

Auxiliar 1: Axiomas de Cuerpo y Orden

Profesor: Álvaro Hernández U.

Auxiliar: Luis Fuentes Cruz y Antonia Suazo Ruiz

Resumen: Axiomas en los $\mathbb R$

Def. (Axioma): Regla que se asume como verdad sin necesidad de demostrarla. $Axiomas\ de\ Cuerpo$:

1. Axioma 1. (Conmutatividad)

- a) Sean $x, y \in \mathbb{R}$, entonces x + y = y + x
- **b**) Sean $x, y \in \mathbb{R}$, entonces $x \cdot y = y \cdot x$

2. Axioma 2. (Asociatividad)

a) Sean $x, y, z \in \mathbb{R}$, entonces

$$x + (y+z) = (x+y) + z$$

b) Sean $x, y, z \in \mathbb{R}$, entonces

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

3. Axioma 3. (Distributividad)

a) Sean $x, y, z \in \mathbb{R}$, entonces

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

4. Axioma 4. (Elementos Neutros)

- a) Existe 0 tal que para todo $x \in \mathbb{R}$, x + 0 = x
- **b**) Existe $1 \neq 0$ tal que para todo $x \in \mathbb{R}$, $x \cdot 1 = x$

5. Axioma 5. (Inversos)

- a) Para cada $x \in \mathbb{R}$ existe -x tal que x + (-x) = 0
- **b**) Para cada $x \neq 0$ existe x^{-1} tal que $x \cdot x^{-1} = 1$

Axiomas de Orden:

6. Axioma 6. (de la tricotomía)

Para todo $x \in \mathbb{R}$, una y solo una de las siguientes proposiciones es verdadera:

- $a) \ x \in \mathbb{R}_+^*$
- $b) \ (-x) \in \mathbb{R}_+^*$
- c) x = 0

7. Axioma 7. (Clausura)

Para todo $x, y \in \mathbb{R}_+^*$ se cumple que:

- $a) (x+y) \in \mathbb{R}_+^*$
- b) $x \cdot y \in \mathbb{R}_{+}^{*}$

Es decir, \mathbb{R}_+^* es cerrado para la suma y el producto.

P1. Primeros grandes pasos. Usando solo axiomas de cuerpo y teoremas de unicidad de inverso y neutro:

- a) Sea $a \in \mathbb{R}$. Demuestre que $a \cdot 0 = 0$
 - 1) Deduzca que $0 \neq 1$.
- b) Sean $a, b \in \mathbb{R}$. Demuestre que a(-b) = -ab.
 - 1) Deduzca que (-a)b = a(-b).
- c) Sean $a, b \in \mathbb{R} \setminus \{0\}$. Demuestre que $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$

P2. [Control 2023-1 P1.a)] Usando los axiomas de cuerpo de \mathbb{R} , los teoremas de unicidad de elementos neutros e inversos, y la propiedad $a \cdot 0 = 0$, demuestre que:

$$\forall a \neq 0, \quad (-(a^{-1}) + 1) \cdot a = a + (-1).$$

Si necesita alguna propiedad adicional, debe demostrarla.

P3. [Control 2016] Usando sólo los axiomas de cuerpo y los teoremas de unicidad de neutros e inversos, demuestre que si existiera $a \neq 0$ tal que a + a = 0, entonces se concluiría que:

$$\forall x \in \mathbb{R}, \quad x + x = 0$$

- **P4.** Nos ordenamos. Utilizando axiomas de orden. Sean a, b, c, u, v, w reales:
 - (i) Demuestre que $a^2 + u^2 \ge -2au$
 - (ii) [**Propuesto**] Demuestre que si $a^2 + b^2 + c^2 = 1$ y $u^2 + v^2 + w^2 = 3$ entonces

$$-2 \le au + bv + cw$$

P5. Usando los axiomas de orden, demuestre que $\forall a, b \in \mathbb{R}_+^*, \ a \neq b$ se cumple:

$$a^4 + b^4 > a^3b + ab^3$$