MA1001-6 Introducción al Cálculo-2025.

Profesora: Jessica Trespalacios J. Auxiliar: Sebastián P. Pincheira

14 de marzo de 2025

AUXILIAR 1

Axiomas de Cuerpo de los Números Reales

1. Introducción

Consideremos la proposición 1 del libro II de los Elementos de Euclides:

Proposición 1 (Euclides). Si de dos rectas la una se divide en cualquier número de partes iguales; el rectángulo compuesto por las dos será igual a los rectángulos contenidos por la entera, y por los segmentos de la otra.

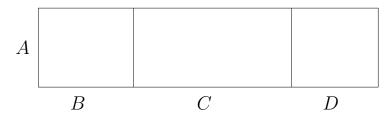


Figura 1: Resultado de tomar dos rectas paralelas, dividir una de ellas en tres partes y formar los rectángulos resultantes.

En resumen, la propiedad establece que

$$A(B+C+D) = AB + AC + AD.$$

2. Problemas

Problema 1. Demuestre, usando solo los axiomas de cuerpo de los números Reales, y los teoremas de unicidad de los elementos neutros e inversos, que $\forall a,b \in \mathbb{R} \setminus \{0\}$ se cumple que:

$$(ab^{-1})^{-1} = a^{-1}b.$$

Solución. Queremos demostrar que $a^{-1}b$ es el inverso multiplicativo de ab^{-1} . En efecto,

$$(ab^{-1})(a^{-1}b) = (ab^{-1})(ba^{-1})$$
 Conmutatividad
 $= a(b^{-1}(ba^{-1}))$ Asociatividad
 $= a((b^{-1}b)a^{-1})$ Asociatividad
 $= a(1 \cdot a^{-1})$ Inverso multiplicativo
 $= aa^{-1}$ Neutro multiplicativo
 $= 1$ Inverso multiplicativo

$$(ab^{-1})(a^{-1}b) = 1$$

Por unicidad del inverso multiplicativo, se tiene $a^{-1}b = (ab^{-1})^{-1}$.

Problema 2. Demuestre que

$$\forall x, y \in \mathbb{R}, \ xy = 0 \implies (x = 0) \lor (y = 0).$$

Solución. Como es una implicancia, asumiremos el lado izquierdo y concluiremos el lado derecho. Es decir, asumiremos

$$xy = 0. (H)$$

Hay dos casos posibles: x = 0 o $x \neq 0$. Si x = 0, estamos listos pues se concluye el lado derecho de la implicancia. Si $x \neq 0$,

$$y=1\cdot y$$
 Neutro multiplicativo
$$=(x^{-1}x)y$$
 Inverso multiplicativo
$$=x^{-1}(xy)$$
 Asociatividad
$$=x^{-1}\cdot 0$$
 (H)
$$=0$$
 $\forall a\in\mathbb{R},\ a\cdot 0=0$

$$\therefore y = 0.$$

De lo anterior tenemos que, si $x \neq 0$, entonces y = 0 con lo que se termina la demostración. Note que, en el caso $x \neq 0$, se pudo usar el inverso multiplicativo de x gracias a la asunción $x \neq 0$.

Problema 3. Sean $a, b, c, d \in \mathbb{R}$. Demuestre lo siguiente:

(1).
$$-a = -1 \cdot a$$

Solución.

$$\begin{array}{ll} a+(-1)\cdot a=1\cdot a+(-1)\cdot a & \text{Neutro multiplicativo} \\ &=(1+(-1))a & \text{Distribución} \\ &=0\cdot a & \text{Inverso aditivo} \\ &=0 & \forall a\in\mathbb{R},\ a\cdot 0=0 \end{array}$$

$$\therefore a + (-1) \cdot a = 0$$

Por unicidad del inverso aditivo, $-a = (-1) \cdot a$.

(2).
$$(ab)^{-1} = a^{-1}b^{-1}$$
, $si\ a, b \neq 0$.

Solución.

$$(ab)(a^{-1}b^{-1}) = (ab)(b^{-1}a^{-1})$$
 Conmutatividad
$$= a(b(b^{-1}a^{-1}))$$
 Asociatividad
$$= a((bb^{-1})a^{-1})$$
 Asociatividad
$$= a(1 \cdot a^{-1})$$
 Inverso multiplicativo
$$= aa^{-1}$$
 Neutro multiplicativo
$$= 1$$
 Inverso multiplicativo

$$(ab)(a^{-1}b^{-1}) = 1$$

y por unicidad del inverso multiplicativo, $a^{-1}b^{-1} = (ab)^{-1}$.

(3).
$$\frac{a}{b} = \frac{ac}{bc}$$
, $si\ b, c \neq 0$.

