a) Sean A,B conjuntos, $C\subseteq A$ y $D\subseteq B$. Considere la función $f:A\times B\to A$ definida por f(x,y)=x. i) (2.0 ptos.) Demuestre que $f^{-1}(C) = C \times B$.

Sea (x,y) & AXB chalghera,

(x,y) ∈ f'(c) = f(x,y) ∈ C alt primagen

×eC

#XECAYEB (XY)EAKB⇔XEAAYEB

B (X,y) E (XB

ii) (2.0 ptos.) Si $D \neq \emptyset$, demuestre que $f(C \times D) = C$.

Sea x e A cualquiera,

xe f(Cxb) ⇒ ∃(yr)e (xD, f(yr)=x def image)

⇔ 3(U,v) ∈ CXD, U=X

def f

≠ 3ve C, 3ve D, v=x

producto cartesiono

= 30EC, 0=X

no holdomos de or

€ XE C

x s.empre va e ester en (

Sean A, B, C, D conjuntos y $f \colon A \longrightarrow B$ y $g \colon C \longrightarrow D$ dos funciones biyectivas. Definamos

$$\mathcal{F}(A,C) = \{h \colon A \longrightarrow C \mid h \text{ es función.}\},\$$

 $\mathcal{F}(B,D) = \{h \colon B \longrightarrow D \mid h \text{ es función.}\}.$

Considere $\mu \colon \mathcal{F}(A,C) \longrightarrow \mathcal{F}(B,D)$ dada por $\mu(h) = g \circ h \circ f^{-1}$.

- 1. Pruebe que μ es biyectiva.
- 2. Pruebe que:
 - (a) h es inyectiva $\iff \mu(h)$ es inyectiva.
 - (b) h es epiyectiva $\iff \mu(h)$ es epiyectiva.

1. Vomos a exhibit la inversa

8. F(B,D) - F(A,C) como 8(l) = g'olot

notemos que está bien definida, porque si le FCB/S) entonus q'o lot

Si he F(A, C):

$$uos(l) = uojolof) = gog-olof)of-1$$

=> 90 hof 1 es invectivo composición función inv
=> go hoftes injective composition función inj
= aun)=golnoft es inyectiva aun) & Fub (D) ie aun) es una función x: B>D
uch) E FCB(D) ie uch) es una función x: B > D
Wello gohof-1 = r = injection 1+20)
wego gono f = r = injection /f () gon = r of injection page f es biy (inj) y rthing was como gon es injection hes injection (aobiny > biny)
wap, como opon es injectiva
hes injectiva (and inj)