2002) data collection. We compare it to both the prior (results 
from the ensemble generation, Section 2.5.1) and posterior (after the 
assimilation of snow depth) fractional snow covered estimates to eval
uate the performances of the proposed method. The snow model does 
not directly include a snow depletion curve to estimate fractional snow 
cover area; thus, we estimate it in a binary way. That is, for each basin 
grid cell we assign a snow cover fraction of 0 % or 100 % depending on 

whether the prior (or posterior) SWE is above or below a specific 
threshold of 40 mm (De Lannoy et al., 2010). From the basin-wide 
average of these binary values of snow cover areas, for each day, we 
calculate the percentage of the basin that is covered in snow. These 
values are further smoothed and aggregated to an 8-days average. Using 
them, we calculate Pearson correlation coefficients between the 
observed (MODIS) and modeled (prior and posterior) fractional snow 
cover area. 

2.6.2. Streamflow 
Once we determine the spatially varying updated or posterior 

ensemble mean SWE, and most importantly snow-melt (or melt-driven 
discharge), we use their values to initialize the lumped hydrological 
model HYMOD (Moore, 1985), in order to obtain streamflow estimates 
at the outlet of the basin. Hymod is a simplified lumped hydrological 
model which is based on the ideas presented in Moore (1985) of 
probability-distributed infiltration capacity and storage capacity and 
implemented by Boyle (2001) and has been widely applied across a 
variety of climates, spatial and temporal scales (Wagener et al., 2001; 
Formetta et al., 2011; Abera et al., 2017; Vrugt et al., 2003). The model 
receives rainfall, snow melt, and potential evapotranspiration time se
ries as input and provides the discharges at the outlet of the basin as 
main output. We subset the streamflow time-series in two halves, the 
first half of the simulation period has been used for the calibration and 
the second half for validation. 

For the validation subset we evaluate performances of the different 
assimilation experiments using the KGE coefficient. On top of this, we 
compared prior and posterior streamflow simulations in terms of flow 
duration curves to look at the entire streamflow distribution. 

3. Results 

3.1. Precipitation biases 

The precipitation correction factors estimated via snow depth data 
assimilation are shown in Fig. 3. The “In-situ” derived snowfall tends to 
underestimate the basin-wide amount of snowfall in the basin as the 
average value of α for in-situ forcings is greater than one (Fig. 3a). 
Similarly, with the exception of water year 2017, the “IMERG” scenario 
also underestimates the basin-wide snowfall (Fig. 3c) as the basin- 
averaged α is greater than one. These results suggest that for both “in- 
situ” and the “IMERG” scenarios, snowfall needs multipliers (α) greater 
than one in order to obtain snow depth estimates comparable with those 
retrieved by Sentinel-1. Conversely, “ERA-5” snowfall tends to over
estimate the average amount of snowfall in the basin (Fig. 3b) with 
average α values less than one. 

Regardless of the actual basin-wide numbers in these figures, the 
spatial distribution of α (Fig. 3) indicates a strong elevation dependency 
on the distribution of the snowfall errors. Across the three experiments 
(Fig. 3), smaller α values, typically less than one, correspond to lower 
elevations (i.e., reducing snowfall amounts); and the larger α values, 
generally greater than one, correspond to higher elevations (i.e., 
increasing snowfall amounts). In other words, the assimilation scheme 
adjusts the prescribed snowfall by reducing snowfall at the lower ele
vations, where model snow depth is likely overestimated with respect to 
the Sentinel-1 retrievals, and by increasing it at the higher elevations 
where modeled snow depth is underestimated. The α spatial patterns 
highlight the hidden positive feedback of the proposed assimilation 
scheme: it effectively downscales the coarser spatial resolution of the 
gridded precipitation estimates. That is, the assimilation of the 1 km 
resolution snow depth retrievals provides a way to inform the large-scale 
precipitation product (i.e., ERA-5 or IMERG) on how to be adjusted at a 
local scale in order to provide consistent finer resolution snow depth 
estimates. Despite the small sample of years, the 4-year spatial mean and 
standard deviation (non-shown here) suggest that the snowfall multi
pliers α, tend to be interannually consistent. The in-situ experiment 
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Fig. 3. Snowfall correction factor estimates (α) for experiments with a) in-situ; b) ERA-5; c) IMERG precipitation products. (Left to right) maps indicate water years 
2016; 2017; 2018; and 2019. The numbers reported in each map correspond to the spatial average (standard deviation) values of the snowfall biases, α. 

