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ARTICLE INFO ABSTRACT
Editor: Ouyang Wei Precipitation in mountain regions is highly variable and poorly measured, posing important challenges to water
resource management. Traditional methods to estimate precipitation include in-situ gauges, Doppler weather
Keywor"i‘-' radars, satellite radars and radiometers, numerical modeling and reanalysis products. Each of these methods is
Mountain hydrology unable to adequately capture complex orographic precipitation. Here, we propose a novel approach to charac-
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terize orographic snowfall over mountain regions. We use a particle batch smoother to leverage satellite infor-
mation from Sentinel-1 derived snow depth retrievals and to correct various gridded precipitation products. This
novel approach is tested using a simple snow model for an alpine basin located in Trentino Alto Adige, Italy. We
quantify the precipitation biases across the basin and found that the assimilation method (i) corrects for snowfall
biases and uncertainties, (ii) leads to cumulative snowfall elevation patterns that are consistent across precipi-
tation products, and (iii) results in overall improved basin-wide snow variables (snow depth and snow cover
area) and basin streamflow estimates.
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M. Girotto et al.
1. Introduction

Mountain head-watersheds are often referred to as “water towers”
because they store freshwater during winter months and release it when
it is most needed for agriculture purposes during the spring and summer
months (e.g., Viviroli et al., 2007; Immerzeel et al., 2020; Qin et al.,
2020). The hydrology of mountains is driven by orographic (i.e.,
elevation dependent) precipitation, an inherently complex physical
mechanism that brings enhanced amounts of rain and snow to the higher
elevations of the mountains (e.g., Mott et al., 2014; Sarmadi et al.,
2019). The mechanism is poorly understood because of the complicated
feedbacks between the complex terrain and the atmosphere. The
knowledge uncertainty in snowfall spatial patterns primarily encom-
passes magnitude and seasonality of precipitation elevation gradients, as
well as the drivers (e.g., landscape or atmospheric variables) of their
variability (Harpold et al., 2017; Avanzi et al., 2020).

The knowledge gap around the spatiotemporal heterogeneity of
orographic precipitation is exacerbated by the lack of reliable precipi-
tation observations in mountain regions. Meteorological networks at
high elevations are sparse (Bhatt and Nakamura, 2005) and, in snow-
dominated regions, precipitation gauges are prone to large errors
because of wind-driven undercatch or snow plugging issues (Rasmussen
et al., 2012). Radar- or satellite-based observations or retrievals in
mountain terrain are challenged by complex topography, radar beam
shielding, and ground echoing (Germann et al., 2006). The lack of in-situ
precipitation or radar- and satellite-based observations caused several
regional and global mountain hydrology studies to rely on readily and
globally available precipitation products that come from satellite (e.g.,
Global Precipitation Measurement, GPM Huffman et al., 2018), rean-
alysis sources (e.g., Modern-Era Retrospective analysis for Research and
Applications, Version 2, MERRA-2 and the European centre for medium-
range weather forecasts Atmospheric Reanalysis version 5, ERA-5
Gelaro et al., 2017; Hersbach et al., 2020) and hybrid approaches
(Beck et al., 2019).

Reanalysis or satellite-based precipitation products are widely
available worldwide. However, these gridded precipitation products
have relatively coarse resolution (i.e., >= 10 km) with respect to the
features of mountainous landscapes and show sub-optimal performance
across mountainous terrain especially for satellite products which suffer
from precipitation retrieval issues above frozen surfaces and complex
terrain (Ebert et al., 2007; Scheel et al., 2011; Liu et al., 2017; Maggioni
et al., 2017; Speirs et al., 2017; Xu et al., 2017; Lundquist et al., 2019;
Wang et al., 2019). Despite their coarse resolutions, reanalysis and
satellite products are routinely used to force hydrological models
because they are readily available globally, or perhaps the only option in
absence of in-situ data. At the local scale, in-situ observations of snowfall
might be less uncertain than coarse scale resolutions products, but
snowfall gauges also suffer from precipitation under-catch issues where
the recorded snowfall tends to be biased low with respect to actual fallen
precipitation amounts. When forcing snow models with the biased
precipitation, the resulting SWE or snow depth ground estimates will
also be severely biased (e.g., Raleigh et al., 2015; Giinther et al., 2019).

A largely unexplored solution for explaining snowfall orographic
gradients is to directly analyze the snow that accumulates on the ground.
This approach was used in Avanzi et al. (2020) using snow accumulation
estimates from snow course observations. The latter are periodic manual
measurements, generally used by water managers for forecasting, col-
lecting snow depth and snow density estimates at regular intervals over
transects of various spatial extents (Rice and Bales, 2010). The key
assumption with this solution is that the observed ground snow depth or
snow water equivalent (SWE, the amount of water stored in the snow
pack) measurements directly correspond to snowfall accumulation
(only), and are therefore able to explain orographic patterns in snowfall.
While this is not a safe assumption everywhere, it is reasonable for re-
gions with weak wind-driven snow redistribution processes and little to
no intermittent snow melt events in between snowfall episodes at the
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ground snow depth measurement survey. Despite potentially providing
a solution for the identification of orographic snowfall patterns, snow
courses data are primarily available only over few data-rich mountain
regions, including the western US (Pagano et al., 2004), Switzerland (e.
g., Mott et al., 2023), Norway (Skaugen et al., 2012), and Finland
(Lundberg and Koivusalo, 2003). These measurements are sparse or not
existent over the vast majority of the water towers of the world. For
these regions, high-resolution snow depth or SWE satellite retrievals
could be seen as a way to overcome the lack of in-situ data.

In spite of the absence of a dedicated snow estimation satellite
mission, advances in remote sensing technology continue to revolu-
tionize the way we monitor snow over mountain regions. As a conse-
quence, the number of scientific efforts aimed at using remote sensing to
estimate snow depth or SWE at sub-kilometer spatial resolution has
increased. These encompass studies that take advantage of a simple
difference of land surface elevation between snow-on and snow-off im-
ages, including snow depth retrievals from airborne Lidar scanners (e.g.,
Painter et al., 2016) and from stereo satellite imagery (e.g., Deschamps-
Berger et al., 2020).

More recently, scientific studies have proved the ability to retrieve
snow depth from the increased volumetric scattering observed by active
microwave satellite (e.g., Sentinel-1 snow depth retrievals, Lievens et al.
(2019, 2022); Tsang et al. (2022). Other studies have focused on using
the interferometry data in which snow depth is obtained based on the
microwave signal phase difference between two acquired satellite
scenes (Leinss et al., 2014; Conde et al., 2019). Some studies looked at
using synthetic aperture radar (SAR) data to detect the presence of wet
snow (Karbou et al., 2021) and snowmelt dynamics (Marin et al., 2020).
Despite these advances in microwave sensing of snow depth, limitations
remain with respect to applications of these remote sensing techniques
to characterizing orographic snowfall estimates (Tsang et al., 2022).
These observations are only available at discrete temporal frequencies in
agreement with the operational overpasses of the satellite. The sparse
temporal frequencies might miss significant snow accumulation events
and therefore not accurately capture the accumulation dynamics in the
mountain catchments.

