

Auxiliar 3

Cuantificadores

Profesor: José Soto

Auxiliares: Javier Santidrián Salas, Fernanda Young Arenas

Resumen

Negación de Cuantificadores

1.
$$\neg(\exists x \in E, P(x)) \Leftrightarrow (\forall x \in E, \neg P(x))$$

2.
$$\neg(\forall x \in E, P(x)) \Leftrightarrow (\exists x \in E, \neg P(x))$$

Reglas de Independencia

1.
$$(\forall x \in E, P) \Leftrightarrow P$$

2.
$$P \lor (\forall x \in E, Q(x)) \Leftrightarrow (\forall x \in E, P \lor Q(x))$$

3.
$$P \land (\forall x \in E, Q(x)) \Leftrightarrow (\forall x \in E, P \land Q(x))$$

(tb se cumple para \exists)

Reglas de Intercambio

1.
$$(\forall x \in E)(\forall y \in E)P(x,y) \Leftrightarrow (\forall y \in E)(\forall x \in E)P(x,y)$$

2.
$$(\exists x \in E)(\exists y \in E)P(x,y) \Leftrightarrow (\exists y \in E)(\exists x \in E)P(x,y)$$

3.
$$(\exists x \in E)(\forall y \in E)P(x,y) \Rightarrow (\forall y \in E)(\exists x \in E)P(x,y)$$

Proposición 1 Modus Ponens Universal: $(P(e) \land (\forall x \in E, P(x) \Rightarrow Q(x))) \Rightarrow Q(e)$

Proposición 2 Distributividad del \forall sobre el \land

Proposición 3 Distributividad del \exists sobre el \lor

Proposición 4 Factorización del \forall sobre el \vee : $(\forall x \in E, P(x)) \vee (\forall x \in E, Q(x)) \Rightarrow (\forall x \in E, P(x) \vee Q(x))$

Proposición 5 Expansión del \exists sobre el \land : $(\exists x \in E, P(x) \land Q(x)) \Rightarrow (\exists x \in E, P(x)) \land (\exists x \in E, Q(x))$

P1.-

- (a) Determine la negación de las siguientes proposiciones.
 - 1) $\forall n \in \mathbb{N}, n < 3 \lor n! = 2n$.
 - 2) $\forall n \in \mathbb{N} \setminus \{0\}, \exists m \in \mathbb{N} \setminus \{0\}, \frac{m}{n} \neq 1.$
 - 3) $\exists ! x \in E, P(x)$

Auxiliar 3

- 4) $\forall n \in \mathbb{N}, \forall a, b, c \in \mathbb{N}, n \geq 3 \land a, b, c \geq 1 \Rightarrow a^n + b^n \neq c^n$.
- (b) Determine el valor de verdad de las siguientes proposiciones:
 - 1) Determine el valor de verdad de las proposiciones a.1 y a.2
 - 2) Considere el conjunto $\Omega = \{-1, 0, 1\}$. i. $(\forall x \in \Omega), (\forall y \in \Omega), x + y \leq 1$ ii. $(\forall x \in \Omega), (\exists y \in \Omega), x^2 \leq y$
 - 3) $\exists ! \ x \in Z, x^3 3x 2 = 0$
 - 4) $\exists ! \ x \in Z, x^2 = 4$

P2.- Para x e y números enteros, sea P(x, y) la función proposicional

$$(x \le y) \Rightarrow (x^2 \le y^2).$$

- (a) Determine los números enteros que hacen que P(x, 1) sea V
- (b) Determine el valor de verdad de $\forall x \in Z, \forall y \in Z, P(x, y)$.

P3.- Muestre que las siguientes proposiciones son verdaderas cualquiera sea la función proposicional p.

- (a) $(\forall x \in E)(\exists y \in E)(p(x) \Rightarrow p(y))$
- (b) $(\exists y \in E)(\forall x \in E)(p(x) \Rightarrow p(y))$

P4.- Sea Q un conjunto de personas que se encuentran esperando en la fila para entrar a ver a la U en Libertadores. Para $x, y \in Q$ se define la función proposicional:

 $\varphi(x,y)$: La persona x está más adelante que la persona y en la fila.

Sea $p \in Q$ una persona en la fila. Encuentre y justifique las posiciones posibles de dicha persona en la fila para que satisfaga cada una de las siguientes proposiciones cuantificadas:

- (a) $\forall x \in Q, \varphi(p, x) \lor x = p$
- (b) $\forall x \in Q, \varphi(x, p) \lor x = p$
- (c) $\exists ! x \in Q, \varphi(x, p) \lor \varphi(p, x)$

Propuestos.- | Sea p una proposición lógica y q(x) una función proposicional.

- (a) Demuestre que la proposición $(\exists y \in E)[q(y) \Rightarrow (\forall x \in E)q(x)]$ es tautología para cualquier función proposicional q.
- (b) Si llamamos r a la proposición $(\forall x \in E)(p \Rightarrow q(x))$, determine el valor de verdad de p, sabiendo que r es falsa. Justifique.
- (c) Si llamamos s a la proposición $(\exists x \in E)(p \Rightarrow q(x))$, decida si es posible determinar el valor de verdad de p, sabiendo que s es verdadera. Si su respuesta es afirmativa, indique su valor de verdad. Justifique.

Im Iron man

Auxiliar 3 2