Fig. 4. Cumulative snowfall for the period 01 October to 01 April of each water year binned by elevation bands of 250 m. For each of the 250 m elevation bands, 
three marker types represent the three different forcings (in-situ, ERA-5, and IMERG, Section 2.6) for both prior (model-only, red markers) and posterior (data 
assimilation, blue markers) snowfall estimates. Each error bar shows the mean and standard deviation of the cumulative snowfall of that specific elevation band. 
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leads to the most uniform interannual variability (i.e., consistently less 
variability in the snowfall errors) possibly due to combined prior (before 
assimilation) spatial distribution of both in-situ precipitation and air 
temperature observations used for this experiment as these are likely 
more accurate than the gridded products. 

3.2. Orographic snowfall patterns 

The precipitation biases shown in Fig. 3 exhibit spatial features that 
help define spatial distribution of the resulting snowfall across the 
domain. Here, we discuss the elevation patterns of snowfall patterns, 
that is the spatial variability of snowfall as a function of elevation, as 
reported by Fig. 4. 

For the prior snowfall elevation patterns, when compared to the 
“ERA-5” and “IMERG” scenarios, the “in-situ” leads to the smallest cu
mulative amounts of snowfall across all elevations and years (downward 
facing red triangle markers, Fig. 4). This result is consistent with the 
differences in precipitation magnitude seen for the sample year shown in 
Fig. 2d–f. Across all forcing datasets, the prior snowfall estimates (red 
markers) show little changes in the accumulated snowfall as a function 
of elevation. That is, snowfall elevation gradients are small and nearly 
zero indicating that snowfall accumulation does not increase with 
elevation. Special cases are the “in-situ” and “IMERG” prior estimates 
presenting a small elevation gradient in their elevation distribution (i.e., 
triangle and circle red markers move toward higher accumulation as the 
elevation increases, Fig. 4) caused by their orography dependent in-situ 
air temperature (Fig. 2c). This is not the case for the coarse-scale rean
alysis product (“ERA-5”) where the elevation patterns are nearly absent 
in the prior simulations (red crosses) because of the unrefined elevation 
dependency in the ERA-5 forcings (Fig. 2b, d). 

Across all years and experiment scenarios, the posterior estimates 
(blue markers) lead to a more noticeable elevation gradient where 

cumulative snowfall values increase as a function of elevation. In gen
eral, across the four years, the location of the mean accumulated 
snowfall distribution and the spatial variability (standard deviation 
represented by the error bar), aligns well across the three forcings sce
narios (best case is Fig. 4b and d). An exception to this general result is 
seen in the posterior cumulative snowfall around 2000–3000 m a.s.l. for 
water year 2016 when “ERA-5” experiment lead to smaller amount with 
respect to the “in-situ” and “IMERG” scenarios (blue triangles and circles 
vs. blue crosses, Fig. 4a). The elevation dependent in-situ air tempera
ture, used by the first two experiments, boosts the snowfall orographic 
gradient for this year. 

