MA1001-6 Introducción al Cálculo-2025.

Profesora: Jessica Trespalacios J. Auxiliar: Sebastián P. Pincheira

26 de mayo de 2025

AUXILIAR EXTRA I

Sucesiones

Problema 1. Demuestre la continuidad de la raíz cuadrada. Es decir, para cualquier sucesión no negativa convergente (a_n) , $(\sqrt{a_n})$ converge $y \lim \sqrt{a_n} = \sqrt{\lim a_n}$.

Solución. Sea $l = \lim a_n$. Queremos mostrar que $\lim \sqrt{a_n} = \sqrt{l}$. Si $l \neq 0$, se tiene que $|\sqrt{a_n} - \sqrt{l}| = |(\sqrt{a_n} - \sqrt{l})(\sqrt{a_n} + \sqrt{l})/(\sqrt{a_n} + \sqrt{l})| \leq |a_n - l|/\sqrt{l}$. como $a_n - l \to 0$, se sigue que $|\sqrt{a_n} - \sqrt{l}| \to 0$ con lo que $\sqrt{a_n} \to \sqrt{l}$. Ahora, si l = 0, sea $\varepsilon > 0$ y n_0 tal que si $n \geq n_0$, entonces $|a_n| < \varepsilon^2$ (recordemos que $a_n \geq 0$), entonces $\sqrt{a_n} < \varepsilon$. Se sigue que $|\sqrt{a_n} - \sqrt{l}| = \sqrt{a_n} < \varepsilon$ y se concluye que $\sqrt{a_n} \to l$.

Problema 2. (a). ¹ (2 pts.) Sea $s_n = 3 + \frac{\sqrt{n}}{2n+3}$. Sea $\varepsilon > 0$. Muestre que existe un n_0 para el que se cumpla que si $n \ge n_0$ entonces

$$|s_n - 3| < \varepsilon$$
.

(b). 2 (\geq 2 pts.) Sean $(a_n)_{n\in\mathbb{N}}$ y $(b_n)_{n\in\mathbb{N}}$ successores tal que $a_n \to l$ y $b_n \to r$. Demuestre que $\max\{a_n,b_n\} \to \max\{l,r\}$.

(c). ³ Calcule

1).
$$\lim_{n \to \infty} \frac{1}{n} \sin \left(\frac{n^n n!}{\sqrt{n+1}} \right)$$

2).
$$\lim_{n\to\infty} (\sqrt{n^2+1} - n)n$$

3).
$$\lim_{n \to \infty} \frac{4n^4 + 2n^2}{n^4 + 5n^3 + 3n + 6}$$

4).
$$\lim_{n \to \infty} \frac{\frac{2}{n} + \frac{3}{\sqrt{n}} \cos\left(\frac{n^n}{n!}\right) + \frac{2n+1}{3-3n}}{\frac{2^n}{n!} + \frac{(-1)^n}{n} + \frac{1}{1-\frac{n!}{n}}}$$

5).
$$\lim_{n\to\infty} \frac{a_n+n}{na_n^2+1}$$
 donde $a_n\to l$.

Solución. (a). Se quiere $|s_n - 3| < \varepsilon$, es decir $\sqrt{n}/(2n + 3) < \varepsilon$. Se tiene lo siguiente:

$$\frac{\sqrt{n}}{2n+3} \le \frac{\sqrt{n}}{2n}$$
$$\le \frac{\sqrt{n}}{n}$$
$$= \frac{1}{\sqrt{n}}$$
$$= \sqrt{\frac{1}{n}}$$

con lo que basta que $\sqrt{1/n} < \varepsilon$ para que $|s_n - 3| < \varepsilon$. Sea $n_0 \in \mathbb{N}$ tal que para cualquier $n \ge n_0$, $1/n < \varepsilon^2$, este n_0 existe pues $1/n \to 0$. Se sigue que, si $n \ge n_0$, entonces $1/n < \varepsilon^2$, entonces $\sqrt{1/n} < \varepsilon$, entonces $|s_n - 3| < \varepsilon$.