A potential method to overcome the remote sensing observations
shortcomings is data assimilation, which leverages the information
content in the observations with that of a land surface model, while
minimizing their limitations due to both observations and model
inherent uncertainty (Girotto et al., 2014; Margulis et al., 2015; Mag-
nusson et al., 2017; Winstral et al., 2019; Girotto et al., 2020; Smyth
et al., 2022).

In this paper, we hypothesize that the orographic snowfall patterns in
mountain catchments can be identified and resolved via the assimilation
of satellite-based snow depth retrievals from the C-band Sentinel-1
mission. To our knowledge no other studies exist in the literature that
assimilate Sentinel-1 data to explore its feasibility in characterizing
patterns in mountains orographic precipitation. We test our methods
over a snow dominated watershed in the Italian Alps that is, to a first
order degree representative of other global mountain watersheds
dominated by similar seasonal snow accumulation and melt patterns.
We assert that the proposed approach can be applicable to other snow-
covered mountain regions primarily because of the general availability
of Sentinel-1 snow depth retrievals (Lievens et al., 2019).

Our specific objectives are: 1) to propose a novel data assimilation
method to correct precipitation bias in mountainous regions with
Sentinel-1 snow depth retrievals; 2) to analyze the spatial characteristics
of the snowfall orographic precipitation patterns using the updated
snow data product; and 3) to evaluate if the derived snowfall orographic
precipitation lead to improved mountain watershed hydrology.

2. Methods

Methods are illustrated in the flowchart of Fig. 1. By assimilating
snow depth observations, we retrieve snowfall patterns that can be used
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to improve mountain hydrological variables such as snow accumulation,
snow melt, and spring and summer streamflow. We test our hypothesis
over a test-bed domain located in the Italian Alps, the Aurino River Basin
(Fig. 2, Section 2.1), using readily and globally available gridded pre-
cipitation products (Section 2.2). In practice, the data assimilation sys-
tem presented here constrains a snow model (Section 2.4) using the
observed Sentinel-1 retrievals (Section 2.3). Data assimilation is indeed
a tool to bridge models and observations in order to obtain optimized
estimates of the specific phenomena of interest (Girotto et al., 2020). As
part of the assimilation scheme (Section 2.5), an ensemble of possible
prior estimates of the snowfall biases are used to run a year-long snow
model (Section 2.4) that predicts, among other variables, snow depth
values. The difference between predicted snow depth estimates and
those observed by the satellite (Section 2.3) are used within a particle
batch smoother assimilation algorithm (Section 2.5.2) to update the
spatial distribution of snowfall error coefficients, as well as other vari-
ables of interest such as snow depth, SWE, and snow melt. We subse-
quently obtain streamflow estimates by forcing a semi-lumped
streamflow model forced with rainfall and snowmelt that is output from
the snow model (Section 2.6.2).

2.1. Study area: the Aurino River basin

We test our methods in the Aurino River basin, located in the Adige
River system in the eastern Alps, marked in Fig. 2. The basin has an area
of 614 km? and an elevation range between 817 and 3485 m a.s.l. Our
analysis uses a 1 km-resolution model grid, corresponding to the spatial
resolution of the snow depth retrievals (Section 2.3). We used the Eu-
ropean Digital Elevation Model, version 1.1 at 25 m resolution (https
://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=met
adata) and aggregated to 1 km resolution. The basin streamflow outlet is
San Giorgio Aurino (Zaramella et al., 2019), for which streamflow data
from 2015 to 2019 have been downloaded from the Autonomous
Province of Bolzano (https://meteo.provincia.bz.it/stazioni-idrometr
iche.asp). Precipitation and air temperature in-situ data can also be
freely downloaded from https://meteo.provincia.bz.it/download-dati.
asp. The average observed annual precipitation for the test basin is
around 950 mm, with less precipitation in the valleys and more in the
mountains (from ~850 mm to ~1300 mm, Zaramella et al. (2019)). Two
monitoring sites with snow depth measurements were available at
Malga Merbe (lat = 47.04°; lon = 12.12°; elev = 2006 m) and Malga
Fadner (lat = 46.92°; lon = 11.86°; elev = 2155 m) (Fig. 2a, Table A.3).
These are freely available to download from the open data portal of the
Provincia Autonoma di Bolzano at https://data.civis.bz.it/it/dataset
/misure-meteo-e-idrografiche.

2.2. Meteorological forcings

We use precipitation products derived from three sources: reanalysis
(ERA-5, Hersbach et al., 2020), satellite-based (the Integrated Multi-
satellitE Retrievals for GPM, IMERG, Huffman et al., 2018) and, in-situ
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local precipitation. Air temperature data at 2 m height were collected
from both ERA-5 and local in-situ thermometer data (made available by
the Autonomous Province of Bolzano).

The choice of ERA-5 dataset is due to its availability and demon-
strably good performance over Europe (Bandhauer et al., 2022), as well
as its permissive usage license (Copernicus Climate Change Service, http
s://climate.copernicus.eu/climate-reanalysis). We acquired ERA-5 data
from 2015 to 2019 at a 36 km spatial resolution at a daily time step. For
IMERG, we use the final run version (IMERG-FR), which integrates
gauge observations. The IMERG product has a spatial resolution of
0.1° x 0.1° and half-hourly temporal resolution. We used a daily version
of the product available via https://www.earthdata.nasa.gov. The in-
situ precipitation and temperature estimates are obtained from in-situ
observation locations of air temperature and of precipitation (Fig. 2a).
We interpolated them to a gridded product using a kriging with external
drift (Garen and Marks, 2005) interpolation algorithm, which accounts
for elevation information (Fig. 2c and f). For mountain regions, such as
the one investigated in this study, we expect to see elevation patterns in
both air temperature and precipitation. Elevation patterns are unrefined
in Fig. 2b, d, and e because the products with coarse spatial resolution
and topography cannot resolve the complex temporal and spatial dy-
namics of mountain elevation ranges.