Regardless of the prior (model-only) precipitation product, the 
assimilation of Sentinel-1 snow depth leads to similar elevation depen
dent cumulative snowfall patterns where the snowfall accumulation 
gradient is modest for elevations below 1500 m a.s.l., it strongly in
creases from the elevations 1500 m a.s.l. until 2500 m a.s.l., and it is 
modest for elevations above 2500 m a.s.l. In fact, for elevation above 
2500 m a.s.l., the accumulated snowfall does not increase as strongly 
with elevation (best case is illustrated by Fig. 4d), possibly due to at
mospheric moisture saturation effects. The obtained posterior elevation 
patterns suggest that the spatial (elevation) distribution of snowfall is in 
general consistent and robust across the chosen prior set of forcings. 

3.3. Snow depth and snow cover area 

Evaluating the assimilation performance using the assimilated snow 
depth values does not constitute an independent validation yet it pro
vides a means to internally check assimilation performances. For the 
example location shown in Fig. 5, when the model uses “in-situ” forc
ings, it delivers snow depth values that underestimate the observed ones 
(i.e., prior estimates are lower than the observed Sentinel-1 retrievals 
Fig. 5a). Similarly, the “IMERG” scenario tends to underestimate snow 

Fig. 5. Available (black dots) and assimilated (black circles) Sentinel-1 snow depth retrievals, median (thick lines) and inter-quantile range (shaded area) of prior (or 
model-only, red) and posterior (or assimilation, blue) snow depth estimates for a sample location at 2155 m a.s.l. elevation lat = 46.92o lon = 11.86o and for the case 
when the model runs with a) in-situ air temperature and in-situ precipitation; b) ERA-5 air temperature and ERA-5 precipitation; and c) in-situ air temperature and 
IMERG precipitation. For reference, the in-situ (point-scale) snow depth observations are also shown (dashed green). 

M. Girotto et al.                                                                                                                                                                                                                                 



Science of the Total Environment 906 (2024) 167312

9

depth values for all years, with the exception of water year 2019 Fig. 5c). 
In contrast, “ERA-5” scenario leads to values of prior peak snow depth 
that are consistent with those observed by Sentinel-1 (Fig. 5b). 

When looking at the ensemble spread (i.e., uncertainty) of the prior 
estimates, for the “ERA-5”, and “IMERG” experiments, most of the 
Sentinel-1 retrievals are included within this uncertainty range 
(Fig. 5b–c); whereas for the “in-situ” case, retrievals are located at the 
edges of the prior ensemble interquartile range (Fig. 5a). For an optimal 
assimilation condition, we would want the retrievals to be assimilated to 
all be included within the ensemble of possible model realizations (i.e., 
the red envelope in Fig. 5). 

Regardless of the prior simulations of snow depth, the proposed 
assimilation scheme leads to posterior estimates of snow depth that 
correspond better with those observed by Sentinel-1 (blue estimates in 
Fig. 5). The posterior estimates also reduced the ensemble spread for 
each of the four forcing scenarios. This means that, while the posterior 
snow depth estimates are expected to be more robust and less uncertain, 
their drastically reduced uncertainty is likely too optimistic. The overly 
optimistic approximation of the posterior ensemble spread is typically 
seen as a limitation of particle filters. The limitation improves, but it is 
not entirely solved by smoothers assimilation approaches (Margulis 
et al., 2015). 

Fig. 6 shows the monthly prior and posterior snow depth estimates 
for February 2018 for all three forcing scenarios, alongside Sentinel-1 
estimates. Sentinel-1 snow depth (Fig. 6a) indicates a distinct eleva
tion pattern, with naturally deeper snow depths located at higher ele
vations (compare Figs. 6a to 2a). Elevation patterns are visible when 
estimating snow depth using “in-situ” and “IMERG” (Fig. 2b and d). 
These are likely caused by the spatial distribution of air temperature 
(Fig. 2) that partitions precipitation into snowfall and rainfall amounts. 
Despite having an elevation gradient, when compared to Sentinel-1 re
trievals, the “in-situ” and “IMERG” prior experiment leads to 58.6 cm 
and 59.9 cm respectively of basin-wide snow depth and thus un
derestimates Sentinel-1 (Fig. 2b, d). In the ERA-5 case, the prior distri
bution of snow depth is unrealistically blocked due to the coarse 
resolution of the product. Despite having unrealistic spatial patterns, the 
magnitude of the basin-wide snow depth values produced by “ERA-5” is 
107.3 cm and more comparable to those in Sentinel-1. In all cases (“in- 
situ”, “ERA-5”, and “IMERG”) snow depth values underestimate the 
basin-wide value in Sentinel-1 (Fig. 6a). 