¹MA1001-4 (Otoño 2020). Control 3, P1 (b).

 $^{^2}$ MA1001-4 (Otoño 2020), Auxiliar #10. P1. Este problema salió en el control del mismo semestre con $(a_n) = (1)$ y r = 1 (MA1001-4 (Otoño 2020). Control 3, P1 (c).).

³MA1001-4 (Otoño 2020), Auxiliar #10. P3.

(b). Se tiene que para cualquier $x, y \in \mathbb{R}$,

$$\max\{x, y\} = \frac{x + y + |x - y|}{2}.$$

Con lo que se tiene que

$$\begin{split} \lim_{n \to \infty} \max\{a_n, b_n\} &= \lim_{n \to \infty} \frac{a_n + b_n + |a_n - b_n|}{2} \\ &= \frac{\lim a_n + b_n + |a_n - b_n|}{\lim 2} \\ &= \frac{\lim a_n + \lim b_n + \lim |a_n - b_n|}{2} \\ &= \frac{l + r + |\lim a_n - b_n|}{2} \\ &= \frac{l + r + |l - r|}{2} \\ &= \max\{l, r\}. \end{split}$$

- (c). 1). El primer termino es nulo y el segundo es acotado. Se sigue que $\frac{1}{n}\sin\left(\frac{n^n n!}{\sqrt{n+1}}\right) \to 0$.
 - 2). Se tiene que

$$(\sqrt{n^2 + 1} - n)n = \frac{(\sqrt{n^2 + 1} - n)(\sqrt{n^2 + 1} + n)}{(\sqrt{n^2 + 1} + n)}n$$

$$= \frac{n^2 + 1 - n^2}{(\sqrt{n^2 + 1} + n)}n$$

$$= \frac{n}{(\sqrt{n^2 + 1} + n)}$$

$$= \frac{1}{(\sqrt{1 + 1/n^2} + 1)}.$$

Se concluye que $\lim (\sqrt{n^2+1}-n)n=1/2$ (pues $1+\frac{1}{n^2}\to 1$) y P1 (b).

3).

$$\frac{4n^4+2n^2}{n^4+5n^3+3n+6} = \frac{4+2/n^2}{1+5/n+3/n^3+6/n^4} \to 4$$

- 4). En el numerador, el primer término es nulo, el segundo es nulo por acotado, el tercero es igual a (2+1/n)/(-3+3/n) por lo que converge a -2/3. Es decir, el numerador converge a -2/3. En el denominador, el segundo termino es nulo por acotado, el primero es nulo (última propiedad de la semana en el apunte) y, como $n!/n^n \to 0$ (penúltima propiedad de la semana en el apunte), se sigue que el último término converge a 1. Como el numerado converge a -2/3 y el denominador converge a 1, se concluye que $\frac{\frac{2}{n} + \frac{3}{\sqrt{n}} \cos(\frac{n^n}{n!}) + \frac{2n+1}{3-3n}}{\frac{2^n}{n!} + \frac{(-1)^n}{n} + \frac{1}{1-\frac{n^n}{n!}}} \to -2/3$.
- 5). Se tiene que

$$\frac{a_n + n}{na_n^2 + 1} = \frac{a_n/n + 1}{a_na_n + 1/n} \to \frac{1}{l^2}$$

donde se usó que a_n es acotada en el numerador, y que es convergente en el denominador.

Problema 3. (a). ⁴ (2 pts.) Sean $a, b \in \mathbb{R}$ y sean $(a_n)_{n \in \mathbb{N}}$ y $(b_n)_{n \in \mathbb{N}}$ dos sucesiones reales tales que $a_n \leq a$, $b_n \leq b$ para todo $n \in \mathbb{N}$. Suponga que $a_n + b_n \to a + b$. Demuestre que $a_n \to a$ y $b_n \to b$.

2

⁴MA1001 (Primavera 2022), Control 3, P1 b).