2.3. Sentinel-1 snow depth retrievals

The data assimilation algorithm described in Section 2.5 integrates
snow depth retrievals from Sentinel-1 backscatter observations (Lievens
et al.,, 2019, 2022). The snow depth retrieval leverages the dependence
of the radar C-band backscatter signal to the accumulation or ablation of
snow and it uses a change detection method to derive snow depth values
(Lievens et al., 2019). The snow depth algorithm takes advantage of the
fact that snow is a dense medium of clustered, irregularly shaped ice
crystals that contribute to volume scattering. Moreover, increased
scattering can originate from snow layer interfaces and snow-ground
interactions. A deeper snowpack generally results in stronger scat-
tering, thus the strength of the scattering can be related to snow depths.
The retrieval quality is best for dry snow with mean absolute error
values of 17-18 cm according to Lievens et al. (2022). However, the
dataset also contains retrievals of wet snow (marked with an associated
flag). In this work, we include both dry and wet flagged observations,
and increased the associated uncertainty to 30 cm. We only assimilate
retrievals up to snow depth peak time. While this helps to remove spring-
time wet-flagged observations, assimilating retrievals before peak time
also allows to better isolate the snow depth dynamics linked to snowfall
orographic accumulation. The snow depth peak time is determined
directly from the Sentinel-1 retrievals. Although the study region of this
work has a greater frequency of available observations, we downsized
the availability of Sentinel-1 observations to check whether the pro-
posed methodology would also work in other areas (e.g. the Western
United States Mountains or the High Mountains of Asia) where obser-
vations are not as frequently available (Lievens et al., 2019). For this
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Prior Estimates of
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Model (§2.6.2)

Smoother )]
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Fig. 1. Schematic representation of the methods used and associated Section (§) where each component is described.
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Fig. 2. a) European Digital Elevation Model (m above sea level, a.s.l.) for the domain of interest; b) ERA-5 and c) in-situ average 01 Oct. 2017 to 01 Apr. 2018 air
temperature; d) ERA-5, e) IMERG, and f) in-situ cumulative total precipitation for the period 01 Oct. 2017 to 01 Apr. 2018, with spatial averages indicated in the

insert text.

reason, the assimilation step only uses a subset of the available Sentinel-
1 snow depth retrievals, as we sample them with a 15 days frequency.
Data can be freely accessed via https://ees.kuleuven.be/project/c-snow.

2.4. Snow model

The approach presented here is applicable to any physically based or
empirical based (e.g., temperature index) snow models capable of esti-
mating snow depth values. In this work we use a very simple model, the
SNOW-17 snow accumulation and ablation model (Anderson, 1973).
The primary variable of interest of this work is the characterization of
snowfall uncertainty, which is expected to be approximately the same
regardless of the level of complexity of the snow model. If anything, the
results obtained using a simplistic model should be conservative and by
simulating snow dynamics with a better model should just improve upon
the results reported in the present analysis. SNOW-17 has also been used
for years by the National Weather Service River Forecast System
(Anderson, 1973). It solves a simplified snow energy balance that ac-
counts for snowpack accumulation, heat exchange between the snow
and air temperature, snow cover extent, heat storage and exchange, and
water retention or transmission. The only two required dynamic inputs
are total precipitation and 2 m height air temperature. Snow density is
calculated using time-based algorithms that account for snow aging,
mechanical compaction, and the impact of liquid water with adjust-
ments for new snow deposition. We replaced the original snow density
scheme with the iSnobal parameterization (Marks et al., 1999) which
has been extensively adopted by the snow scientific community across a
wide range of scales and mountain environments (Painter et al., 2016;
Hedrick et al., 2018).

Normally, SNOW-17 must be calibrated to produce quality simula-
tion results. This could be done by both using snow depth and SWE
observations (which are scarce - if not absent - in many mountainous
regions) and/or by embedding the snow model in rainfall-runoff models
to calibrate against streamflow data (which are also scarce over moun-
tainous regions). Calibration does not always guarantee optimal results

especially when the number and length of the time series of snow depth
observations is limited. SNOW-17 is most sensitive to the following
parameters. 1) SCF (hereafter a (—)) is the multiplying factor which
adjusts precipitation that is determined to be in the form of snow. The
coefficient @ primarily accounts for gauge deficiencies but also implicitly
includes the net effect of vapor transfer (sublimation and condensation,
including from intercepted and blowing snow) and transfers across areal
divides. 2) MFMAX is the maximum melt factor during non-rain periods
(mm/°C/6 h), set at the summer solstice; while 3) MFMIN is the mini-
mum melt factor during non-rain (mm/°C/6 h), set at the winter solstice.
4) UADJ, the average wind function during rain-on-snow periods (mm/
mb). UADJ is only a major parameter when there are frequent rain-on-
snow events with relatively warm temperatures. The sensitivity of the
UADJ parameter has been assessed in several studies (Houle et al., 2017;
Franz et al., 2008; He et al., 2011) Results, although they are very site
specific, showed that the UADJ minimally affected the model outputs. 5)
PXTEMP, the temperature that separates rain from snow (°C). If the air
temperature is less than or equal to PXTEMP, the precipitation is
assumed to be in the form of snow. In this work, these most critical
parameters are assumed uncertain. That is, rather than specifying a
unique value for each of the model parameters, we use an ensemble of
possible values (Table 1). For other less sensitive parameters, we assume
that the calibration at the in-situ locations is representative of the entire
test basin. These were calibrated by maximizing the Kling-Gupta Effi-
ciency index (KGE; Gupta et al., 2009) between snow depth model
simulations and snow depth observations at the two in-situ snow depth
locations (Fig. 2a) for the snow season 2018-2019 using a particle
swarm optimization approach (Eberhart and Kennedy, 1995, https
://www.mathworks.com/help/gads/particleswarm.html) with a
swarm size of 100, and chose the parameters from the one site that lead
to maximum KGE value. Appendix A includes more details about the
calibration. Note that the calibration of the model has the only objective
of reducing SNOW-17 model uncertainty to approximate realistic snow
conditions, i.e., by generally relating in-situ precipitation to in-situ snow
depth at two locations during 1 year.
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Table 1
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Perturbation values to generate the ensemble of prior snow depth estimates. The table also lists types and magnitude Multiplicative (M), Additive (A), or Uniform (U) of
the sampling distributions used for each of the perturbed variable. The magnitude (Magn.) of the perturbations is defined by the standard deviation (o), or the co-
efficient of variation (CV), or the minimum and maximum range (Range), for the additive, multiplicative, uniform perturbation types respectively.