The assimilation results from all three experiments lead to basin- 

wide values that are closer (within 6 cm differences) to those reported 
in Sentinel-1 (Fig. 6e–g). Regardless of the spatial patterns of the prior 
distribution, the assimilation brings more realistic snow depth elevation 
gradients that assign snow to the higher elevations. This result is 
consistent with the patterns obtained by snowfall and precipitation error 
coefficients as described in Sections 3.1 and 3.2. 

An independent evaluation using the MODIS fractional snow cover 
dataset is shown in Fig. 7. Furthermore, the evaluation of the spatial 
distribution of snow cover (Fig. 7) can be seen as a tool to assess the 
accuracy of snow depth spatial distribution. The spatial correlation skill 
values against MODIS fractional snow cover is best for the prior exper
iment that uses in-situ and IMERG precipitation, with a temporal 
average values of 0.65 and 0.66, respectively. The correlation values are 
weaker for the ERA-5 prior simulations with associated skill value of 
0.35. Higher spatial correlations values might be expected for the in-situ 
and IMERG experiments considering the given a-priori realistic spatial 
distribution of the air temperature (Fig. 2c) that contributes to a realistic 
spatial distribution of snow depth in the basin, albeit underestimated in 

Fig. 6. Water year 2018 monthly averaged February snow depth estimates a) observed from Sentinel-1; and estimated from Snow-17 (prior) using b) in-situ air 
temperature and precipitation (“in-situ”); c) ERA-5 air temperature and precipitation (“ERA-5”); d) in-situ air temperature and IMERG precipitation (“IMERG”). The 
bottom row shows the corresponding estimated monthly averaged February snow depth values that result from the assimilation of Sentinel-1 retrievals when using e) 
“in-situ”; f) “ERA-5”; and g) “IMERG” scenarios. 

Fig. 7. Snow Cover Area (SCA) correlations between MODIS and the fractional 
snow cover estimated from the prior and posterior snow water equivalent 
values. Each error bar represent the 2016–2019 average and one standard de
viation of the correlations computed from each of the 8-days snow cover area 
composite (Section 2.6.1). 
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magnitude (Fig. 6b, d). For the posterior cases, the correlation values are 
consistently centered at around 0.61–0.66 for all three experiments. This 
conveys that regardless of the input forcing, the assimilation of snow 
depth retrievals leads to MODIS snow cover area consistent spatial 
patterns. This is particularly noticeable for the ERA-5 experiment, for 
which the spatial patterns improve the distribution of snow on the 
ground (i.e., posterior correlation values are higher than the respective 
prior ones). No improvement is obtained when using in-situ or IMERG 
forcings. Again, this can be caused by the already modest spatial pat
terns brought by the elevation dependent in-situ air temperature 
(Fig. 2c). 

3.4. Streamflow 

The snow depth and orographic precipitation improvements as 
indicated in the previous result sections are tightly linked to streamflow. 
Furthermore, besides biases in snowfall estimates, the values of α could 
also be influenced by biases in air temperature. That is, even if the total 
precipitation is unbiased, warm biases in air temperature can lead to 
more rainfall and less snowfall. The assessment of streamflow can be 
seen as a more holistic way to verify whether the adjustments are due to 
biases in air temperature or actual precipitation. 

