

Auxiliar Extra C1

Profesor: Francisco Ortega Culaciati

Auxiliar: Iñaki Escobar Cano

P1. Sean $a, b : \mathbb{R} \to \mathbb{R}$ dos funciones continuas y periódicas con período T > 0, es decir,

$$\forall t \in \mathbb{R}, \quad a(t+T) = a(t), \quad b(t+T) = b(t).$$

Considere la ecuación diferencial

$$x'(t) = a(t)x(t) + b(t). (1)$$

(a) Demuestre que el problema de Cauchy dado por

$$x'(t) = a(t)x(t) + b(t),$$

$$x(t_0) = x_0,$$

posee solución única para todo $t_0, x_0 \in \mathbb{R}$.

(b) Sea u una solución de la ecuación (1) tal que u(0) = u(T). Demuestre que

$$\varphi(t) = u(t+T) - u(t)$$

es solución del problema de Cauchy

$$x'(t) = a(t)x(t),$$

$$x(0) = 0.$$
(2)

(c) Sea u solución de la ecuación (1). Aplicando los resultados de las partes anteriores, pruebe que u es periódica con período T > 0 si y solo si u(0) = u(T).

Indicación: Analice la existencia y unicidad de solución de la ecuación (2).

P2. Sea una curva C definida en $([0,\infty))$ por la ecuación y=y(x) que pasa por el origen. Las líneas dibujadas paralelas a los ejes coordenados que pasan por un punto arbitrario de la curva forman un rectángulo con dos lados sobre los ejes. La curva divide cada uno de estos rectángulos en dos regiones A (sobre la curva) y B (bajo la curva), donde el área de A es α veces la de B.

Encuentre la función y(x).

Auxiliar Extra C1

P3. La siguiente ecuación diferencial se utiliza para modelar la densidad de una población de peces P(t), considerando que son capturados con una tasa de pesca constante:

$$\frac{dP}{dt} = P(1-P) - \frac{1}{4}$$

- (a) Bosqueje el diagrama de pendientes asociado a la EDO en el plano (P,t). Indicación: Le será útil estudiar el signo de la función $P(1-P)-\frac{1}{4}$.
- (b) Sea P una solución de la EDO, con condición inicial $P(0) \ge 0$. A partir del diagrama, conjeture si la población se extingue, es decir, P(T) = 0 para algún T, o sobrevive, es decir, P(t) > 0 para todo t. Indicación: Distinga los casos $P(0) > \frac{1}{2}$, $P(0) = \frac{1}{2}$, $0 < P(0) < \frac{1}{2}$.
- (c) Determine todas las soluciones (expresiones matemáticas) de la ecuación, explicitando el mayor intervalo donde están definidas.
- (d) Para $P(0) \ge \frac{1}{2}$, determine $\lim_{t \to \infty} P(t)$.

Auxiliar Extra C1