Type Magn. Range
Snowfall correction factor (a, [0, ]) M cv=1
Air temperature (°C) A o=1
Maximum melt factor (MFMAX, [mm-°C~!-6hr 1] U [1, 2]
Minimum melt factor (MFMIN, [mm-°C~1-6hr 1] U [0, 1]
Wind function rain-on-snow (UADJ, [mm-mb~1]) 18] [0.001, 0.1]
Rain- snow-fall temp. threshold (PXTEMP, [°C]) U [0, 3]
Snow density parameters (C1-C5, CX, THRESD) M CvV=0.5

2.5. Data assimilation approach

The assimilation approach uses an ensemble particle batch smoother,
a generalization of the particle filter (Van Leeuwen, 2009). Being a
Bayesian method, the conditional probability distribution of a variable
of interest (in our case estimates of snowfall biases, quantified by @) can
be determined from its likelihood function, and the probabilities of its
prior distribution (before assimilation) along with those of the obser-
vations (in this case, Sentinel-1 snow depth retrievals). In an ensemble
approach, these continuous probabilities are approximated by discrete
distributions, with an ensemble of particles, each assigned a specific
weight (w;). In contrast to a filter approach, a batch smoother (Margulis
et al., 2015) allows the assimilation of multiple available observations in
time at once (i.e., assimilation in batch and not sequential).

The assimilation approach follows two primary steps: 1) the gener-
ation of an ensemble of members (or particles, Section 2.5.1); and 2)
update step where the Sentinel-1 snow depth retrievals are assimilated
and the particle weights updated (Section 2.5.2). Each of these steps is
done independently for the individual model grid cells (i.e., we assume
no spatial correlation between model grid cells). We also repeat these
steps for each of the water years one at the time, treating each of the
years independently. In all these steps, the main assumption is that er-
rors in modeled snow depth estimates are primarily caused by un-
certainties in snowfall (i.e., snowfall biases, a) and the assimilation of
observed Sentinel-1 snow depth retrievals allows us to estimate them.

2.5.1. Ensemble generation

The first step of the algorithm is to generate an ensemble of possible
particles, meant to represent the probability density function of the
model realizations prior to the assimilation. That is, we know that model
estimates contain uncertainties that can be difficult to resolve and can
potentially impact accurate estimates of snow depth. By generating an
ensemble of possible model realizations, the data assimilation method
avoids unrealistic confidence in the model estimates. To fully capture
model uncertainties, the ensemble of realizations could be obtained
from multi model simulations. In this work, we aim to represent model
uncertainties by perturbing key parameters as described next. We use an
ensemble size of 100 members (or particles, N.,; = 100). Previous
literature demonstrates that this number is large enough to stabilize
performances of particle filter approaches (Han et al., 2021; Magnusson
et al., 2017). The ensemble is generated via the perturbation of a series
of model parameters and meteorological forcings as summarized in
Table 1. Again, the underlying assumption is that most of the uncer-
tainty comes from biases in snowfall (e.g., Raleigh et al., 2015). This is
represented by perturbing the parameter a (snowfall correction factor).
Possible values of a are sampled from a log-normal distribution with
mean= 1.0 and coefficient of variation CV = 1.0 (Table 1). These values
imply that perturbations are unbiased and, on average, correspond to
100 % of the magnitude of the nominal precipitation. We also perturbed
other forcings and model parameters that are known to be uncertain and
hard to calibrate (Section 2.4). These are listed in Table 1 and include
perturbations of air temperature, and model parameters dictating melt
factors (MFMAX and MFMIN), snow-density parameters (C1-C5, CX,

THRESD), wind function for rain-on-snow events (UADJ), and the
temperature function to distinguish between rainfall and snowfall
events (PXTEMP). Total precipitation is assumed to be all in the form of
snowfall or rainfall if air temperature is less than —1°C, or greater than
3°C, respectively. If the air temperature is between —1°C and 3°C, only a
fraction of the total precipitation is assumed to be snowfall based on the
model parameter PXTEMP.

The generation of the ensemble also translate snowfall biases (a) (i.
e., the assimilation control variable) into observation-like variables (i.e.,
snow depth observations). For this, we run SNOW-17 N, times, each
time using a different suite of inputs as obtained by the ensemble gen-
eration step (Section 2.5.1). The ensemble generation step generates
(among others) an ensemble of N, precipitation biases (@), and snow
depth particles. Prior to the update step (Section 2.5.2), each of these
particles has the same probability of occurrence that corresponds
weights equal to:

1 New

W=y w =1 @

2.5.2. Update step

The goal of the update step is to renew the weights of the ensemble
particles (Eq. 1) by assimilating Sentinel-1 snow depth retrievals. This is
done by calculating the observations likelihood function pzy(Z|Y),
where Z corresponds to an array containing all Sentinel-1 snow depth
retrievals within the assimilation window (i.e., the entire water year)
and Y is the assimilation control vector. In our case, Y contains the Ne
values of snowfall biases a. The likelihood function corresponds to the
specified probability distribution function for the observation errors,

Dy (Z — Mf), of size Ny (i.e., number of retrievals in the assimilation
window), where M;" is predicted snow depth from ensemble member j.
The data assimilation scientific community often refers to (Z — M]*) as
the “vector of innovations”. The probability distribution function for the
observation errors, p, (Z — M]*) is typically represented by Gaussian

processes where observation errors are assumed to have zero mean and a
specified C, error covariance:

VoL et e )
y 7Z—M: - e 2 J J (2)
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Assuming observations have negligible autocorrelations when
compared to the specified single observation errors, we can treat C, as a
diagonal matrix with the diagonal values corresponding to the assumed
observations error standard deviation (Section 2.3). The updated par-
ticle weights are calculated by:

Co
L _
where Cy is an integration constant and it is obtained from constraining
the likelihood function to be a valid probability distribution (Z]I-V;"l‘ wf =
1):
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This process assigns higher weights to the “more likely” particles
because their snow depth prediction (M]T) is closer to the observed
values (Z). Conversely, the process reduces the weights of those particles
whose observation error is higher (i.e., snow depth estimates and ob-
servations are farther apart). A typical issue associated with sequential
particle filters is the collapse of the ensemble, occurring when too much
weight is assigned to only a few particles (those similar to the obser-
vations). In such case, resampling techniques are used to guarantee a
adequate ensemble spread. In this work, resampling was not done since
we assimilate all observations occurring in one water year at once (in a
batch rather than sequential format). The updated weights (Eq. (3))
provide a discrete estimate of the posterior probability distribution
which can be used to determine posterior statistics of the a distribution,
and consequently our updated snowfall variable. The update weights
can also be used to calculate statistics and ensemble percentiles for other
variables of interest such as snow water equivalent, snow melt, and snow
depth. In this article we present results for the percentiles 25 %, 50 %,
and 75 % (i.e., the interquartile range), as well as mean and standard
deviation statistics.

2.6. Experimental setup and evaluation criteria

We tested the methods for water years 2016, 2017, 2018, and 2019.
For the example of year 2016, the water year is defined as the period that
goes from 01 October 2015 to 30 September 2016.

