
Auxiliar Extra C3

Profesor: Gonzalo Palma

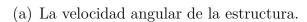
Auxiliares: Jou-Jin Ho Ku, Javier Huenupi, Danilo Tapia

P1.-

Un brazo mecánico R rota con velocidad angular constante ω respecto de un eje horizontal que pasa por su extremo \mathcal{O} . Su otro extremo, \mathcal{O}' , sostiene una plataforma, la cual se mantiene siempre horizontal. Considere un bloque de masa m que puede deslizar sin roce sobre la plataforma. En el momento en que el brazo está en su posición horizontal (y subiendo), el bloque se encuentra en el punto \mathcal{O}' en reposo relativo a la plataforma.

(a) Para un sistema de referencia no-inercial S' cuyo origen es \mathcal{O}' , determine la ecuación de movimiento que describe la posición horizontal de m con respecto a \mathcal{O}' .

Figura 1: Pregunta 1


 \mathcal{O}'

|m|

- (b) Encuentre la distancia máxima alcanzada por el bloque respecto a \mathcal{O}' (suponga que el largo de la plataforma es suficiente para impedir que el bloque caiga por sus extremos).
- (c) Determine el valor máximo $\omega_{\text{máx}}$ para que el bloque nunca se despegue de la plataforma.

P2.-

La estructura de la figura puede rotar libremente en torno a un eje horizontal fijo, ubicado en el punto \mathcal{O} . El sistema consta de tres barras de largo L y masa despreciable, con dos partículas de masa m pegadas en los vértices libres. El sistema soltado desde el reposo en la posición que indica la figura. Despreciando todo tipo de roces, determine, en función del ángulo girado:

- (b) La reacción que ejerce el eje a la estructura.
- (c) La frecuencia de pequeñas oscilaciones para la posición de equilibrio estable.

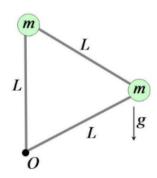


Figura 2: Pregunta 2

Auxiliar Extra C3