

Auxiliar 1: EDO de primer orden y Modelamiento

Profesor: Francisco Ortega Culaciati

Auxiliar: Iñaki Escobar Cano

P1. Identifique y resuelva las siguientes ecuaciones diferenciales ordinarias:

a)
$$y' = 2xy$$

$$d) xy' + y = 2x$$

b)
$$y' = cos^2(y)$$

e)
$$y' - x^3y^2 = y^2$$

c)
$$y' = \frac{xy+3x-y-3}{xy-2x+4y-8}$$

f)
$$y' = \frac{2x + xy^2}{4y + yx^2}$$

P2. Grafique el diagrama de pendientes de la EDO y' = 0,2xy

P3. La dinámica de una población está dada por:

$$N' = N(N-1)(2-N)$$

- Encuentre las soluciones constantes.
- Bosqueje el diagrama de pendientes asociado a esta ecuación.
- Conjeture el comportamiento cuanto $t \to \infty$. ¿Qué le pasa a la población si su densidad inicial N(0) < 1.
- ¿Qué le pasa a la población si su condición inicial 1 < N(0) < 2?
- $\xi Y \text{ si } 2 < N(0)$?

P4. Suponga que una población sigue la ecuación:

$$\frac{dP}{dt} = P(bP - a)$$

- Suponiendo que a, b > 0, vea como dependiendo de $P(0) = P_0$ esta población puede incluir escenarios de sobrepoblación $(P(t) \to \infty)$ o escenarios de extinción $(P(t) \to 0)$.
- Resuelva la ecuación para b = 0,0005 y a = 0,1 con la condición inicial de P(0) = 300 y vea que en un tiempo finito t_d la población se va a infinito.
- Con los mismos valores anteriores para a y b, considere P(0) = 100 y vea que a $t \to \infty$ la población se extingue.

Resumen de contenidos sobre EDO

EDO	Forma General	Paso Clave/Cambio de Variable
Integración Directa	y' = f(x)	$y(x) = \int f(x)dx + C, C \in \mathbb{R}$
Variables Separables	y' = f(x)g(y)	$\int \frac{dy}{g(y)} = \int f(x)dx$
Lineal Homogénea	y' + a(x)y = 0	Var. separables: $f(x) = a(x), g(y) = y$
Lineal No Homogénea	$y' + a(x)y = q(x), q \neq 0$	Factor integrante: $\exp(\int a(s)ds _{s=x})$
Homogénea	$y' = h\left(\frac{y}{x}\right)$	$z(x) = \frac{y(x)}{x}$ o Var. separables