

Auxiliar 6

Funciones y sus características

Profesores: Jorge Aguayo A. y Hanne Van Den Bosch

Auxiliar: Bianca Zamora Araya Fecha: 28 de abril de 2025

P1. [Aterrizando]

Sean A, B dos conjuntos fijos cualquiera. Considere la función $\begin{cases} H: & \mathcal{P}(A) \times \mathcal{P}(B) \to \mathcal{P}(A) \cup \mathcal{P}(B) \\ & (X,Y) \mapsto f((X,Y)) = X \cup Y \end{cases}$

- a) Demuestre que H es sobrevectiva.
- b) Suponga que $A \cap B = \emptyset$ y muestre que H es inyectiva.
- c) Si $A = \{1, 2\}$ y $B = \{2, 3\}$, H es inyectiva? Justifique.

P2. [Un paso más]

Sea E un conjunto de referencia no vacío y sea $B_0 \subseteq E$ fijo. Considere la función

$$\begin{cases} \mathcal{F} \colon & \mathcal{P}(E) \to \mathcal{P}(E) \times \mathcal{P}(E) \\ & X \mapsto \mathcal{F}(X) = (X \setminus B_0, X \cap B_0) \end{cases}$$

 \mathcal{F} es inyectiva? \mathcal{F} sobre
yectiva? Argumente sobre su biyectividad. Justifique todos sus pasos.

P3. [Déjà vu]

Considere un conjunto de referencia Z no vacío y A un subconjunto no vacío. Se definen las funciones:

$$\begin{cases} f \colon & \mathcal{P}(Z) \to \mathcal{P}(Z) \\ & X \mapsto f(X) = X \setminus A \end{cases} \qquad \begin{cases} g \colon & \mathcal{P}\left(Z\right) \to \mathcal{P}\left(Z\right) \\ & X \mapsto g(X) = X \cup A \end{cases}$$

a) Demuestre que $f \circ g = f$ y que $g \circ f = g$. b) Muestre que $f^{-1}\left(\{\emptyset\}\right) = \mathcal{P}\left(A\right)$ y que $(\forall X \in \mathcal{P}\left(Z\right)) : f\left(X\right) \neq A$.

P4. [Composición]

Sean A, B y C tres conjuntos no vacíos. Sean $f: A \to B$, $g: B \to C$ y $h: C \to A$ tales que

 $h \circ g \circ f$ es inyectiva, $f \circ h \circ g$ es inyectiva, y $g \circ f \circ h$ es sobreyectiva

Demuestre que f, g y h son biyectivas.

P5. [Phi]

Sea $\mathcal{F} = \{h \colon E \to E \mid h \text{ es biyectiva}\}\ y \text{ sea } f \in \mathcal{F}.\ \mathbf{a}\}$ Pruebe que para todo $h \in \mathcal{F}$, se tiene que $h \circ f \in \mathcal{F}$.

b) Sea $\varphi_f \colon \mathcal{F} \to \mathcal{F}$ tal que $\varphi_f(h) = h \circ f$. Demuestre que φ_f es biyección.

P6. [Fotos]

Sea $f: X \to Y$ una función. Demuestre las siguientes propiedades.

- a) $(\forall B \subseteq Y) : f(f^{-1}(B)) = B \iff f \text{ es sobreyectiva.}$
- **b)** Si f es inyectiva, entonces $f(A \setminus C) = f(A) \setminus f(C) \ (\forall A, C \subseteq X)$.
- c) $f(A)^c \subseteq f(A^c) (\forall A \subseteq X)$ si f es sobreyectiva.
- d) Si f es sobreyectiva, entonces $(\forall A \subseteq X) : f(A)^c = f(A^c) \iff f$ es inyectiva.

Principales definiciones y propiedades

■ [Función]: Corresponde a una asociación unívoca entre los elementos de un conjunto y de otro. Para A, B conjuntos en Z, se define una función f := (A, B, G):

$$G \subseteq A \times B \land (\forall a \in A) (\exists! b \in B) : (a, b) \in G$$

Para una función $f: A \to B$, los conjuntos A, B, G, denotados $\mathrm{Dom}(f), \mathrm{Cod}(f), G_f$, se denominan **dominio** (o conjunto **de partida**), **codominio** (o conjunto de **llegada**) y grafo de la función, respectivamente. La notación f(a) = b denota que f(a) es la etiqueta para el único elemento $b \in B$ tal que $(a, b) \in G$.