Observations of streamflow suggest that the river flow is dominated 
by snowmelt as the flow peaks during snow melt season and, depending 
on the year, reaches values of 75–85 m3/s (Fig. 8). Both prior and pos
terior assimilation estimates predict the timing of the observed 

seasonality correctly, however the magnitude of both peak and low 
flows varies and are different from the observed ones. In general the 
posterior streamflow peaks tend to represent observations better than 
the prior estimates. This is especially visible for the in-situ case (Fig. 8a). 
This means that the timing of snow melt during the spring and summer 
months is improved by the assimilation of snow depth values. Once 
again, this suggests that the assimilation of Sentinel-1 retrievals leads to 
better spatial patterns in the snow distribution across the entire basin (as 
discussed in Section 3.3). That is, areas with lower elevations are 
characterized by shallower snowpack; whereas the areas with deeper 
snowpacks are located at higher elevations. In general, as summer 
comes, the higher elevation releases water via snowmelt more slowly 
than the prior case (i.e., slower melt rate due to colder temperature, and 
longer travel time from higher elevation to the stream bed), which better 
matches the timing of the streamflow observations. 

To better understand if there are benefits to the assimilation, Fig. 9 
reports the flow duration curves (i.e., a cumulative frequency curve that 
shows the percent of time specified discharges were equaled or exceeded 
during a given period) where the flow distribution obtained from all 4 
years from the posterior simulation (blue lines) agree better with the 
observations (black lines) with respect to the prior estimates (red lines). 
This result suggests that the assimilation of snow depth observations 
improves streamflow estimates especially for high flows which are 
occurring during summer months. A confirmation of this result is re
ported in Table 2 where the KGE of the streamflow values (obtained 
during the validation period 2018–2019) indicate that the assimilation 

Fig. 8. Observed and estimated streamflow (m3/s) at the basin outlet.  
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of snow depth retrievals results in improved streamflow estimates (of 
about 40 % on average). Fig. 9 also shows that the performances of the 
priors are not the same, with the in-situ prior having a lower perfor
mance compared to the ERA-5 and IMERG prior. This is a common issue 
when conceptual hydrological models are recalibrated for each prior 
type, which can be attributed to the strong interactions between the 
nonlinear model structure and the analyzed input data (e.g., Qi et al., 
2016; Mei et al., 2016; Camici et al., 2018). 

4. Discussion 

In this work we test the hypothesis that snowfall orographic patterns 
can be retrieved using information about the snow depth that accumu
lates on the ground. This principle was introduced in Avanzi et al. 
(2020), in which in-situ snow depth observations were used. Here we 
extend this assumption to demonstrate that we can derive orographic 
precipitation patterns over seasonal snow dominated mountainous re
gions via the assimilation of readily available snow depth retrievals from 
Sentinel-1 (in agreement with the operational overpasses of the satel
lite). We argue that our proposed method, despite being assessed only 
over a test basin in the Alps (the Aurino), provides a framework for 
correcting snowfall across any mountain area. The chosen domain is 
characterized by orographic complexity, and seasonal accumulation and 
melt dynamics. The Italian Alps can be assumed representative of other 
high elevation watersheds around the world that are similarly defined 
by orographic complexity and seasonal snowpack dynamics. Being in 
the Mediterranean climate, Aurino also features a high interannual 
climate variability (Cid et al., 2017). Because of this, it can be considered 
a good test domain to validate the approach proposed here since pre
dicting Aurinos’s snowfall spatiotemporal variability can be extremely 
challenging. Being in the Mediterranean climate, Aurino also features a 
high interannual climate variability (Cid et al., 2017) as it sits on the 
edge of the alpine divide between Southern and Northern Alps (Avanzi 
et al., 2023; Matiu et al., 2020; Prein and Gobiet, 2017), as well as 
receiving precipitation from both south and north storm fronts (Bertoldi 
et al., 2023). 