We developed three experiments each using a different combination
of atmospheric forcings (Section 2.2): 1) “in-situ”, where air tempera-
ture and precipitation are both from the in-situ observations; 2) “ERA-
57, where both air temperature and precipitation are derived from the
gridded ERA-5 atmospheric reanalysis product; 3) “IMERG”, where air
temperature is taken from in-situ observations and precipitation from
IMERG. The “in-situ” case could be considered the best possible scenario
since both precipitation and air temperature are locally observed, thus
considered more representative of the basin dynamics. The “ERA-5"
configuration could be seen as representative of those scenarios that
would be adopted in data-scarce regions where in-situ observations
might be lacking. Finally, the “IMERG” scenario can be seen as a more
sophisticated case with respect to the previous configuration because of
the elevation aware air-temperature inputs (in-situ air temperature)
allow for orographic partitioning of rainfall vs. snowfall; further, the
satellite-derived precipitation (IMERG) allows for a precipitation prod-
uct that is directly observed rather than modeled. This last experiment
setup could be seen as representative of applications where gridded
precipitation products are used along with some downscaling tech-
niques to represent local-scale orographic dynamics (e.g., Girotto et al.,
2014; Wang et al., 2019; Xue et al., 2021). The methods are evaluated
using independent variables of snow cover area (Section 2.6.1) and
streamflow (Section 2.6.2). We only assimilate one Sentinel-1 retrieval
every 15 days as we want to ensure the robustness of the method to be
applied in regions where the Sentinel-1 retrievals are not as abundant as
they are in our test domain (Section 2.3).

2.6.1. Snow cover area

A basin-wide 8-day averaged observation of the fractional snow
cover area estimates is calculated from the MODIS MOD10A1 (Hall
et al., 2002) data collection. We compare it to both the prior (results
from the ensemble generation, Section 2.5.1) and posterior (after the
assimilation of snow depth) fractional snow covered estimates to eval-
uate the performances of the proposed method. The snow model does
not directly include a snow depletion curve to estimate fractional snow
cover area; thus, we estimate it in a binary way. That is, for each basin
grid cell we assign a snow cover fraction of 0 % or 100 % depending on
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whether the prior (or posterior) SWE is above or below a specific
threshold of 40 mm (De Lannoy et al., 2010). From the basin-wide
average of these binary values of snow cover areas, for each day, we
calculate the percentage of the basin that is covered in snow. These
values are further smoothed and aggregated to an 8-days average. Using
them, we calculate Pearson correlation coefficients between the
observed (MODIS) and modeled (prior and posterior) fractional snow
cover area.

2.6.2. Streamflow

Once we determine the spatially varying updated or posterior
ensemble mean SWE, and most importantly snow-melt (or melt-driven
discharge), we use their values to initialize the lumped hydrological
model HYMOD (Moore, 1985), in order to obtain streamflow estimates
at the outlet of the basin. Hymod is a simplified lumped hydrological
model which is based on the ideas presented in Moore (1985) of
probability-distributed infiltration capacity and storage capacity and
implemented by Boyle (2001) and has been widely applied across a
variety of climates, spatial and temporal scales (Wagener et al., 2001;
Formetta et al., 2011; Abera et al., 2017; Vrugt et al., 2003). The model
receives rainfall, snow melt, and potential evapotranspiration time se-
ries as input and provides the discharges at the outlet of the basin as
main output. We subset the streamflow time-series in two halves, the
first half of the simulation period has been used for the calibration and
the second half for validation.

For the validation subset we evaluate performances of the different
assimilation experiments using the KGE coefficient. On top of this, we
compared prior and posterior streamflow simulations in terms of flow
duration curves to look at the entire streamflow distribution.

3. Results
3.1. Precipitation biases

The precipitation correction factors estimated via snow depth data
assimilation are shown in Fig. 3. The “In-situ” derived snowfall tends to
underestimate the basin-wide amount of snowfall in the basin as the
average value of a for in-situ forcings is greater than one (Fig. 3a).
Similarly, with the exception of water year 2017, the “IMERG” scenario
also underestimates the basin-wide snowfall (Fig. 3c) as the basin-
averaged a is greater than one. These results suggest that for both “in-
situ” and the “IMERG” scenarios, snowfall needs multipliers (a) greater
than one in order to obtain snow depth estimates comparable with those
retrieved by Sentinel-1. Conversely, “ERA-5" snowfall tends to over-
estimate the average amount of snowfall in the basin (Fig. 3b) with
average a values less than one.

Regardless of the actual basin-wide numbers in these figures, the
spatial distribution of « (Fig. 3) indicates a strong elevation dependency
on the distribution of the snowfall errors. Across the three experiments
(Fig. 3), smaller a values, typically less than one, correspond to lower
elevations (i.e., reducing snowfall amounts); and the larger « values,
generally greater than one, correspond to higher elevations (i.e.,
increasing snowfall amounts). In other words, the assimilation scheme
adjusts the prescribed snowfall by reducing snowfall at the lower ele-
vations, where model snow depth is likely overestimated with respect to
the Sentinel-1 retrievals, and by increasing it at the higher elevations
where modeled snow depth is underestimated. The « spatial patterns
highlight the hidden positive feedback of the proposed assimilation
scheme: it effectively downscales the coarser spatial resolution of the
gridded precipitation estimates. That is, the assimilation of the 1 km
resolution snow depth retrievals provides a way to inform the large-scale
precipitation product (i.e., ERA-5 or IMERG) on how to be adjusted at a
local scale in order to provide consistent finer resolution snow depth
estimates. Despite the small sample of years, the 4-year spatial mean and
standard deviation (non-shown here) suggest that the snowfall multi-
pliers a, tend to be interannually consistent. The in-situ experiment
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leads to the most uniform interannual variability (i.e., consistently less
variability in the snowfall errors) possibly due to combined prior (before
assimilation) spatial distribution of both in-situ precipitation and air
temperature observations used for this experiment as these are likely
more accurate than the gridded products.

3.2. Orographic snowfall patterns

The precipitation biases shown in Fig. 3 exhibit spatial features that
help define spatial distribution of the resulting snowfall across the
domain. Here, we discuss the elevation patterns of snowfall patterns,
that is the spatial variability of snowfall as a function of elevation, as
reported by Fig. 4.

