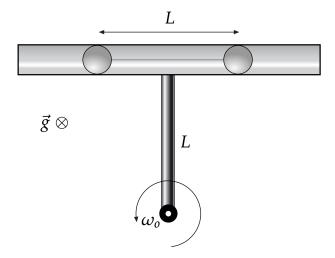


Auxiliar 18


Profesor: Gonzalo Palma

Auxiliares: Jou-Jin Ho Ku, Javier Huenupi, Danilo Tapia

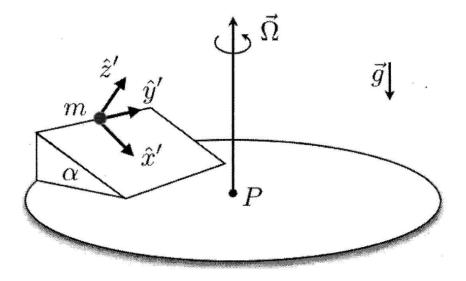
P1.-

Considere una estructura horizontal formada por un tubo de largo 2L, y una barra de largo L, que gira con velocidad angular constante ω_0 con respecto a un eje vertical, en la forma indicada en la Figura. En el interior del tubo se encuentran dos partículas de masa m cada una, unidas por una cuerda de largo L, y **en equilibrio respecto al tubo**. No hay roce.

- a) Determine la tensión de la cuerda en la condición de equilibrio
- b) Si en cierto instante la cuerda se rompe, calcule la velocidad de ambas partículas, relativas al tubo, en el instante que escapan de él
- c) Calcule la velocidad absoluta de ambas partículas en ese instante

Auxiliar 18

P2.-


Una cuña de ángulo α respecto de la horizontal se ubica sobre una plataforma que rota con velocidad angular constante Ω respecto de un eje vertical que pasa por un punto P, como muestra la figura. Una partícula de masa m es liberada sobre la cuña partiendo su movimiento desde el reposo relativo a la cuña y su movimiento es descrito con respecto al sistema móvil $S' = \{\hat{x}', \hat{y}', \hat{z}'\}$ indicado en la figura, cuyo origen se ubica en la posición inicial de la partícula sobre la cuña. Considere en este problema que pueden despreciarse todas las fuerza inerciales **excepto la fuerza de Coriolis**. Se pide:

- a) Escribir la ecuación de movimiento de la partícula en sus 3-componentes x', y', z' del sistema de referencia móvil S'
- b) Resolver las ecuaciones, encontrando x'(t) e y'(t). Ver indicación de más abajo
- c) Esquematizar la trayectoria de la partícula sobre la cuña. Determinar el máximo descenso y la máxima rapidez (relativa) de la partícula en su movimiento

Indicación: La ecuación diferencial $\ddot{u} = A - \omega_0^2 \dot{u}$, con A y ω_0 constantes, tiene por solución general:

$$u(t) = \frac{A}{\omega_0^2} t + C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) + C_3,$$

donde las constantes C_i se determinan según condiciones iniciales u(0), $\dot{u}(0)$, $\ddot{u}(0)$

Auxiliar 18 2

Formulario

Sistemas de referencia no inerciales

La ecuación de movimiento para el SRNI S' es

$$m\ddot{\vec{r}}' = \underbrace{\vec{F}}_{\text{reales}} - \underbrace{m\ddot{\vec{R}}}_{\text{traslacional}} - \underbrace{m\vec{\Omega} \times (\vec{\Omega} \times \vec{r}')}_{\text{centrifuga}} - \underbrace{2m\vec{\Omega} \times \dot{\vec{r}}'}_{\text{Coriolis}} - \underbrace{m\dot{\vec{\Omega}} \times \vec{r}'}_{\text{azimutal}},$$

donde

- \vec{F} es la suma de las fuerzas **reales** aplicadas sobre la partícula;
- \vec{R} vector que va desde el origen de S al origen de S';
- $\vec{\Omega}$ velocidad angular con la que giran los ejes **cartesianos** de S' c/r a los de S; y
- \vec{r}' vector que va desde el origen de S' hasta la partícula.