- (b). ⁵ Sea $a \in \mathbb{R}$ $y p : \mathbb{R} \to \mathbb{R}$ un polinomio de grado $k \in \mathbb{N}$. Calcule $\lim_{n \to \infty} p(n) \frac{a^n}{n^n}$.
- (c). Sea (b_n) acotada y (a_n) tal que $(1/a_n)$ es nula. Muestre que $\frac{1}{a_n+b_n} \to 0$.

Solución. (a). Como $a_n \leq a$ y $b_n \leq b$, sumando b_n a la primera y a_n a la segunda se obtienen las desigualdades

$$a_n + b_n \le a + b_n$$

$$a_n + b_n \le b + a_n$$

y se sigue que

$$a_n + b_n - a \le b_n$$

$$a_n + b_n - b \le a_n$$

y usando la desigualdad del enunciado, se tiene que

$$a_n + b_n - a \le b_n \le b$$

$$a_n + b_n - b \le a_n \le a.$$

Con esto se tienen las siguientes desigualdades:

$$a_n + b_n - (a+b) \le b_n - b \le 0$$

$$a_n + b_n - (a+b) < a_n - a < 0$$

con lo que, multiplicando todo por -1, se llega a

$$0 \le |b - b_n| \le |a + b - (a_n + b_n)| \tag{1}$$

$$0 \le |a - a_n| \le |a + b - (a_n + b_n)|. \tag{2}$$

Sea $\varepsilon > 0$ y sea $n_0 \in \mathbb{N}$ tal que si $n \ge n_0$, entonces $|a+b-(a_n+b_n)| < \varepsilon$. Entonces para cada $n \ge n_0$, se tiene que $|b-b_n| < \varepsilon$ y $|a-a_n| < \varepsilon$ (por desigualdades (1) y (2)). Con lo que se concluye que $a_n \to a$ y $b_n \to b$.

(b). Se tiene que $p(x) = \sum_{i=0}^{k} b_i x^i$ con lo que

$$\lim p(n)\frac{a^n}{n^n} = \lim \left(\sum_{i=0}^k b_i n^i\right) \frac{a^n}{n^n}$$

$$= \lim \sum_{i=0}^k b_i n^i \frac{a^n}{n^n}$$

$$= \sum_{i=0}^k \lim b_i n^i \frac{a^n}{n^n}$$

$$= \sum_{i=0}^k b_i a^i \lim \frac{a^{n-i}}{n^{n-i}}$$

$$= \sum_{i=0}^k b_i a^i 0$$

$$= 0$$

donde se utilizó que $a^n/n^n \to 0$. En efecto, si $\varepsilon > 0$ y N es tal que si $n \ge N$, entonces $a/n < \varepsilon$. Podemos definir $n_0 = \max\{a, N\}$ y se tiene que, si $n \ge n_0$, entonces $a^n/n^n = (a/n)^n \le a/n < \varepsilon$.

⁵Apunte del Curso (MA1001), semana 9, problema P2.

(c). Sea M > 0 tal que $|b_n| \le M$ para todo n. Sea $\varepsilon > 0$ y sea n_0 tal que para $n \ge n_0$, se tiene que $1/|a_n| < 1/(1/\varepsilon + M)$. Se tiene que

$$\frac{1}{|a_n|} < \frac{1}{\frac{1}{\varepsilon} + M}$$

$$\implies |a_n| > \frac{1}{\varepsilon} + M$$

$$\implies |a_n| - M > \frac{1}{\varepsilon}$$

$$\implies |a_n| - |b_n| > \frac{1}{\varepsilon}$$

$$\implies |a_n| - |-b_n| > \frac{1}{\varepsilon}$$

$$\implies |a_n - b_n| > \frac{1}{\varepsilon}$$

$$\implies |a_n + b_n| > \frac{1}{\varepsilon}$$

$$\implies \frac{1}{|a_n + b_n|} < \varepsilon$$

con lo que $\frac{1}{a_n+b_n} \to 0$.