Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA1001-9 Introducción al Cálculo 14 de mayo de 2025

Auxiliar 8: Axioma del Supremo

Profesor: Álvaro Hernández U. Auxiliares: Luis Fuentes Cruz y Antonia Suazo Ruiz

P1. Utilizando la propiedad arquimediana, pruebe que

$$\inf\left\{\frac{1}{2n+1}:n\in\mathbb{N}\right\}=0$$

P2. Sean $A \subseteq \mathbb{R}$ subconjunto no vacío y acotado, y $f : \mathbb{R} \to \mathbb{R}$ una función decreciente. Demuestre que el conjunto imagen f(A) tiene ínfimo y supremo, y que

$$f(\sup(A)) \le \inf(f(A)) \le \sup(f(A)) \le f(\inf(A)).$$

P3. Determine si el siguiente conjunto tiene supremo. Si ese es el caso, calculelo:

$$A = \left\{ (-1)^n + \frac{1}{n} : n \in \mathbb{N} \right\}$$
 (1)

P4. Sea f una función estrictamente creciente cuyo dominio es el intervalo [0,1]. Demuestre que el conjunto f([0,1]) es acotado superiormente. Calcule el supremo del conjunto f([0,1]) y determine si posee máximo.

Resumen

Definición 1: Un conjunto $A \subseteq \mathbb{R}$ se dice *acotado su*periormente si existe $M \in \mathbb{R}$ tal que $\forall x \in A, x \leq M$. Decimos que M es una cota superior de A, y si además $M \in A$, decimos que es máximo de A.

Definición 2: Un conjunto $A \subseteq \mathbb{R}$ se dice *acotado inferiormente* si existe $m \in \mathbb{R}$ tal que $\forall x \in A, m \leq x$. Decimos que m es una *cota inferior* de A, y si además $m \in A$, decimos que es *mínimo* de A.

Definición 3: Sea $A \subseteq \mathbb{R}$ un conjunto. Diremos que S es *supremo* de A, denotado por sup (A), si:

- \blacksquare S es cota superior de A
- Cualquier otra cota superior de A es mayor que S.

Con esto, $\sup (A)$ es la menor cota superior de A.

Definición 4: Sea $A \subseteq \mathbb{R}$ un conjunto. Diremos que s es *infimo* de A, denotado por inf (A), si:

- \bullet s es cota inferior de A
- Cualquier otra cota inferior de A es menor que s.

Con esto, inf (A) es la mayor cota inferior de A.

Proposición 1 Sean $A, B \subseteq \mathbb{R}$ conjuntos no vacíos. Se definen $A + B = \{x + y | x \in A, y \in B\}$ y $A \cdot B = \{x \cdot y | x \in A, y \in B\}$, entonces:

- $\sup (A \cdot B) = \sup (A) \cdot \sup (B)$, si $A, B \subseteq [0, \infty)$

Axioma 8 (del supremo) Sea $A \subseteq \mathbb{R}$ un conjunto no vacío acotado superiormente, entonces sup (A) existe.

Proposición 2 (del ínfimo) Sea $A \subseteq \mathbb{R}$ un conjunto no vacío acotado inferiormente, entonces ínf (A) existe.

Definición 5 Se define la parte entera de x > 0 como:

$$|x| = \sup\{n \in \mathbb{N} : n \le x\}$$

Además, se cumple $|x| \le x < |x| + 1$.

Proposición 3 (Caracterización del supremo) Sea $A\subseteq\mathbb{R}$ conjunto no vacío. Se tiene que $S=\sup{(A)}$ si y sólo si:

- $\forall x \in A, x \leq S$, es decir, S es cota superior de A.
- Ningún valor menor que S es cota superior, es decir, $\forall \epsilon > 0, \exists x \in A, S \epsilon < x$.

Proposición 4 (Caracterización del ínfimo) Sea $A \subseteq \mathbb{R}$ conjunto no vacío. Se tiene que $s = \inf(A)$ si y sólo si:

- $\forall x \in A, s \leq x$, es decir, s es cota inferior de A.
- Ningún valor mayor que s es cota inferior, es decir, $\forall \epsilon > 0, \exists x \in A, x < s + \epsilon$.

Teorema 1 $\mathbb N$ no está acotado superiormente.

Proposición 5 (Propiedad Arquimediana) El conjunto \mathbb{R} es arquimediano, es decir, $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}^*, n_0 \cdot \epsilon > 1$.

Teorema 2 \mathbb{Q} es denso en \mathbb{R} , es decir, para todo $x, y \in \mathbb{R}$ con x < y, existe $q \in \mathbb{Q}$ tal que $q \in (x, y)$.