Auxiliar 18

Auxiliar 18

2

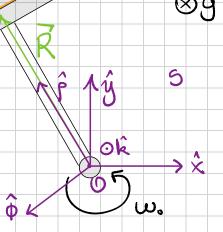
P1

En este curso couparermos SRNI cuando encontrermos un problema en el que coupando un sist de coord 6' sea bostomte fácil describir el maximiento de los partículos. Sin embargo, este sist. S' que elegimos rota amgularmente, \$\vec{z}\$ y \$\vec{z}\$, o se traslada aceleradamente, \$\vec{R}\$, con respecto a un sist inercial S.

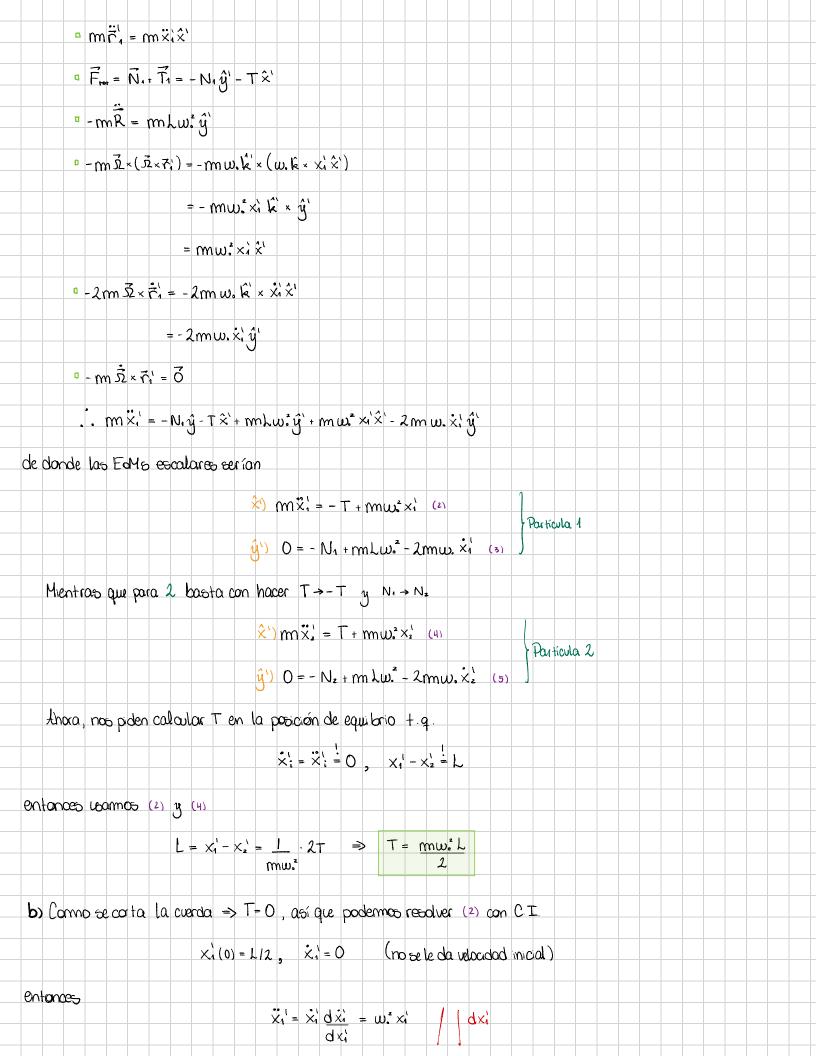
En este problema notamos que trologiam do con 5' los portículas solo se malerían en 2', pero 6' está girom do c/r a 6, por lo que si que em os encontrar la ec de mau visto desde 6, o sea

tenermos que coupar la formula maestra de esta unidad

$$m\ddot{\vec{r}}' = \vec{F}_{m} - m\dot{\vec{R}} - m\vec{x} \times (\vec{x} \times \vec{r}') - lm\vec{x} \times \dot{\vec{r}}' - m\dot{\vec{x}} \times \vec{r}'$$
 (1)


donde i, i se calcular como dervadas estándar de r'

* Commo los ejes unitarios de 6' se mueven de forma no-inercial, a priori, ya no se tiene, por ej, $\dot{\hat{x}}'=\bar{0}$.