Solución.

$$\frac{ac}{bc} = (ac)(bc)^{-1} \qquad \qquad \text{Notación}$$

$$= (ac)(b^{-1}c^{-1}) \qquad \qquad \text{P3.2}$$

$$= (ac)(c^{-1}b^{-1}) \qquad \qquad \text{Conmutatividad}$$

$$= a(c(c^{-1}b^{-1})) \qquad \qquad \text{Asociatividad}$$

$$= a((cc^{-1})b^{-1}) \qquad \qquad \text{Asociatividad}$$

$$= a(1 \cdot b^{-1}) \qquad \qquad \text{Inverso multiplicativo}$$

$$= ab^{-1} \qquad \qquad \text{Neutro multiplicativo}$$

$$\frac{a}{b} \qquad \qquad \text{Notación}$$

$$\therefore \frac{ac}{bc} = \frac{a}{b}.$$

$$(4). \ \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

Solución.

$$\frac{ad+bc}{bd} = (ad+bc)(bd)^{-1} \qquad \qquad \text{Notación}$$

$$= (ad+bc)(b^{-1}d^{-1}) \qquad \qquad \text{P3.2}$$

$$= (ad)(b^{-1}d^{-1}) + (bc)(b^{-1}d^{-1}) \qquad \qquad \text{Distributividad}$$

$$= (ad)(d^{-1}b^{-1}) + (bc)(b^{-1}d^{-1}) \qquad \qquad \text{Conmutatividad}$$

$$= (ad)(d^{-1}b^{-1}) + (cb)(b^{-1}d^{-1}) \qquad \qquad \text{Conmutatividad}$$

$$= a(d(d^{-1}b^{-1})) + c(b(b^{-1}d^{-1})) \qquad \qquad \text{Asociatividad}$$

$$= a((dd^{-1})b^{-1}) + c((bb^{-1})d^{-1}) \qquad \qquad \text{Asociatividad}$$

$$= a(1 \cdot b^{-1}) + c(1 \cdot d^{-1}) \qquad \qquad \text{Inverso multiplicativo}$$

$$= ab^{-1} + cd^{-1} \qquad \qquad \text{Neutro multiplicativo}$$

$$= \frac{a}{b} + \frac{c}{d} \qquad \qquad \text{Notación}$$

$$\therefore \frac{ad + bc}{bd} = \frac{a}{b} + \frac{c}{d}$$

$$(5). \ \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{db}, \ si \ b, d \neq 0.$$

Solución.

$$\begin{array}{ll} \frac{ac}{db} = (ac)(db)^{-1} & \text{Notación} \\ &= (ac)(d^{-1}b^{-1}) & \text{P3.2} \\ &= a(c(d^{-1}b^{-1})) & \text{Asociatividad} \\ &= a((cd^{-1})b^{-1}) & \text{Asociatividad} \\ &= a(b^{-1}(cd^{-1})) & \text{Conmutatividad} \\ &= (ab^{-1})(cd^{-1}) & \text{Conmutatividad} \\ &= \frac{a}{b} \cdot \frac{c}{d} & \text{Notación} \end{array}$$

Problema 4. Sea C un conjunto de número reales que satisface las siguientes propiedades:

(P1).
$$3 \in C$$
,

(P3). Si $x, y \in C$, entonces $x + y \in C$,

(P2). Si
$$x \in C$$
, entonces $3x + 1 \in C$,

$$(P4)$$
. $7 \notin C$.

Demuestre entonces las siguientes propiedades.

1. $1 \notin C$,

Solución. Si $1 \in C$ entonces, por (P2), $3 \cdot 1 + 1 \in C$. Además, como, por (P1), $3 \in C$, entonces, por (P3), $4 + 3 \in C$, es decir, $7 \in C$. Esto último contradice (P4) con lo que no se puede tener $1 \in C$, es decir, $1 \notin C$.

2. Si $x, y \in C$, entonces $3x + 2y + 4 \in C$,

Solución. Se tiene que, por commutatividad de la suma, 3x + 2y + 4 = 3x + 1 + y + y + 3. Como, por (P2), $3x + 1 \in C$, por (P1), $3 \in C$ y por hipótesis $y \in C$, entonces, por (P3), $3x + 1 + y + y \in C$ y, nuevamente, por (P3), $3x + 1 + y + y \in C$ con lo que, nuevamente por (P3), $3x + 1 + y + y + 3 \in C$. Con esto se tiene que $3x + 2y + 4 \in C$.