- [Igualdad de funciones]: Dos funciones son iguales si lo son en dominio, codominio y grafo.
- [Inyectividad]: Asegura que un elemento en el codominio se asocia a un y solo un elemento del dominio. $f: A \to B$ es inyectiva si y solo si

$$(\forall a_1, a_2 \in A) : f(a_1) = f(a_2) \implies x_1 = x_2$$

Para mostrar que una función **no es inyectiva**, basta exhibir dos elementos del dominio diferentes pero que tengan igual imagen.

• [Sobreyectividad/epiyectividad]: Asegura que cualquier elemento del codominio es imagen de alguien del dominio (podría ocurrir diferentes elementos del dominio lleven a la misma imagen). $f: A \to B$ es epiyectiva si y solo si

$$(\forall b \in B) (\exists a \in A) : f(a) = b$$

Para ver que una función **no es epiyectiva**, basta exhibir un elemento del codominio que no sea imagen de ningún elemento del dominio.

• [Biyectividad]: Asegura que cada elemento de la partida tiene un único elemento en la llegada (inyectividad) y que cada elemento de la llegada está asociado con algún elemento de la partida (epiyectividad). $f: A \to B$ es biyectiva si y solo si f es inyectiva y epiyectiva a la vez si y solo si

$$(\forall b \in B) (\exists! a \in A) : f(a) = b$$

■ [Conjunto de funciones]: Para A, B conjuntos, se define el conjunto de todas las funciones de A en B:

$$B^A := \{ f \colon A \to B \mid f \text{ es función} \}$$

■ [Función inversa]: Es una función que realiza lo "opuesto" a una función fija. $f: A \to B$ es función biyectiva si y solo si $g:=f^{-1}: B \to A$ es función, donde g corresponde a la función inversa de f, vale decir, g(y) = x cada vez que f(x) = y para $x \in A$ e $y \in B$:

$$(\forall a \in A) (\forall y \in B) : b = f(a) \iff f^{-1}(b) = a$$

Se cumple que:

$$(\forall \ a \in A): f^{-1}(f(a)) = a \wedge (\forall \ b \in B): f\left(f^{-1}\left(b\right)\right) = b$$

- Sea $f: A \to B$ una función biyectiva. Entonces: f^{-1} biyectiva y $(f^{-1})^{-1} = f$.
- [Función composición]: Es una función que, dadas dos funciones, recibe los elementos del dominio de una, y entrega la imagen por la otra, de la imagen de la una. Para $f: A \to B$, $g: B \to C$ funciones, la composición de f y g es la función $g \circ f: A \to C$ tal que

$$(\forall a \in A) : (g \circ f)(x) = g(f(x))$$

La condición de igualdad de dominios se puede relajar a que el dominio de la primera función en la composición esté contenido en el dominio de la última función de la composición.

- Sea $f: A \to B$ una función biyectiva. Entonces: $f^{-1} \circ f = \mathrm{Id}_{\mathrm{Dom}(f)} \wedge f \circ f^{-1} = \mathrm{Id}_{\mathrm{Cod}(f)}$.
- o es asociativa (¡no connmuta!)
- $\operatorname{Id}_{\operatorname{Cod}(f)} \circ f = f \wedge f \circ \operatorname{Id}_{\operatorname{Dom}(f)} = f$.
- $(q \circ f)^{-1} = f^{-1} \circ q^{-1}$
- Composición de inyectivas, epiyectivas, biyectivas, es inyectiva, epiyectiva y biyectiva, respect.
- Si composición es inyectiva, entonces la primera función compuesta es inyectiva.
- Si composición es epiyectiva, entonces la última función compuesta es epiyectiva.
- [Cálculo de inversas]: Sean $f: A \to B$, $g: B \to C$ funciones. Basta ver que se cumplan dos cualesquiera de las siguientes condiciones, para que f sea biyectiva y g su inversa:

$$g \circ f = \mathrm{Id}_{\mathrm{Dom}(f)}, \quad f \circ g = \mathrm{Id}_{\mathrm{Cod}(f)}, \quad g \text{ es biyectiva}$$