No dostamte, estos cambios en los derivadas temporales ya está considerado en (1), lo qui da origen a la aparición de las fuerzos ficticias

tunque estos problemas parezcon complicados por la forma de (1), todos se pueden abordor de la siguiente forma

- 1) Definir S' y 7', junto con las derivadas del último
- 2) Expresar Ř y derivarlo dos veces
- 3) Definir la velocidad amquiair 52
- 4) Calcular las fuerzas reales Fin
- 5) Pasar todos los vectores de S a la base de S'
- 6) Calcular cada término de la fórmula maestra
- a) Emperemos (sin siquiera saber qui nos piden)

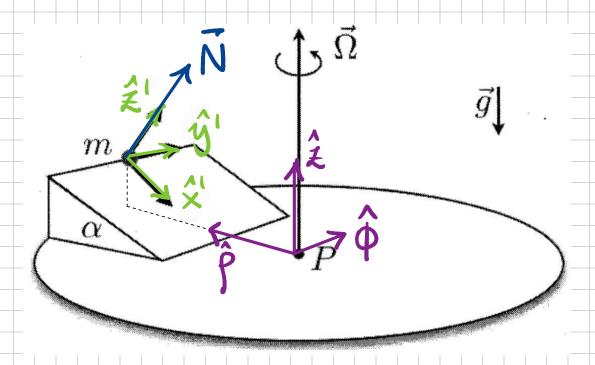
Þ	Yar	70 %	00 :	5' j	y r	ı.																													
							. h	00	do	CI	١- ١	c\	r i	0.2	000-	00/0	alo.	اما	Eau	m	Hoo	m	Lan	2000	./NO	2 -	n-L	ىلىن	06	41.6	-1 vC-	000	c:000	.06	
	ජා	orio	oep an 4	am	pler	mer	ite Ite	use da	da6	ро	r - 1	٠,٠) 1	EX	hreo	wa	OI 1	ш	ngo	ia.	tho	u,	ter	1011	00	~	LA TI	COU	UO	y e	ovo.	μω	CO	Φ	
							Ī	ζ\ -	- X1	\	3		べ	= >	را م ح کا																				
	11 6	7(P)	doni	VO C	105 105																														
	_																																		
D	2*	7																																	
		R	s e (dep:	ne (COM	0	UN	vect	α	que	va	dea	de	0	ha	sta.	O,	, er	n esot	re co	60													
								Ŕ	= L	Ŷ	>	<u></u>	Lá	ρĝ	-> >	Ř.	= L	φ̂¢) –	Ļφ̈́	ĝ														
do	nde	, F	OC (gek	de	có	mc	gir	a l	a p	olato	afα	mc	ı, '	tak	em	100	que	φ.	= w.	. =>	φ	= O	, ex	ntor	7 0 65	, <u>:</u>	=	-Lı	ນ. ີ ຄ	5			_	
D	3°	pa ^c	<u>00</u> :	Z Z																															
		tro	3 (10)	D.W.	tn i	mn	er to	tmr	e l	0 18	loc:	daa	d an	∩ <i>(</i>)	₹	Co .	doo	WP.	carr	ma	la v	olm	da	√ or	m	<u>~</u>	la	שנוח	Oit?) /w	1 646	t u	ortac	ianc)
	50l	da	oí1	a s	j', (clr	a u	0 ව	ot.	Car	tes	anc	o de	şţv.	do	en	S.								Ü			400,	J'''		- 00				
	(00																	,			oom o d						ŷ	7	Ŷ	1					
												ŝ	. = L	v. K		=>	-	<u>z</u> =	õ									<u>ം</u>		,		77	^\		
Þ	410	00%	<u>5</u> :	F"	t																							کر ارځ		7	່ມ,	_	X		
		Sc	i ber	moŧ	s qu	u r	o h	αy	mo	v. €	en l	^=	Ŕ٬	por	lo	qui	igr	oro	am	OO l	a g	rou	eda	d. l	loe	úr	ica	o d	ණ	fve	(30	e d	u (bn	diná-
	m	a (U 1 3	prok	den	ma	C Or) ·																											
	3			7	Q	1	70			Þ	Nc)(m	al:	· N); =	- 1	ا، û)																	
	2					4				۵	Ten	nsić	ju:	Ŧ,	-	Τŝ	,	〒	2 =	Τŵ	ζ.														
	~	Se	1		Þ	<u>5"</u>	pae	<u>o</u> :	5	->	SI																								
	O	lre	mo	6 G	em	nplo	1201	- 6v) (1) C	on (úni c	am	nen:	te v	ecto	xes	en	el.	si st	. 5	\ _ }	ŵ'	ų̈́	, V	<u>ئ</u> }	. S	n e	mk	o ro	ΙΟ,	Ř 1	ί <u>Σ</u>	· lo ·	tene-
m	О О (en l	la l	006	e de	5																								_			_	നട	
rel	aci	one	5 :	ŷ	=	مر د م		φu =	- (ò .	Re	em	nplo	sc Bon	ugo m	л III ')	• 🖂	u f	-gu	u (υu	μ	1110	V	י טיכ	∏סיע	ا ۱۱۱ز	с ъ.	, 10		1100	, wi	, OI	inp	~
													ä	=	- <u>)</u>	w.²	'nί	,		<u>5</u> =	- w	. k̂													
Þ	6 *	p0a	60 :	Re	emi	plaz	OC										J																		
								17				, 1				, A	_								_	\ ~			0			. 1 -	. 1.	_	
	HC	ψq	jul 1	cal	wla	c co	da	ter	Wil	o d	e (1)	ro 1	nore	ρ	ra l	ar	MO	6а	1 , n	mier)†(C	6 0 ()ere	bou	a 10	ιm	060	しる	æ ('ගත	ide	V4IC	2	

