

Auxiliar 20

Polinomios

Profesor: José Soto

Auxiliares: Javier Santidrián Salas, Fernanda Young Arenas

P1.-

a) Sean $P(x) = x^4 + ix^3 + 3x^2 - 4$ y D(x) = x - i, polinomios en $\mathbb{C}[x]$. Encuentre $Q \in \mathbb{C}[x]$ y $r \in \mathbb{C}$ tales que

$$P(x) = Q(x) \cdot D(x) + r.$$

(b) Sean los siguientes polinomios:

$$P(x) = x^3 - 2x^2 + 9x - 18$$

$$Q(x) = x^5 + x^4 + 12x^3 + 4x^2 + 27x - 45$$

- i) Encuentre las raíces de P(x).
- ii) Sabiendo que ambos polinomios comparten exactamente dos raíces, factorice ambos polinomios en $\mathbb{C}[x]$ y en $\mathbb{R}[x]$.

P2.-

(a) Sea el polinomio $P \in \mathbb{R}[x]$ de grado 2n+2, y sean $i, i\sqrt{2}, i\sqrt{3}, \dots, i\sqrt{n}\}$ raíces de P. Encuentre todas las raíces de P(x), sabiendo que: P(0) = n!, P(1) = (n+1)!, $P(2) = \frac{1}{8}(n+4)!$

Auxiliar 20

(b) Sean $u, v, w \in \mathbb{C}$. Considere el sistema de ecuaciones (s) dado por:

$$(s) = \begin{cases} u + v + w = 4 \\ uvw = 4 \\ \frac{1}{u} + \frac{1}{v} + \frac{1}{w} = \frac{3}{2} \end{cases}$$

Sea $P \in \mathbb{R}[x]$ el polinomio dado por P(x) = (x-u)(x-v)(x-w), donde u, v, w son las soluciones del sistema (s).

- i) Pruebe que $P(x) = x^3 4x^2 + 6x 4$.
- ii) Factorice P en $\mathbb{R}[x]$ y $\mathbb{C}[x]$.

P3.-

- (a) Se define el polinomio $P(z)=z^6-2iz^3-1$ Encuentre las raíces de P(z), indicando la multiplicidad de cada una de ellas
- (b) Demuestre que si $2+i\in\mathbb{C}$ es una raíz del polinomio $P\in\mathbb{C}[x]$, dado por

$$P(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$$

con $a, b, c, d, e \in \mathbb{R}$, entonces $x^2 - 4x + 5$ divide a P.

Im sorry, earth is closed today

Proposición 1 (Igualdad de polinomios). Sean $P, Q \in \mathbb{K}[x]$ tales que

$$P(x) = \sum_{k=0}^{n} p_k x^k$$
 y $Q(x) = \sum_{k=0}^{n} q_k x^k$

Entonces,

$$P = Q \Leftrightarrow (n = m \land \forall k \in \{0, \dots, n\}, p_k = q_k)$$

Definición 1 (Grado). $P(x) = p_0 + \cdots + p_n x^n$. Si $p_n \neq 0$, escribimos gr(P) = n. Si P = 0, entonces $gr(P) = -\infty$.

Observación 1. Si $P = Q \Rightarrow gr(P) = gr(Q)$. Definición 2 (Polinomio mónico). P es mónico si su coeficiente líder es 1.

Proposición 2. En $\mathbb{K}[x]$:

•
$$\operatorname{gr}(P+Q) = \max\{\operatorname{gr}(P), \operatorname{gr}(Q)\}\$$

•
$$\operatorname{gr}(PQ) = \operatorname{gr}(P) + \operatorname{gr}(Q)$$

Proposición 3. $\mathbb{K}[x]$ es un dominio de integridad.

Observación 2. $\mathbb{K}[x], +, \cdot$ no es cuerpo. Teorema 1 (División). Sean $P, D \in \mathbb{K}[x]$ con $D \neq 0$, existen únicos Q, R tales que:

$$P = QD + R \quad \text{con } gr(R) < gr(D)$$

Observaciones:

- Q: cociente
- R: resto

Teorema 2 (Resto). Sea $P \in \mathbb{K}[x], c \in \mathbb{K}$. Entonces:

Resto de dividir por x - c es P(c)

Definición 3 (Raíz). c es raíz de P si P(c) = 0. **Proposición 5.** $c \in \mathbb{K}$ es raíz $\Leftrightarrow (x - c) \mid P(x)$ **Teorema 3.** Sean $P, Q \in \mathbb{K}[x]$:

- Si c_1, \ldots, c_k son raíces $\Rightarrow (x c_1) \cdots (x c_k) \mid P$
- P de grado $n \Rightarrow$ máx. n raíces distintas
- Si coinciden en n+1 puntos \Rightarrow son el mismo polinomio

Teorema 4 (TFA). Si $P \in \mathbb{C}[x]$ y gr $(P) \geq 1$, entonces P tiene al menos una raíz en \mathbb{C} .

Corolario 1. Existen $\alpha_1, \ldots, \alpha_m \in \mathbb{C}$ y naturales l_1, \ldots, l_m tales que:

$$P(x) = a_n(x - \alpha_1)^{l_1} \cdots (x - \alpha_m)^{l_m}$$

Proposición 6. Si $P \in \mathbb{C}[x]$, todos los conjugados complejos también son raíces.

Corolario 2. Todo $P \in \mathbb{R}[x]$ se puede factorizar en polinomios lineales y cuadráticos reales.

Proposición 7. Si $\frac{r}{s} \in \mathbb{Q}$ es raíz de $P \in \mathbb{Z}[x]$ con gcd(r, s) = 1, entonces:

$$r \mid a_0, \quad s \mid a_n$$

Corolario 3. Si $P \in \mathbb{Z}[x]$ es mónico, entonces toda raíz racional es entera y divide a a_0 .

Auxiliar 20