3. Si $x, y \in C$, entonces $4 - x - y \notin C$,

Solución. Asumamos que existe $x,y\in C$ tal que $4-x-y\in C$. Entonces, por (P3), $4-x-y+x\in C$, pero, por conmutatividad, por inverso aditivo y neutro aditivo, 4-x-y+x=4-y. Nuevamente por (P3), se tiene que $4-y+y\in C$, es decir, $4\in C$, por inverso aditivo y elemento neutro. Por (P1), $3\in C$ con lo que, por (P3), $4+3\in C$, es decir, $7\in C$. Esto último contradice (P4), es decir, No existe ningún $x,y\in C$ tal que $4-x-y\in C$. En otras palabras, si $x,y\in C$, entonces $4-x-y\not\in C$.

4. Si $3y + z + 4 \notin C$, entonces $(y \notin C \vee z/2 \notin C)$,

Solución. Sea $y \in C$ y $z/2 \in C$. De (P3) se sigue que $z/2 + z/2 \in C$. Como $z/2 + z/2 = 2(z/2) = 2(Z2^{-1}) = 2(2^{-1}z) = (2*2^{-1})z = 1*z = z$ (donde se utilizó commutatividad, asociativo, inverso multiplicativo y elemento neutro en las igualdades 3, 4, 5 y 6 respectivamente), entonces $z \in C$. Con esto, por (P2), $3y + 1 \in C$, además, por (P3), $3y + 1 + z \in C$, además, por (P1), $3 \in C$ con lo que, por (P3) nuevamente, $3y + 1 + z + 3 \in C$. Notemos que, por commutatividad, 3y + 1 + z + 3 = 3y + z + 4 con lo que $3y + z + 4 \in C$.

Acabamos de demostrar que, $(y \in C \land z/2 \in C) \implies 3y + z + 4 \in C$ o, lo que es lo mismo (contrarecíproco), $3y + z + 4 \notin C \implies (y \notin C \lor z/2 \notin C)$.

5. No existe $x \in C$ tal que 3(2x - 1) = 39.

Solución. Por contradicción, supongamos que $x \in C$ es tal que 3(2x-1)=39. Entonces

$$3(2x-1) = 39 \iff 6x-3=39$$

$$\iff (6x-3)+3=39+3$$

$$\iff 6x(-3+3)=39+3$$

$$\iff 6x+0=42$$

$$\iff 6x=42$$

$$\iff 6^{-1}(6x)=6^{-1}\cdot 42$$

$$\iff (6^{-1}\cdot 6)x=6^{-1}\cdot (6\cdot 7)$$

$$\iff 1\cdot x=(6^{-1}\cdot 6)7$$

$$\iff x=(6^{-1}\cdot 6)7$$

$$\iff x=1\cdot 7$$

$$\iff x=7$$
Conmutatividad
Asociatividad
Inverso aditivo
Asociatividad
Inverso multiplicativo
Neutro multiplicativo
Neutro multiplicativo

Con esto, $7 \in C$ (pues $x \in C$). Esto último contradice (P4) con lo que no existe un $x \in C$ tal que 3(2x-1)=39.

Para los siguientes dos problemas, usaremos los números enteros como siempre los hemos conocido de manera intuitiva. Asumiremos las siguientes propiedades:

- (a). $\mathbb{Z} \subseteq \mathbb{R}$,
- (b). $0, 1 \in \mathbb{Z}$,
- (c). $n \in \mathbb{Z} \implies -n \in Z$.

Además, para este auxiliar, asumiremos que $1/2 \notin \mathbb{Z}$.

Problema 5. Definimos el conjunto de los números racionales como

$$\mathbb{Q} = \{ pq^{-1} \in \mathbb{R} \mid p \in \mathbb{Z} \land q \in \mathbb{Z} \setminus \{0\} \}.$$

Demuestre que \mathbb{Q} es un cuerpo, si es que lo es, o demuestre que no es, si no lo es. En este contexto, las operaciones de suma y multiplicación entre elementos racionales a, b, corresponde a la suma y multiplicación entre los elementos reales a, b (que en particular, son racionales).

Solución. Queremos demostrar que \mathbb{Q} satisface las propiedades establecidas en la sección 3 al final de este enunciado (esto es, las cinco propiedades siguen siendo verdaderas si remplazamos \mathbb{R} por \mathbb{Q} en cada una de ellas).

Para la conmutatividad para la suma, tomamos $x, y \in \mathbb{Q}$, en particular, $x, y \in \mathbb{R}$ y por ende x + y = y + x (pues esto es verdad para todos los reales x, y).

La conmutatividad multiplicativa, la asociatividad y la distributividad se demuestran de manera análoga.

Tenemos que $0 = 0/1 \in \mathbb{Q}$ y, además, si $x \in \mathbb{Q}$ entonces x + 0 = x pues $\forall a \in \mathbb{R}, \ a + 0 = 0$ y $x \in \mathbb{R}$. La demostración para el neutro multiplicativo es análoga.