$$\varphi = \alpha x^{2} \left(x^{2} - \frac{1}{2} \right)$$

$$y \text{ quantumos solver la velocidad en $x^{2} = L$. Remajlazionnes
$$X_{1p}^{2} = X^{2} \left(x^{2} - \frac{1}{2} \right)$$

$$Notionnes que para 2 detendromas la minemo (nazione discluto) as qui conclumos qui
$$\widehat{T}_{1p}^{2} = X_{1p}^{2} x^{2} + \frac{1}{2} \text{ ind.} L, \qquad \widehat{T}_{1p}^{2} = X_{1p}^{2} x^{2} - \frac{1}{2} \text{ wit.} \hat{X}^{2}$$

$$(1)$$


$$c) Quiparnose la pérmula
$$\widehat{T}_{1}^{2} = X_{1p}^{2} x^{2} + \frac{1}{2} \text{ ind.} \hat{X}^{2} + \frac{1}{2} \text{ ind.} \hat{X}^{2}$$

$$qui para 1 euria
$$\widehat{T}_{1}^{2} = X_{1p}^{2} x^{2} + \frac{1}{2} \text{ ind.} \hat{X}^{2} + \frac{1}{2} \text{ ind.} \hat{X}^{2}$$

$$qui para 1 euria
$$\widehat{T}_{1}^{2} = X_{1p}^{2} x^{2} + \frac{1}{2} \text{ ind.} \hat{X}^{2} + \frac{1}{2} \text{ ind.} \hat{X}^{2}$$

$$qui para 1 euria
$$\widehat{T}_{1}^{2} = X_{1p}^{2} x^{2} + \frac{1}{2} \text{ ind.} \hat{X}^{2} + \frac{1}{2} \text{ ind.} \hat{X}^{2}$$

$$qui para 1 euria
$$\widehat{T}_{1}^{2} = X_{1p}^{2} x^{2} + \frac{1}{2} \text{ ind.} \hat{X}^{2} + \frac{1}{2} \text{ ind.$$$$$$$$$$$$$$$$

