Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA1001-9 Introducción al Cálculo 28 de mayo de 2025

Auxiliar 9: Sucesiones I

Profesor: Álvaro Hernández U.

Auxiliares: Luis Fuentes Cruz y Antonia Suazo Ruiz

P1. Demuestre por definición lo siguiente: si (a_n) es una sucesión tal que lím $a_n = 0$, entonces

$$\lim \sqrt{|a_n|} = 0.$$

P2. Calcule los siguientes límites.

(a)
$$\lim_{n \to \infty} \frac{2n+4}{3n+1}$$

(a)
$$\lim_{n \to \infty} \frac{2n+4}{3n+1}$$

(b) $\lim_{n \to \infty} \frac{4n^4+2}{5n^5-6n+1}$
(c) $\lim_{n \to \infty} \frac{n-n^3+3}{n^3+n-7}$

(c)
$$\lim_{n \to \infty} \frac{n - n^3 + 3}{n^3 + n - 7}$$

(d)
$$\lim_{n \to \infty} \frac{n\sqrt{n} - n + 3}{n^2 + n - 7}$$

(e)
$$\lim_{n \to \infty} \frac{(-1)^n}{n}$$

P3. (a) Demuestre por definición que

$$\lim_{n \to \infty} \sqrt{1 + \frac{3}{n}} = 1.$$

Además, determine algún n_0 que garantice que para todo $n \ge n_0$ se cumpla que

$$\left|\sqrt{1+\frac{3}{n}}-1\right| \le \frac{1}{1001}.$$

- (b) Calcule los siguientes límites justificando apropiadamente sus respuestas:
 - (b.1) $\lim_{n\to\infty} \frac{\sin(n!)+2n^2}{3n^2+4}$
 - (b.2) $\lim_{n\to\infty} n\left(1-\sqrt{1+\frac{3}{n}}\right)$

Resumen

Definición 1. Diremos que la sucesión (s_n) converge a l, o bien que los términos s_n tienden a l (lo cual anotaremos $s_n \to l$), si se cumple que:

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) \ s_n \in [l - \varepsilon, l + \varepsilon].$$

Observación: Las siguientes expresiones son equivalentes a la anterior:

$$\Leftrightarrow (\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \geq n_0) \ l - \varepsilon \leq s_n \leq l + \varepsilon$$

$$\Leftrightarrow (\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) |s_n - l| \le \varepsilon$$

$$\Leftrightarrow (\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) |s_n - l| < \varepsilon$$

$$\Leftrightarrow (\forall \varepsilon > 0)(\exists n_0 \in \mathbb{R})(\forall n \ge n_0) |s_n - l| \le \varepsilon$$

Definición 2. La sucesión (s_n) se llama sucesión nula si $s_n \to 0$.

Definición 3. La sucesión (s_n) se llama sucesión acotada si $(\exists M > 0)(\forall n \in \mathbb{N}) |s_n| \leq M$.

Teorema 1. Sean (u_n) y (v_n) successiones. Las siguientes proposiciones son ciertas:

- 1. (u_n) es nula si y sólo si $(|u_n|)$ es nula.
- 2. Si (u_n) es una sucesión nula, entonces (u_n) es una sucesión acotada.
- 3. Si (u_n) es una sucesión nula y existe $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$, se cumple $|v_n| \leq u_n$, entonces (v_n) es una sucesión nula.
- 4. Si (u_n) y (v_n) son sucesiones *nulas*, entonces $(u_n + v_n)$ y $(u_n \cdot v_n)$ son sucesiones *nulas*.
- 5. Si (u_n) y (v_n) son sucesiones *acotadas*, entonces $(u_n + v_n)$ y $(u_n \cdot v_n)$ son sucesiones *acotadas*.
- 6. Si (u_n) es una sucesión nula y (v_n) es una sucesión acotada, entonces $(u_n \cdot v_n)$ es una sucesión nula. Un caso particular de esto es cuando $v_n = c$ constante.

Proposición 1. Sean (u_n) y (v_n) dos sucesiones convergentes a u y v, respectivamente. Sea $\lambda \in \mathbb{R}$. Entonces se verifican las siguientes propiedades:

- 1. $(u_n + v_n)$ es convergente, y su límite es u + v: $\lim_{n \to \infty} (u_n + v_n) = \lim_{n \to \infty} u_n + \lim_{n \to \infty} v_n.$
- 2. (u_n-v_n) es convergente, y su límite es u-v: $\lim (u_n-v_n) = \lim u_n \lim v_n.$
- 4. (λu_n) es convergente, y su límite es λu :

$$\lim(\lambda u_n) = \lambda \lim u_n.$$

Límites importantes

- $s_n = a$, para $a \in \mathbb{R}$, satisface $\lim s_n = a$.
- lím $\frac{1}{n^k} = 0$, para $k \in \mathbb{N}$.
- $s_n = n^k$, para $k \in \mathbb{N}$, no es acotada, luego diverge.
- Sea

$$s_n = \frac{a_p n^p + a_{p-1} n^{p-1} + \dots + a_1 n + a_0}{b_q n^q + b_{q-1} n^{q-1} + \dots + b_1 n + b_0},$$

para $p, q \in \mathbb{N} \cup \{0\}$. Entonces:

- Si p < q, entonces $s_n \to 0$.
- Si p = q, entonces $s_n \to \frac{a_p}{b_q}$.
- Si p > q, entonces $\left(\frac{1}{s_n}\right) \to 0$, por lo tanto (s_n) no es acotada y diverge.
- $\lim a^n = 0$, para $a \in \mathbb{R}$ tal que |a| < 1.