For the prior snowfall elevation patterns, when compared to the
“ERA-5” and “IMERG” scenarios, the “in-situ” leads to the smallest cu-
mulative amounts of snowfall across all elevations and years (downward
facing red triangle markers, Fig. 4). This result is consistent with the
differences in precipitation magnitude seen for the sample year shown in
Fig. 2d-f. Across all forcing datasets, the prior snowfall estimates (red
markers) show little changes in the accumulated snowfall as a function
of elevation. That is, snowfall elevation gradients are small and nearly
zero indicating that snowfall accumulation does not increase with
elevation. Special cases are the “in-situ” and “IMERG” prior estimates
presenting a small elevation gradient in their elevation distribution (i.e.,
triangle and circle red markers move toward higher accumulation as the
elevation increases, Fig. 4) caused by their orography dependent in-situ
air temperature (Fig. 2c). This is not the case for the coarse-scale rean-
alysis product (“ERA-5") where the elevation patterns are nearly absent
in the prior simulations (red crosses) because of the unrefined elevation
dependency in the ERA-5 forcings (Fig. 2b, d).

Across all years and experiment scenarios, the posterior estimates
(blue markers) lead to a more noticeable elevation gradient where
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cumulative snowfall values increase as a function of elevation. In gen-
eral, across the four years, the location of the mean accumulated
snowfall distribution and the spatial variability (standard deviation
represented by the error bar), aligns well across the three forcings sce-
narios (best case is Fig. 4b and d). An exception to this general result is
seen in the posterior cumulative snowfall around 2000-3000 m a.s.l. for
water year 2016 when “ERA-5" experiment lead to smaller amount with
respect to the “in-situ” and “IMERG” scenarios (blue triangles and circles
vs. blue crosses, Fig. 4a). The elevation dependent in-situ air tempera-
ture, used by the first two experiments, boosts the snowfall orographic
gradient for this year.

Regardless of the prior (model-only) precipitation product, the
assimilation of Sentinel-1 snow depth leads to similar elevation depen-
dent cumulative snowfall patterns where the snowfall accumulation
gradient is modest for elevations below 1500 m a.s.l., it strongly in-
creases from the elevations 1500 m a.s.l. until 2500 m a.s.l., and it is
modest for elevations above 2500 m a.s.l. In fact, for elevation above
2500 m a.s.l., the accumulated snowfall does not increase as strongly
with elevation (best case is illustrated by Fig. 4d), possibly due to at-
mospheric moisture saturation effects. The obtained posterior elevation
patterns suggest that the spatial (elevation) distribution of snowfall is in
general consistent and robust across the chosen prior set of forcings.

3.3. Snow depth and snow cover area

Evaluating the assimilation performance using the assimilated snow
depth values does not constitute an independent validation yet it pro-
vides a means to internally check assimilation performances. For the
example location shown in Fig. 5, when the model uses “in-situ” forc-
ings, it delivers snow depth values that underestimate the observed ones
(i.e., prior estimates are lower than the observed Sentinel-1 retrievals
Fig. 5a). Similarly, the “IMERG” scenario tends to underestimate snow
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Fig. 5. Available (black dots) and assimilated (black circles) Sentinel-1 snow depth retrievals, median (thick lines) and inter-quantile range (shaded area) of prior (or
model-only, red) and posterior (or assimilation, blue) snow depth estimates for a sample location at 2155 m a.s.l. elevation lat = 46.92° lon = 11.86° and for the case
when the model runs with a) in-situ air temperature and in-situ precipitation; b) ERA-5 air temperature and ERA-5 precipitation; and c) in-situ air temperature and
IMERG precipitation. For reference, the in-situ (point-scale) snow depth observations are also shown (dashed green).
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depth values for all years, with the exception of water year 2019 Fig. 5c¢).
In contrast, “ERA-5” scenario leads to values of prior peak snow depth
that are consistent with those observed by Sentinel-1 (Fig. 5b).

When looking at the ensemble spread (i.e., uncertainty) of the prior
estimates, for the “ERA-5", and “IMERG” experiments, most of the
Sentinel-1 retrievals are included within this uncertainty range
(Fig. 5b—c); whereas for the “in-situ” case, retrievals are located at the
edges of the prior ensemble interquartile range (Fig. 5a). For an optimal
assimilation condition, we would want the retrievals to be assimilated to
all be included within the ensemble of possible model realizations (i.e.,
the red envelope in Fig. 5).

Regardless of the prior simulations of snow depth, the proposed
assimilation scheme leads to posterior estimates of snow depth that
correspond better with those observed by Sentinel-1 (blue estimates in
Fig. 5). The posterior estimates also reduced the ensemble spread for
each of the four forcing scenarios. This means that, while the posterior
snow depth estimates are expected to be more robust and less uncertain,
their drastically reduced uncertainty is likely too optimistic. The overly
optimistic approximation of the posterior ensemble spread is typically
seen as a limitation of particle filters. The limitation improves, but it is
not entirely solved by smoothers assimilation approaches (Margulis
et al., 2015).

Fig. 6 shows the monthly prior and posterior snow depth estimates
for February 2018 for all three forcing scenarios, alongside Sentinel-1
estimates. Sentinel-1 snow depth (Fig. 6a) indicates a distinct eleva-
tion pattern, with naturally deeper snow depths located at higher ele-
vations (compare Figs. 6a to 2a). Elevation patterns are visible when
estimating snow depth using “in-situ” and “IMERG” (Fig. 2b and d).
These are likely caused by the spatial distribution of air temperature
(Fig. 2) that partitions precipitation into snowfall and rainfall amounts.
Despite having an elevation gradient, when compared to Sentinel-1 re-
trievals, the “in-situ” and “IMERG” prior experiment leads to 58.6 cm
and 59.9 cm respectively of basin-wide snow depth and thus un-
derestimates Sentinel-1 (Fig. 2b, d). In the ERA-5 case, the prior distri-
bution of snow depth is unrealistically blocked due to the coarse
resolution of the product. Despite having unrealistic spatial patterns, the
magnitude of the basin-wide snow depth values produced by “ERA-5" is
107.3 cm and more comparable to those in Sentinel-1. In all cases (“in-
situ”, “ERA-5", and “IMERG”) snow depth values underestimate the
basin-wide value in Sentinel-1 (Fig. 6a).

The assimilation results from all three experiments lead to basin-
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wide values that are closer (within 6 cm differences) to those reported
in Sentinel-1 (Fig. 6e-g). Regardless of the spatial patterns of the prior
distribution, the assimilation brings more realistic snow depth elevation
gradients that assign snow to the higher elevations. This result is
consistent with the patterns obtained by snowfall and precipitation error
coefficients as described in Sections 3.1 and 3.2.