The generality of the approach is further tested as we use three 
different precipitation products, each of which is sub-optimal across 
world-wide mountainous regions (Wrzesien et al., 2019). The assimila
tion of the Sentinel-1 snow depth retrievals provides a way to inform 
these uncertain large-scale precipitation products. We found a strong 

elevation dependency on the distribution of the snowfall errors. These 
results are consistent with previous studies aimed at characterizing how 
winter precipitation increases as a function of elevation (e.g., Lundquist 
et al. (2010)). Consistent with Kang et al. (2021) we also found that the 
improved orographic precipitation patterns, and therefore robust spatio- 
temporal distribution of snow accumulation, leads to better estimates of 
the spring and summer streamflow, the key variable of interest for many 
of the downstream water resources managers. 

4.1. Assumptions and limitations 

There are some important limitations that should be discussed, as 
summarized next. 

1. The key assumption that snowfall orographic patterns can be 
retrieved using snow depth ground accumulation can fail over regions 
with significant snow redistribution due to processes such as wind and/ 
or avalanches, or because of snow structure and density uncertainties 
(changing the relationship between precipitation water equivalent and 
snow depth). While we included uncertainties on key snow density pa
rameters, a more accurate uncertainty analysis might be needed for 
other snow structure model parameters. For the specific domain and 
spatial scales (1 km), we assume snow redistribution processes are 
negligible relative to snowfall accumulation, but these processes could 
be significant for other regions or if targeting finer spatial resolutions (e. 
g., Clark et al., 2011; Mott et al., 2018). A solution to these limitations 
could be the application of the proposed assimilation scheme within a 
more sophisticated snow model and higher spatial resolutions (i.e., one 
capable of modeling wind redistribution and avalanche) so that snow 
redistribution processes are taken into consideration. 

2. Sentinel 1A and 1B missions are characterized altogether by a 
revisit time of about 6 days in Europe (12 days now with the failure of 
the 1B satellite). While this revisit time is likely sufficient for snow depth 
data assimilation for a full snow season (e.g., Margulis et al., 2019), it 
can impact the correction of specific snowfall events. That is, a stronger 
link between precipitation and snow depth patterns might be achieved 
with frequent retrievals (e.g., Brandt et al., 2020), capturing the ma
jority of precipitation snow accumulation events. Precipitation dy
namics are often characterized by large variability in space and time and 
its signal is inherently erratic. In our experiments we assimilate one 
Sentinel-1 retrieval per month, and relying on more retrievals could help 
to improve upon the precipitation corrections shown here. Furthermore, 
by assimilating all satellite derived snow depth retrievals for the year- 
long accumulation window, we assume that on average precipitation 
biases are consistent across snowfall storms, yet proportional to the 
amount of snowfall. Using a more frequent assimilation window (e.g., 
particle filter) could overcome this limitation. 

3. Uncertainties in Sentinel-1 snow depth retrievals can be large in 
the presence of wet snow (Lievens et al., 2022) because of absorption of 
radar backscatter signal, or in areas with shallow and intermittent snow 
cover, resulting in poor snow depth estimates. To overcome these issues, 

Fig. 9. Flow duration curves using daily streamflow discharge (m3/s).  

Table 2 
Kling-Gupta Efficiency index calculated on using daily streamflow values (KGE). 
Only validation statistics are reported.   

In-situ ERA-5 IMERG 

Prior Post Prior Post Prior Post 

KGE 0.38 0.75 0.65 0.67 0.68 0.75  
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we limit the assimilation of the retrievals to only the accumulation 
season (i.e., prior to peak). More generally, future work could use the 
product provided “wet-flag” (Lievens et al., 2022) to exclude from the 
assimilation highly uncertain snow depth. A significant help in this 
respect could also be derived from the new method to map wet snow 
from Sentinel 1 data (Karbou et al., 2021). 

4. Lastly, in this article we present results from a 4-years set of ex
periments, in agreement with the availability of assimilated and in-situ 
data. While the length of this period is enough to test the robustness of 
the proposed methodology, a longer data set should be employed to 
extract long-term spatial patterns of snowfall precipitation (Jimeno-Sáez 
et al., 2020). 

