

Auxiliar 12

Preparación C3

Profesor: José Soto San Martín Auxiliares: Javier Santidrián Salas, Fernanda Young Arenas

 $\boxed{\textbf{P1.-}} \quad \text{Sean A,B conjuntos, $C\subseteq A$ y $D\subseteq B$. Considere la función $f:A\times B\to A$ definida por $f(x,y)=x$.}$

- a) Demuestre que $f^{-1}(C) = C \times B$.
- b) Si $D \neq \emptyset$, demuestre que $f(C \times D) = C$.

P2. Sean A un conjunto no vacío, $\mathcal{F} = \{f : A \to A \mid f \text{ es función}\}, \mathcal{H} = \{f \in \mathcal{F} \mid f \text{ es biyectiva}\}$ y $g \in \mathcal{H}$. Se define $\varphi : \mathcal{F} \to \mathcal{F}$ tal que

$$\varphi(f) = g \circ f.$$

- a) Justifique por qué φ está bien definida.
- b) Demuestre que $\varphi(\mathcal{H}) = \mathcal{H}$.
- c) Sea $\mathcal{G} = \{ f \in \mathcal{F} \mid f \text{ es epiyectiva} \}$. Muestre que

$$\varphi^{-1}(\mathcal{H}) \cap \mathcal{G} = \mathcal{H}.$$

d) Pruebe que φ es biyectiva y calcule su inversa.

P3.-

Sean A, B, C, D conjuntos y $f: A \to B$ y $g: C \to D$ dos funciones biyectivas. Definamos:

$$\mathcal{F}(A,C) = \{h: A \to C \mid h \text{ es función}\}, \quad \mathcal{F}(B,D) = \{h: B \to D \mid h \text{ es función}\}.$$

Considere $\mu: \mathcal{F}(A,C) \to \mathcal{F}(B,D)$ dada por

$$\mu(h) = g \circ h \circ f^{-1}.$$

- 1. Pruebe que μ es bivectiva.
- 2. Pruebe que:
 - (a) h es inyectiva $\iff \mu(h)$ es inyectiva.
 - (b) (**Propuesto**) h es epiyectiva $\iff \mu(h)$ es epiyectiva.

 P4. Sea E un conjunto de referencia no vacío y A, B ⊆ E. Se define $f : \mathcal{P}(A \cup B) \to \mathcal{P}(A) \times \mathcal{P}(B)$ tal que

$$f(X) = (X \cap A, X \cap B),$$

y $g: \mathcal{P}(A) \times \mathcal{P}(B) \to \mathcal{P}(A \cup B)$ tal que

$$q(W, Z) = W \cup Z$$
.

Auxiliar 12

- a) Compruebe que f y g están bien definidas.
- b) Verifique que $g\circ f$ es la función identidad (indique sobre qué conjunto) y concluya que f es inyectiva.
- c) Pruebe que si $B=A^c$, entonces f es epiyectiva.
- d) Muestre, con un contraejemplo, que si $A \cap B \neq \emptyset$, entonces f no es epiyectiva. Esto es, dé un ejemplo concreto de conjuntos $A, B \subseteq E$ tales que $A \cap B \neq \emptyset$ y f no es epiyectiva.

P4.-

Propuesto.-

Auxiliar 12

Resumen

• Definición de Función

Diremos que la 3-tupla f=(A,B,G) es función de A en B si $G\subseteq A\times B$ y se cumple que $\forall a\in A,\exists!b\in B, (a,b)\in G.$

Al conjunto A se le llama el dominio de f (conjunto de partida) y se denota Dom(f), al conjunto B se le llama el codominio de f (conjunto de llegada) y se denota Cod(f), y al conjunto $G = \{(a, f(a)) \in A \times B : a \in A\}$ se le llama el grafo de la función.

De forma resumida (como regla de asociación), podemos decir que $f:A\to B$ es función si $\forall a\in A, \exists !b\in B, f(a)=b.$

• Igualdad de Funciones

Si $f: A \to B$ y $g: C \to D$ son funciones, entonces:

$$f = g \iff Dom(f) = Dom(g) \land Cod(f) = Cod(g) \land \forall x \in Dom(f), f(x) = g(x)$$

• Conjunto de Funciones

Sean A y B conjuntos, definimos el conjunto de todas las funciones de A en B por:

$$B^A = \{f : A \to B | f \text{ es función}\}$$

Inyectividad

Diremos que una función $f: A \to B$ es invectiva si:

$$\forall x_1, x_2 \in A, f(x_1) = f(x_2) \implies x_1 = x_2$$

Equivalentemente (por contrarrecíproca), si se cumple que:

$$\forall x_1, x_2 \in A, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

• Sobreyectividad (Epiyectividad)

Diremos que una función $f: A \to B$ es sobreyectiva si se cumple que:

$$\forall y \in B, \exists x \in A, y = f(x)$$

· Biyectividad

Diremos que una función $f: A \to B$ es biyectiva si es inyectiva y sobreyectiva a la vez.