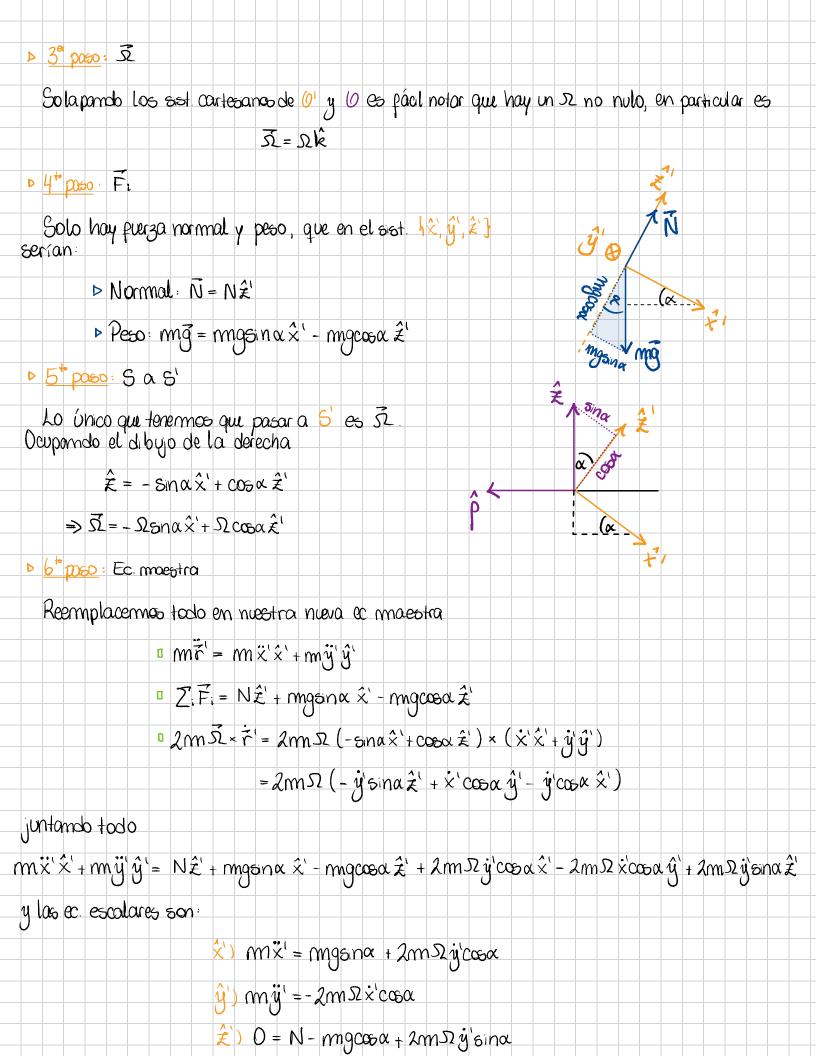
Debido a las indicaciones del enunciado, ahora la ec maestra sería

$$m\ddot{r}' = Z_i F_i - lm \Omega \times \dot{r}'$$

Ocuparemos los mismos pasos de omtes.

b 10 paso: S'y r'

Ocupamos el sistema 5' impuesto. Tendríannos que la posición de la partícula es


$$\vec{r}' = x'\hat{x}' + y'\hat{y}' \Rightarrow \vec{r}' = \dot{x}'\hat{x}' + \dot{y}'\hat{y}' \Rightarrow \vec{r}' = \ddot{x}'\hat{x}' + \ddot{y}'\hat{y}'$$

▶ 2° pa≥o: R

Debdo al maximiento circular de la rampa, conviene definir nuestro sistema inercial S como un sist. Cilíndrico con \hat{P} apuntando en el plano \hat{X} - $\frac{1}{K}$ (ver fijura)
Sin embargo, desprecare mos la contribución de \hat{K} . Esto lo pueden pensar como

$$\vec{R} = R\hat{\rho} + h\hat{k} \Rightarrow \ddot{\vec{R}} = -R\hat{p}\hat{\rho}$$

donde Ř ≈ O SI R<<1

B) Aberemos ancontrar los soluciones
$$\dot{x}(u)$$
 $\dot{y}(u)$, pero $\dot{x}(u)$ $\dot{y}(u)$ son COOs acaptadas. Denientos La EDO $\dot{x}(u)$ $\dot{x}(u)$ = 2.2 $\dot{y}(u)$ cosa $\dot{x}(u)$ $\dot{x}(u)$ = 2.2 $\dot{x}(u)$ =

El máximo descenso, viendo x'(t), es cuamdo $cos(2)2cosx(t^*) = -1$ y para la rapidez $||\vec{y}(t)||^2 = \dot{x}^{12} + \dot{y}^{12} = \frac{g^2 \sin^2 \alpha}{4 \Omega^2 \cos^2 \alpha} - \frac{g^2 \sin^2 \alpha}{2 \Omega^2 \cos^2 \alpha} \cos(2 \Omega \cos(\alpha) \cdot t) + \frac{g^2 \sin^2 \alpha}{4 \Omega^2 \cos^2 \alpha}$ que es máxima en el mismo tiempo cos(22cos(x).t **) = -1