Mostremos la propiedad del inverso aditivo: Sea $pq^{-1} \in \mathbb{Q}$ con $p \in \mathbb{Z}$ y $q \in \mathbb{Z} \setminus \{0\}$. Sabemos que existe un único $-(pq^{-1}) \in \mathbb{R}$ tal que $pq^{-1} + (-(pq^{-1}))$. Pero

$$-(pq^{-1}) = (-1)(pq^{-1})$$
 P3.1
= $((-1)p)q^{-1}$ Asociatividad
= $(-p)q^{-1}$ P3.1

$$\therefore -(pq^{-1}) = (-p)q^{-1} \in \mathbb{Q}.$$

Con lo que $\mathbb Q$ tiene la propiedad de inverso aditivo.

Para el inverso multiplicativo, sea $pq^{-1} \in \mathbb{Q} \setminus \{0\}$ con $p \in \mathbb{Z}$ y $q \in \mathbb{Z} \setminus \{0\}$. Notemos que, como $pq^{-1} \neq 0$, entonces necesariamente, $q \neq 0$. Como, en particular, $pq^{-1} \in \mathbb{R}$, existe un elemento $(pq^{-1})^{-1} \in \mathbb{R}$ tal que $(pq^{-1})(pq^{-1})^{-1} = 1$. Mostremos que $(pq^{-1})^{-1} \in \mathbb{Q}$:

$$(pq^{-1})^{-1} = p^{-1}(q^{-1})^{-1}$$
 P3.2
= $(q^{-1})^{-1}p^{-1}$ Conmutatividad
= qp^{-1} $\forall x \in \mathbb{R}(x^{-1})^{-1} = x$

$$\therefore (pq^{-1})^{-1} = qp^{-1} \in \mathbb{Q}$$

con lo que $\mathbb Q$ tiene la propiedad de inverso multiplicativo y $\mathbb Q$ es un cuerpo.

Problema 6. Consideremos \mathbb{Z} el conjunto de los números enteros. En este contexto, las operaciones de suma y multiplicación entre elementos enteros n, m, corresponde a la suma y multiplicación entre estos elementos reales n, m (que en particular, son enteros).

- (1). Demuestre que Z cumple con los axiomas de cuerpo excepto, quizás, el axioma de inverso multiplicativo.
 - Solución. Las propiedades 1 a la 4 son análogas a la demostración para \mathbb{Q} . La demostración de el axioma 5(1) es directa de nuestra hipótesis que $n \in \mathbb{Z} \implies -n \in \mathbb{Z}$.
- (2). Demuestre que Z es un cuerpo, si es que lo es, o demuestre que no lo es, si es que no lo es.

Solución. Debido a la parte anterior, la única forma en la que \mathbb{Z} podría no ser cuerpo, es si el axioma 5(2) no se cumple. Es decir, si es que existe un entero sin inverso en los enteros. Consideremos $2 \in \mathbb{N}$, entonces, 1/2 es el único elemento en \mathbb{R} tal que $2 \cdot 1/2 = 1$. Pero $1/2 \notin \mathbb{Z}$ por lo que \mathbb{Z} no es cuerpo.

3. Resumen.

Axioma 1 (Conmutatividad).

- (1). $\forall x, y \in \mathbb{R}, \ x + y = y + x.$
- (2). $\forall x, y \in \mathbb{R}, \ x \cdot y = y \cdot x$.

Axioma 2 (Asociatividad)

- (1). $\forall x, y, z \in \mathbb{R}, (x+y) + z = x + (y+z).$
- (2). $\forall x, y, z \in \mathbb{R}, (x \cdot y) \cdot z = x \cdot (y \cdot z).$

Axioma 3 (Distributividad).

- (1) $\forall x, y, z \in \mathbb{R}, \ x(y+z) = xy + xz.$
- (2) $\forall x, y, z \in \mathbb{R}, (x+y)z = xz + yz.$

Axioma 4 (Elemento neutro).

- (1). $\exists e_+ \in \mathbb{R}, \forall x \in \mathbb{R}, x + e_+ = e_+ + x = x$.
- (2). $\exists e \in \mathbb{R}, \forall x \in \mathbb{R}, x \cdot e = e \cdot x = x$.

Axioma 5 (Elemento inverso).

- (1). $\forall x \in \mathbb{R}, \exists (-x) \in \mathbb{R}, \ x + (-x) = (-x) + x = e_+.$
- (2). $\forall x \in \mathbb{R} \setminus \{0\}, \exists (x^{-1}) \in \mathbb{R}, \ x \cdot (x^{-1}) = (x^{-1}) \cdot x = e..$