• Propiedad Biyectividad

 $f: A \to B$ es biyectiva $\iff \forall y \in B, \exists ! x \in A, y = f(x).$

• Función Inversa

Sea $f:A\to B$ una función biyectiva. Se define la función inversa de f, denotada $f^{-1}:B\to A$, como la función tal que:

$$\forall x \in A, \forall y \in B, f^{-1}(y) = x \iff f(x) = y$$

Auxiliar 12

• Propiedades Función Inversa

Si $f: A \to B$ es biyectiva, entonces su inversa $f^{-1}: B \to A$ cumple que:

$$-\ \forall x\in A, f^{-1}(f(x))=x$$

$$- \forall y \in B, f(f^{-1}(y)) = y$$

• Función Composición

Sean $f:A\to B$ y $g:B\to C$ funciones. Se define la función composición de f y g, denotada $g\circ f:A\to C$, como la función tal que:

$$\forall x \in A, (g \circ f)(x) = g(f(x))$$

• Propiedad Biyectividad y Composición

Para un conjunto F cualquiera, se define $id_F: F \to F$ tal que para cada $x \in F$, $id_F(x) = x$. Entonces:

$$f: A \to B$$
 biyectiva $\implies f \circ f^{-1} = id_B \wedge f^{-1} \circ f = id_A$

• Propiedades Composición

Sean $f: A \to B, g: B \to C$ y $h: C \to D$ funciones. Se tiene que:

$$-h\circ (g\circ f)=(h\circ g)\circ f$$

$$-id_B \circ f = f$$

$$- f \circ id_A = f$$

• Propiedades de Composición de Funciones Inyectivas, Epiyectivas y Biyectivas

Sean $f:A\to B$ y $g:B\to C$ funciones. Se tiene que:

$$-f y g$$
 son inyectivas $\implies g \circ f$ es inyectiva

$$-f$$
 y g son epiyectivas $\implies g \circ f$ es epiyectiva

$$-f$$
 y g son biyectivas $\implies g \circ f$ es biyectiva

$$-g \circ f$$
 es inyectiva $\implies f$ es inyectiva

$$g \circ f$$
 es epiyectiva $\implies g$ es epiyectiva

• Propiedad Inversa

Si $f: A \to B$ es biyectiva, entonces f^{-1} es biyectiva y $(f^{-1})^{-1} = f$.

• Teorema de Cálculo de Inversa

Sean $f:A\to B$ y $g:B\to A$ funciones tales que al menos dos de las siguientes condiciones se satisfacen:

$$-g \circ f = id_A$$

$$- f \circ g = id_B$$

Entonces f es biyectiva y g es su inversa $(g = f^{-1})$.

• Inversa de la Composición

Sean $f: A \to B$ y $g: B \to C$ funciones biyectivas. Entonces:

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

• Imagen y Preimagen

Sea $f: A \to B$ una función tal que f(x) = y. Se dice que y es la imagen de x a través de f y que x es la preimagen de y a través de f.

• Conjunto Imagen

Sea $f:A\to B$ una función y $A'\subseteq A$. Se define el conjunto imagen de A' por f como:

$$f(A') = \{ f(x) \in B : x \in A' \}$$

• Propiedades Conjunto Imagen

Sea $f:A\to B$ una función y $A_1,A_2\subseteq A.$ Entonces:

$$-f$$
 es epiyectiva $\iff f(A) = B$

$$-A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$$

$$- f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$-f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$

• Conjunto Preimagen

Sea $f:A\to B$ una función y $B'\subseteq B$. Se define el conjunto preimagen de B' por f como:

$$f^{-1}(B') = \{ x \in A : f(x) \in B' \}$$

• Propiedades Conjunto Preimagen

Sea $f: A \to B$ una función y $B_1, B_2 \subseteq B$. Entonces:

$$-B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$$

$$-f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

$$-f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

• Propiedades Conjunto Imagen y Preimagen

Sea $f: A \to B$ una función, $A' \subseteq A$ y $B' \subseteq B$. Entonces:

$$-A' \subseteq f^{-1}(f(A'))$$
 (si f es inyectiva se tiene la igualdad)

$$-f(f^{-1}(B')) = B' \cap f(A)$$
 (si f es epiyectiva se tiene la igualdad con B')

• Inyectividad, Epiyectividad y Biyectividad en Conjunto Preimagen

Sea $f: A \to B$ una función. Entonces:

$$-f$$
 es inyectiva $\iff \forall y \in B, (f^{-1}(\{y\}) = \emptyset \vee \exists ! x \in A, f^{-1}(\{y\}) = \{x\})$

-
$$f$$
 es epiyectiva $\iff \forall y \in B, f^{-1}(\{y\}) \neq \emptyset$

–
$$f$$
 es biyectiva $\iff \forall y \in B, \exists ! \in A, f^{-1}(\{y\}) = \{x\}$