MA1001-6 Introducción al Cálculo-2025.

Profesor: Jessica Trespalacios J. Auxiliar: Sebastián P. Pincheira

16 de mayo de 2025

AUXILIAR 9

Sucesiones

Proposición 1. Sean (u_n) y (v_n) dos sucesiones convergentes a u y v, respectivamente. Sea $\lambda \in \mathbb{R}$, entonces las sucesiones $(u_n + v_n)$, $(u_n - v_n)$, $(u_n \cdot v_n)$ y (λu_n) son también convergentes a u + v, u - v, $u \cdot v$ y λv , respectivamente.

Problema 1. Sean (u_n) , (v_n) successores. Las siguientes proposiciones son ciertas.

- 1. (u_n) es nula si y sólo si $(|u_n|)$ es nula.
- 2. Si (u_n) y (v_n) son successores nulas, entonces $(u_n + v_n)$ y $(u_n \cdot v_n)$ son successores nulas.
- 3. Si (u_n) y (v_n) son succesiones acotadas entonces $(u_n + v_n)$ y $(u_n * v_n)$ son succesiones acotadas.

Solución. C.f. Teorema 9.2 del apunte del curso.

Problema 2. Sea (s_n) una sucesión de números reales entonces $s_n \to \ell \iff (s_n - \ell)$ es una sucesión nula. Además, s_n es acotada.

Solución. C.f. Proposiciones 9.1 y 9.2 del apunte.

Problema 3.

Demuestre la continuidad del valor absoluto. Es decir, para cualquier sucesión convergente (a_n) , $(|a_n|)$ converge $y \lim |a_n| = |\lim a_n|$.

Solución. Sea $l = \lim a_n$. Queremos mostrar que $\lim |a_n| = |l|$. Sea $\varepsilon > 0$ y $n_0 \in \mathbb{N}$ tal que si $n \ge n_0$, entonces $|a_n - l| < \varepsilon$. Se tiene que, si $n \ge n_0$, entonces $||a_n| - |l|| \le |a_n - l| < \varepsilon$ y se concluye que $|a_n| \to |l|$.

Problema 4. ¹ Calcule

$$\lim_{n \to \infty} \frac{\frac{2}{n} + \frac{3}{\sqrt{n}} \cos\left(\frac{n^n}{n!}\right) + \frac{2n+1}{3-3n}}{\frac{2^n}{n!} + \frac{(-1)^n}{n} + \frac{1}{1 - \frac{n!}{n^n}}}$$

Solución. En el numerador, el primer término es nulo, el segundo es nulo por acotado, el tercero es igual a (2+1/n)/(-3+3/n) por lo que converge a -2/3. Es decir, el numerador converge a -2/3. En el denominador, el segundo termino es nulo por acotado, el primero es nulo (última propiedad de la semana en el apunte) y, como $n!/n^n \to 0$ (penúltima propiedad de la semana en el apunte), se sigue que el último término converge a 1. Como el numerado converge a -2/3 y el denominador converge a 1, se

apunte), se sigue que el último término converge a 1. Como el numerado converge a
$$-2/3$$
 y el denominador converge a 1, se concluye que $\frac{\frac{2}{n} + \frac{3}{\sqrt{n}} \cos\left(\frac{n^n}{n!}\right) + \frac{2n+1}{3-3n}}{\frac{2^n}{n!} + \frac{(-1)^n}{n} + \frac{1}{1-\frac{n!}{n^n}}} \to -2/3$.

¹MA1001-4 (Otoño 2020), Auxiliar #10. P3.