An independent evaluation using the MODIS fractional snow cover
dataset is shown in Fig. 7. Furthermore, the evaluation of the spatial
distribution of snow cover (Fig. 7) can be seen as a tool to assess the
accuracy of snow depth spatial distribution. The spatial correlation skill
values against MODIS fractional snow cover is best for the prior exper-
iment that uses in-situ and IMERG precipitation, with a temporal
average values of 0.65 and 0.66, respectively. The correlation values are
weaker for the ERA-5 prior simulations with associated skill value of
0.35. Higher spatial correlations values might be expected for the in-situ
and IMERG experiments considering the given a-priori realistic spatial
distribution of the air temperature (Fig. 2¢) that contributes to a realistic
spatial distribution of snow depth in the basin, albeit underestimated in
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Fig. 7. Snow Cover Area (SCA) correlations between MODIS and the fractional
snow cover estimated from the prior and posterior snow water equivalent
values. Each error bar represent the 2016-2019 average and one standard de-
viation of the correlations computed from each of the 8-days snow cover area
composite (Section 2.6.1).
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Fig. 6. Water year 2018 monthly averaged February snow depth estimates a) observed from Sentinel-1; and estimated from Snow-17 (prior) using b) in-situ air
temperature and precipitation (“in-situ”); ¢) ERA-5 air temperature and precipitation (“ERA-5); d) in-situ air temperature and IMERG precipitation (“IMERG™). The
bottom row shows the corresponding estimated monthly averaged February snow depth values that result from the assimilation of Sentinel-1 retrievals when using e)

“in-situ”; f) “ERA-57; and g) “IMERG” scenarios.
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magnitude (Fig. 6b, d). For the posterior cases, the correlation values are
consistently centered at around 0.61-0.66 for all three experiments. This
conveys that regardless of the input forcing, the assimilation of snow
depth retrievals leads to MODIS snow cover area consistent spatial
patterns. This is particularly noticeable for the ERA-5 experiment, for
which the spatial patterns improve the distribution of snow on the
ground (i.e., posterior correlation values are higher than the respective
prior ones). No improvement is obtained when using in-situ or IMERG
forcings. Again, this can be caused by the already modest spatial pat-
terns brought by the elevation dependent in-situ air temperature
(Fig. 2¢).

3.4. Streamflow

The snow depth and orographic precipitation improvements as
indicated in the previous result sections are tightly linked to streamflow.
Furthermore, besides biases in snowfall estimates, the values of a could
also be influenced by biases in air temperature. That is, even if the total
precipitation is unbiased, warm biases in air temperature can lead to
more rainfall and less snowfall. The assessment of streamflow can be
seen as a more holistic way to verify whether the adjustments are due to
biases in air temperature or actual precipitation.

Observations of streamflow suggest that the river flow is dominated
by snowmelt as the flow peaks during snow melt season and, depending
on the year, reaches values of 75-85 m?/s (Fig. 8). Both prior and pos-
terior assimilation estimates predict the timing of the observed
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seasonality correctly, however the magnitude of both peak and low
flows varies and are different from the observed ones. In general the
posterior streamflow peaks tend to represent observations better than
the prior estimates. This is especially visible for the in-situ case (Fig. 8a).
This means that the timing of snow melt during the spring and summer
months is improved by the assimilation of snow depth values. Once
again, this suggests that the assimilation of Sentinel-1 retrievals leads to
better spatial patterns in the snow distribution across the entire basin (as
discussed in Section 3.3). That is, areas with lower elevations are
characterized by shallower snowpack; whereas the areas with deeper
snowpacks are located at higher elevations. In general, as summer
comes, the higher elevation releases water via snowmelt more slowly
than the prior case (i.e., slower melt rate due to colder temperature, and
longer travel time from higher elevation to the stream bed), which better
matches the timing of the streamflow observations.

To better understand if there are benefits to the assimilation, Fig. 9
reports the flow duration curves (i.e., a cumulative frequency curve that
shows the percent of time specified discharges were equaled or exceeded
during a given period) where the flow distribution obtained from all 4
years from the posterior simulation (blue lines) agree better with the
observations (black lines) with respect to the prior estimates (red lines).
This result suggests that the assimilation of snow depth observations
improves streamflow estimates especially for high flows which are
occurring during summer months. A confirmation of this result is re-
ported in Table 2 where the KGE of the streamflow values (obtained
during the validation period 2018-2019) indicate that the assimilation
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Fig. 9. Flow duration curves using daily streamflow discharge (m®/s).

Table 2
Kling-Gupta Efficiency index calculated on using daily streamflow values (KGE).
Only validation statistics are reported.

In-situ ERA-5 IMERG
Prior Post Prior Post Prior Post
KGE 0.38 0.75 0.65 0.67 0.68 0.75

of snow depth retrievals results in improved streamflow estimates (of
about 40 % on average). Fig. 9 also shows that the performances of the
priors are not the same, with the in-situ prior having a lower perfor-
mance compared to the ERA-5 and IMERG prior. This is a common issue
when conceptual hydrological models are recalibrated for each prior
type, which can be attributed to the strong interactions between the
nonlinear model structure and the analyzed input data (e.g., Qi et al.,
2016; Mei et al., 2016; Camici et al., 2018).

4. Discussion

In this work we test the hypothesis that snowfall orographic patterns
can be retrieved using information about the snow depth that accumu-
lates on the ground. This principle was introduced in Avanzi et al.
(2020), in which in-situ snow depth observations were used. Here we
extend this assumption to demonstrate that we can derive orographic
precipitation patterns over seasonal snow dominated mountainous re-
gions via the assimilation of readily available snow depth retrievals from
Sentinel-1 (in agreement with the operational overpasses of the satel-
lite). We argue that our proposed method, despite being assessed only
over a test basin in the Alps (the Aurino), provides a framework for
correcting snowfall across any mountain area. The chosen domain is
characterized by orographic complexity, and seasonal accumulation and
melt dynamics. The Italian Alps can be assumed representative of other
high elevation watersheds around the world that are similarly defined
by orographic complexity and seasonal snowpack dynamics. Being in
the Mediterranean climate, Aurino also features a high interannual
climate variability (Cid et al., 2017). Because of this, it can be considered
a good test domain to validate the approach proposed here since pre-
dicting Aurinos’s snowfall spatiotemporal variability can be extremely
challenging. Being in the Mediterranean climate, Aurino also features a
high interannual climate variability (Cid et al., 2017) as it sits on the
edge of the alpine divide between Southern and Northern Alps (Avanzi
et al., 2023; Matiu et al., 2020; Prein and Gobiet, 2017), as well as
receiving precipitation from both south and north storm fronts (Bertoldi
et al., 2023).

The generality of the approach is further tested as we use three
different precipitation products, each of which is sub-optimal across
world-wide mountainous regions (Wrzesien et al., 2019). The assimila-
tion of the Sentinel-1 snow depth retrievals provides a way to inform
these uncertain large-scale precipitation products. We found a strong
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elevation dependency on the distribution of the snowfall errors. These
results are consistent with previous studies aimed at characterizing how
winter precipitation increases as a function of elevation (e.g., Lundquist
et al. (2010)). Consistent with Kang et al. (2021) we also found that the
improved orographic precipitation patterns, and therefore robust spatio-
temporal distribution of snow accumulation, leads to better estimates of
the spring and summer streamflow, the key variable of interest for many
of the downstream water resources managers.