5. Summary and conclusion 

A skillful characterization of mountain hydrology is a challenging 
task particularly because of the lack of precise and accurate snowfall 
measurements across the complex terrain that characterize mountain 
ranges. This work characterizes snowfall orographic patterns by first 
identifying biases in commonly used snowfall products and then using 
observations to correct for the errors. We test the hypothesis that the 
assimilation of Sentinel-1 snow depth retrievals can identify and resolve 
orographic snowfall patterns in mountain catchments. 

The analysis of the spatial characteristics of the snowfall elevation 
patterns suggests that the proposed assimilation scheme drives more 
accurate spatial patterns in the snowfall distribution across the entire 
basin. The retrieved snowfall orographic patterns lead to an overall 
improvement of mountain hydrologic variables such as snow depth, 
snow cover area, and streamflow. For streamflow, the largest improve
ments are reported during spring and summer months when peak flow 
observations agree better with the posterior cases rather than the prior 
ones. These results are primarily a consequence of the fact that assimi
lation of Sentinel-1 assigns less snowfall to lower-elevation regions of 
the basin whereas higher rates are assigned to the higher elevation. As 
summer comes, the higher elevation releases water via snow-melt more 
slowly than the prior case, which better matches observations. 

While the prior snowfall cumulative elevation pattern has a small 
gradient across elevation bands, these patterns are consistent across 
elevations and precipitation products after the assimilation of snow 
depth retrievals. In other words, the assimilation of Sentinel-1 

effectively downscales coarser-resolution precipitation products. 
To conclude, this work provides the framework for correcting 

snowfall orographic patterns across other seasonally-snow dominated 
mountain area of the world, especially where in-situ data are scarce. 
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Appendix A. Snow-17 calibration 

The calibration exercise is accrued out using water year 2019 (i.e., from October 2018 through September 2019) to Kling-Gupta Efficiency index 
(KGE) equal to 0.869 and 0.9697 for the two in-situ snow depth locations (Fig. 2a) and using in-situ forcings (Section 2.2). Parameters obtained from 
the calibration with the highest values KGE are adopted for some of Snow-17 model parameters as described in Section 2.4. The list of calibrated model 
parameters for the two locations is listed in Table A.3. For reference the snowfall error coefficient α obtained from the assimilation approach described 
in Section 2.5 are for site 1 and site 2 the corresponding 1 km grid cells are reported in Table A.4. Please note that for the most model sensitive 
parameters, these are assumed uncertain according to Table 1.  

Table A.3 
Parameter values obtained in the calibration of SNOW-17 model for the two in-situ locations 
(Fig. 2a.)   

Site ID (lat;lon) 

Site 1 (46.92;11.86) Site 2 (47.04;12.12) 

MBASE  1  0.8 
MFMAX  1.63  0.8 
MFMIN  0  0 
NMF  0.15  0.15 
PLWHC  0.04  0.04 
PXTEMP  1  1 
PXTEMP1  − 1  − 1 
PXTEMP2  3  3 
RSV  1  1 

(continued on next page) 
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Table A.3 (continued )  

Site ID (lat;lon) 

Site 1 (46.92;11.86) Site 2 (47.04;12.12) 

SCF (in this article, α)  1.70  3.13 
TIPM  0.1  0.1 
UADJ  0.001  0.012   

Table A.4 
Snowfall biases (α) obtained from the assimilation approach described in Section 2.5 for the in-situ sites corresponding 1 km grid cells.   

Site 1 Site 2 

2016 2017 2018 2019 2016 2017 2018 2019 

In-situ  1.44  1.40  1.07  1.30  1.12  1.68  0.88  1.55 
ERA-5  0.71  0.40  0.86  0.38  0.33  0.24  0.32  0.29 
IMERG  1.14  0.78  1.49  0.61  0.49  0.58  0.77  0.53  
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