4.1. Assumptions and limitations

There are some important limitations that should be discussed, as
summarized next.

1. The key assumption that snowfall orographic patterns can be
retrieved using snow depth ground accumulation can fail over regions
with significant snow redistribution due to processes such as wind and/
or avalanches, or because of snow structure and density uncertainties
(changing the relationship between precipitation water equivalent and
snow depth). While we included uncertainties on key snow density pa-
rameters, a more accurate uncertainty analysis might be needed for
other snow structure model parameters. For the specific domain and
spatial scales (1 km), we assume snow redistribution processes are
negligible relative to snowfall accumulation, but these processes could
be significant for other regions or if targeting finer spatial resolutions (e.
g., Clark et al., 2011; Mott et al., 2018). A solution to these limitations
could be the application of the proposed assimilation scheme within a
more sophisticated snow model and higher spatial resolutions (i.e., one
capable of modeling wind redistribution and avalanche) so that snow
redistribution processes are taken into consideration.

2. Sentinel 1A and 1B missions are characterized altogether by a
revisit time of about 6 days in Europe (12 days now with the failure of
the 1B satellite). While this revisit time is likely sufficient for snow depth
data assimilation for a full snow season (e.g., Margulis et al., 2019), it
can impact the correction of specific snowfall events. That is, a stronger
link between precipitation and snow depth patterns might be achieved
with frequent retrievals (e.g., Brandt et al., 2020), capturing the ma-
jority of precipitation snow accumulation events. Precipitation dy-
namics are often characterized by large variability in space and time and
its signal is inherently erratic. In our experiments we assimilate one
Sentinel-1 retrieval per month, and relying on more retrievals could help
to improve upon the precipitation corrections shown here. Furthermore,
by assimilating all satellite derived snow depth retrievals for the year-
long accumulation window, we assume that on average precipitation
biases are consistent across snowfall storms, yet proportional to the
amount of snowfall. Using a more frequent assimilation window (e.g.,
particle filter) could overcome this limitation.

3. Uncertainties in Sentinel-1 snow depth retrievals can be large in
the presence of wet snow (Lievens et al., 2022) because of absorption of
radar backscatter signal, or in areas with shallow and intermittent snow
cover, resulting in poor snow depth estimates. To overcome these issues,
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we limit the assimilation of the retrievals to only the accumulation
season (i.e., prior to peak). More generally, future work could use the
product provided “wet-flag” (Lievens et al., 2022) to exclude from the
assimilation highly uncertain snow depth. A significant help in this
respect could also be derived from the new method to map wet snow
from Sentinel 1 data (Karbou et al., 2021).

4. Lastly, in this article we present results from a 4-years set of ex-
periments, in agreement with the availability of assimilated and in-situ
data. While the length of this period is enough to test the robustness of
the proposed methodology, a longer data set should be employed to
extract long-term spatial patterns of snowfall precipitation (Jimeno-Saez
et al., 2020).

5. Summary and conclusion

A skillful characterization of mountain hydrology is a challenging
task particularly because of the lack of precise and accurate snowfall
measurements across the complex terrain that characterize mountain
ranges. This work characterizes snowfall orographic patterns by first
identifying biases in commonly used snowfall products and then using
observations to correct for the errors. We test the hypothesis that the
assimilation of Sentinel-1 snow depth retrievals can identify and resolve
orographic snowfall patterns in mountain catchments.

The analysis of the spatial characteristics of the snowfall elevation
patterns suggests that the proposed assimilation scheme drives more
accurate spatial patterns in the snowfall distribution across the entire
basin. The retrieved snowfall orographic patterns lead to an overall
improvement of mountain hydrologic variables such as snow depth,
snow cover area, and streamflow. For streamflow, the largest improve-
ments are reported during spring and summer months when peak flow
observations agree better with the posterior cases rather than the prior
ones. These results are primarily a consequence of the fact that assimi-
lation of Sentinel-1 assigns less snowfall to lower-elevation regions of
the basin whereas higher rates are assigned to the higher elevation. As
summer comes, the higher elevation releases water via snow-melt more
slowly than the prior case, which better matches observations.

While the prior snowfall cumulative elevation pattern has a small
gradient across elevation bands, these patterns are consistent across
elevations and precipitation products after the assimilation of snow
depth retrievals. In other words, the assimilation of Sentinel-1

Appendix A. Snow-17 calibration
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effectively downscales coarser-resolution precipitation products.

To conclude, this work provides the framework for correcting
snowfall orographic patterns across other seasonally-snow dominated
mountain area of the world, especially where in-situ data are scarce.
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The calibration exercise is accrued out using water year 2019 (i.e., from October 2018 through September 2019) to Kling-Gupta Efficiency index
(KGE) equal to 0.869 and 0.9697 for the two in-situ snow depth locations (Fig. 2a) and using in-situ forcings (Section 2.2). Parameters obtained from
the calibration with the highest values KGE are adopted for some of Snow-17 model parameters as described in Section 2.4. The list of calibrated model
parameters for the two locations is listed in Table A.3. For reference the snowfall error coefficient a obtained from the assimilation approach described
in Section 2.5 are for site 1 and site 2 the corresponding 1 km grid cells are reported in Table A.4. Please note that for the most model sensitive

parameters, these are assumed uncertain according to Table 1.

Table A.3
Parameter values obtained in the calibration of SNOW-17 model for the two in-situ locations
(Fig. 2a.)
Site ID (lat;lon)
Site 1 (46.92;11.86) Site 2 (47.04;12.12)
MBASE 1 0.8
MFMAX 1.63 0.8
MFMIN 0 0
NMF 0.15 0.15
PLWHC 0.04 0.04
PXTEMP 1 1
PXTEMP1 -1 -1
PXTEMP2 3 3
RSV 1 1

(continued on next page)
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Table A.3 (continued)
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Site ID (lat;lon)

Site 1 (46.92;11.86)

Site 2 (47.04;12.12)

SCF (in this article, ) 1.70
TIPM 0.1
UADJ 0.001

3.13
0.1
0.012

Table A.4
Snowfall biases (a) obtained from the assimilation approach described in Section 2.5 for the in-situ sites corresponding 1 km grid cells.
Site 1 Site 2
2016 2017 2018 2019 2016 2017 2018 2019
In-situ 1.44 1.40 1.07 1.30 1.12 1.68 0.88 1.55
ERA-5 0.71 0.40 0.86 0.38 0.33 0.24 0.32 0.29
IMERG 1.14 0.78 1.49 0.61 0.49 0.58 0.77 0.53
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